共查询到20条相似文献,搜索用时 15 毫秒
1.
Peng WJ Yu J Deng S Jiang JL Deng HW Li YJ 《Canadian journal of physiology and pharmacology》2004,82(5):339-344
In the present study, we tested the effects of long-term estrogen replacement treatment on myocardial ischemia-reperfusion injury and on the cardioprotection of ischemic preconditioning in isolated hearts from ovariectomized rats. Ovariectomized rats were treated with 17beta-estradiol (30 micro g/kg/d, s.c.) for 12 weeks. Isolated rat hearts were perfused in the Langendorff mode. Heart rate, coronary flow, left ventricular pressure and its first derivative (+/-LVdp/dtmax) were recorded. Fifteen-min global ischemia and 30-min reperfusion caused a significant decrease of cardiac mechanical function, which were not affected by ovariectomy or estrogen replacement treatment. The isolated hearts in all groups could be preconditioned, and the cardioprotection afforded by preconditioning in the sham-operated rats was greater compared with ovariectomized rats with or without estrogen treatment. These results suggest that long-term estrogen replacement treatment exerts no effect on the inhibition of mechanical function after ischemia-reperfusion, and this study also suggests that estrogen does not affect ischemic preconditioning in isolated hearts of ovariectomized rats. 相似文献
2.
Translocation of HSP27 and MKBP in ischemic heart. 总被引:7,自引:0,他引:7
K Yoshida T Aki K Harada K M Shama Y Kamoda A Suzuki S Ohno 《Cell structure and function》1999,24(4):181-185
HSP27 and MKBP translocate from the cytosolic to myofibril fraction in ischemic rat heart as demonstrated by immunoblotting. Immunohistochemistry analysis showed that ischemia enhances the Z line labeling of HSP27 and MKBP. Two dimensional gel electrophoresis showed that ischemia increases the hyperphosphorylated form of HSP27. These data suggest that HSP27 and MKBP may be involved in the Z line protection against postischemic reperfusion injury. 相似文献
3.
Hampton CR Shimamoto A Rothnie CL Griscavage-Ennis J Chong A Dix DJ Verrier ED Pohlman TH 《American journal of physiology. Heart and circulatory physiology》2003,285(2):H866-H874
We investigated the role of inducible heat shock proteins 70.1 and 70.3 (HSP70.1 and HSP70.3, respectively) in myocardial ischemic preconditioning (IP) in mice. Wild-type (WT) mice and HSP70.1- and HSP70.3-null [HSP70.1/3(-/-)] mice were subjected to IP and examined 24 h later during the late phase of protection. IP significantly increased steady-state levels of HSP70.1 and HSP70.3 mRNA and expression of inducible HSP70 protein in WT myocardium. To assess protection against tissue injury, mice were subjected to 30 min of regional ischemia and 3 h of reperfusion. In WT mice, IP reduced infarct size by 43% compared with sham IP-treated mice. In contrast, IP did not reduce infarct size in HSP70.1/3(-/-) mice. Absence of inducible HSP70.1 and HSP70.3 had no effect, however, on classical or early-phase protection produced by IP, which significantly reduced infarct size in HSP70.1/3(-/-) mice. We conclude that inducible HSP70.1 and HSP70.3 are required for late-phase protection against infarction following IP in mice. 相似文献
4.
5.
Hoch Brigitte Lutsch Gudrun Schlegel Wolfgang-Peter Stahl Joachim Wallukat Gerd Bartel Sabine Krause Ernst-Georg Benndorf Rainer Karczewski Peter 《Molecular and cellular biochemistry》1996,160(1):231-239
Recent investigations concentrate on the correlation between the myocardial expression of the inducible 70-kDa heat shock protein (HSP70i) by different stress conditions and its possible protective effects. Only few studies have focused on the involvement of small heat shock proteins in this process. We analyzed the location of the small heat shock protein HSP25 in isolated cardiomyocytes as well as its location and induction in isolated perfused hearts of rats. By immunofluorescence microscopy HSP25 was found to colocalize with actin in the I-band of myofibrils in cardiomyocytes of isolated perfused hearts as well as in isolated neonatal and adult cardiomyocytes. Hyperthermic perfusion of isolated hearts for 45 min resulted in modulation of different parameters of heart function and in induction of HSP25 and HSP70i. Temperatures higher than 43°C (44–46°C) were lethal with respect to the contractile function of the hearts. Compared to control hearts perfused at 37°C, significant increases during hyperthermic perfusion at 42°C and 43°C were obtained for heart rate, contraction velocity and relaxation velocity. In response to hyperthermia at 43°C and after subsequent normothermic perfusion for 135 min at 37°C, left ventricular pressure, contraction velocity and relaxation velocity remained significantly elevated. However, heart rate returned to control values immediately after the period of heat treatment. HSP25 is constitutively expressed even in normothermic perfused hearts as shown by Western blotting. Hyperthermia increased the content of HSP25 only in the left ventricular tissue. In contrast, HSP70i was strongly induced in all analyzed parts of the myocardium (left ventricle, right ventricle, septum). Our findings suggest a differential regulation of HSP25 and HSP70i expression in response to hyperthermia in isolated perfused hearts. The constitutively expressed HSP25 seems to be located adjacent to the myofibrils which implies a specific role of this protein even under unstressed conditions for the contractile function of the myocardium. 相似文献
6.
Li G Ali IS Currie RW 《American journal of physiology. Heart and circulatory physiology》2008,294(1):H74-H87
Six hours after insulin treatment, hearts express heat shock protein 70 (Hsp70) and have improved contractile function after ischemia-reperfusion injury. In this study we examined hearts 1 h after insulin treatment for contractile function and for expression of Hsp70 and Hsp27. Adult, male Sprague-Dawley rats were assigned to groups: 1) sham, 2) control, 3) insulin injected (200 microU/g body wt), 4) heat shock treated (core body temperature, 42 degrees C for 15 min), and 5) heat shock and insulin treated. At 1 h after these treatments, hearts were isolated, equilibrated to Langendorff perfusion for 30 min, and then subjected for 30 min no-flow global ischemia (37 degrees C) followed by 2 h of reperfusion. Insulin-treated hearts had significantly increased contractile function compared with control hearts. At 1 h after insulin treatment, a minimal change in Hsp70 and Hsp27 content were detected. By 3 h after insulin treatment, a significant increase in Hsp70, but not Hsp27, was detected by Western blot analysis. By immunofluorescence, minimal Hsp70 was detected in insulin-treated hearts, whereas Hsp27 was detected in all hearts, indicative of its constitutive expression. Phosphospecific isoforms of Hsp27 were detected in insulin-, heat shock-, and heat shock and insulin-treated hearts. After ischemia and reperfusion, the insulin-treated hearts had significantly elevated levels of phosphorylated Hsp27. Inhibition of p38 MAPK with SB-203580 blocked the insulin-induced phosphorylation of Hsp27 and the improved functional recovery. In conclusion, insulin induces an apparent rapid phosphorylation of Hsp27 that is associated with improved functional recovery after ischemia-reperfusion injury. 相似文献
7.
An accumulation of recent evidence suggests that the mechanism in ischemic preconditioning (IPC) may involve the activation of protein kinase C (PKC) regulatory pathway. In this study, we examined whether the content of 1,2-diacylglycerol (1,2-DAG) and ceramide, which are intracellular second messengers regulating PKC activity, change during IPC in isolated perfused rat hearts, and whether the observed change in 1,2-DAG is accompanied with alteration in its fatty acid composition. Hearts subjected to IPC, consisting of 5-min transient global ischemia followed by 5-min reperfusion, presented a significant functional recovery during subsequent 40-min reperfusion following 40-min global ischemia compared with non-preconditioned hearts. An increase in 1,2-DAG content was observed in hearts subjected to 5-min transient ischemia compared with non-ischemic control hearts, however this was not seen in hearts harvested after 5-min reperfusion following 5-min ischemia. While fatty acid composition in 1,2-DAG was virtually unchanged in hearts subjected to 5-min ischemia, saturated 1,2-DAG decreased and monounsaturated/polyunsaturated 1,2-DAG increased in hearts reperfused for 5-min following 5-min ischemia compared with the non-ischemic control hearts. Ceramide mass did not change significantly, suggesting that the contribution of ceramide may be small in IPC. These data are in concert with the hypothesis that 1,2-DAG is a second messenger in IPC and the changes in fatty acid composition of 1,2-DAG may add new insight concerning signal transduction pathway in IPC. 相似文献
8.
Canton M Neverova I Menabò R Van Eyk J Di Lisa F 《American journal of physiology. Heart and circulatory physiology》2004,286(3):H870-H877
Although the contribution of reactive oxygen species to myocardial ischemia is well recognized, the possible intracellular targets, especially at the level of myofibrillar proteins (MP), are not yet fully characterized. To assess the maximal extent of oxidative degradation of proteins, isolated rat hearts were perfused with 1 mM H(2)O(2). Subsequently, the MP maximally oxidative damage was compared with the effects produced by 1) 30 min of no-flow ischemia (I) followed in other hearts by 3 min of reperfusion (I/R); and 2) I/R in the presence of a potent antioxidant N-(2-mercaptopropionyl)glycine (MPG). Samples from the H(2)O(2) group electrophoresed under nonreducing conditions and probed with actin, desmin, or tropomyosin monoclonal antibodies showed high-molecular mass complexes indicative of disulfide cross-bridges along with splitting and thickening of tropomyosin and actin bands, respectively. Only these latter changes could be detected in I/R samples and were prevented by MPG. Carbonyl groups generated by oxidative stress on MP were detected by Western blot analysis (oxyblot) under optimized conditions. The analyses showed one major band corresponding to oxidized actin, the density of which increased 1.2-, 2.8-, and 6.8-fold in I, I/R, and H(2)O(2) groups, respectively. The I/R-induced increase was significantly reduced by MPG. In conclusion, oxidative damage of MP occurs on reperfusion, although at a lower extent than in H(2)O(2) perfused hearts, whereas oxidative modifications could not be detected in ischemic hearts. Furthermore, the inhibition of MP oxidation by MPG might underlie the protective efficacy of antioxidants. 相似文献
9.
Kocsis GF Pipis J Fekete V Kovács-Simon A Odendaal L Molnár E Giricz Z Janáky T van Rooyen J Csont T Ferdinandy P 《American journal of physiology. Heart and circulatory physiology》2008,294(5):H2406-H2409
Statins have been shown to be cardioprotective; however, their interaction with endogenous cardioprotection by ischemic preconditioning and postconditioning is not known. In the present study, we examined if acute and chronic administration of the 3-hydroxy-3-methylglutaryl CoA reductase inhibitor lovastatin affected the infarct size-limiting effect of ischemic preconditioning and postconditioning in rat hearts. Wistar rats were randomly assigned to the following three groups: 1) vehicle (1% methylcellulose per os for 12 days), 2) chronic lovastatin (15 mg.kg(-1).day(-1) per os for 12 days), and 3) acute lovastatin (1% methylcellulose per os for 12 days and 50 micromol/l lovastatin in the perfusate). Hearts isolated from the three groups were either subjected to a nonconditioning (aerobic perfusion followed by 30-min coronary occlusion and 120-min reperfusion, i.e., test ischemia-reperfusion), preconditioning (three intermittent periods of 5-min ischemia-reperfusion cycles before test ischemia-reperfusion), or postconditioning (six cycles of 10-s ischemia-reperfusion after test ischemia) perfusion protocol. Preconditioning and postconditioning significantly decreased infarct size in vehicle-treated hearts. However, preconditioning failed to decrease infarct size in acute lovastatin-treated hearts, but the effect of postconditioning remained unchanged. Chronic lovastatin treatment abolished postconditioning but not preconditioning; however, it decreased infarct size in the nonconditioned group. Myocardial levels of coenzyme Q9 were decreased in both acute and chronic lovastatin-treated rats. Western blot analysis revealed that both acute and chronic lovastatin treatment attenuated the phoshorylation of Akt; however, acute but not chronic lovastatin treatment increased the phosphorylation of p42 MAPK/ERK. We conclude that, although lovastatin may lead to cardioprotection, it interferes with the mechanisms of cardiac adaptation to ischemic stress. 相似文献
10.
Shinmura K Nagai M Tamaki K Tani M Bolli R 《American journal of physiology. Heart and circulatory physiology》2002,283(6):H2534-H2543
Opioids confer biphasic (early and late) cardioprotection against myocardial infarction by opening mitochondrial ATP-sensitive K(+) channels. It is unknown whether cyclooxygenase-2 (COX-2), which mediates ischemia-induced late preconditioning, also mediates opioid-induced cardioprotection. Isolated perfused rat hearts were subjected to 20 min of global ischemia followed by 20 min of reperfusion. BW-373U86 (BW), a delta-opioid receptor agonist, was administered 1, 12, or 24 h before death. Recovery of left ventricular developed pressure (LVDP) after ischemia-reperfusion improved when BW was administered 1 or 24 h before ischemia (control: 57 +/- 8, BW 1 h: 75 +/- 5, BW 24 h: 85 +/- 6%) but not when it was administered 12 h before (60 +/- 5%). Levels of 6-keto-PGF(1alpha) (a stable metabolite of PGI(2)) in coronary effluent after 20 min of reperfusion were higher with 24-h BW pretreatment than in controls (1,053 +/- 92 vs. 724 +/- 81 pg/ml), whereas 6-keto-PGF(1alpha) levels at baseline did not differ. Administration of a selective COX-2 inhibitor, NS-398, abolished the late phase of cardioprotection (recovery of LVDP, 53 +/- 8%) and attenuated the increase in PGI(2) (706 +/- 138 pg/ml) but did not block the early phase of cardioprotection. The selective COX-1 inhibitor SC-560 did not affect either phase of protection. Western immunoblotting revealed upregulation of PGI(2) synthase protein 24 h after BW administration without changes in COX-1 and COX-2 protein levels. In conclusion, the late (but not the early) phase of delta-opioid receptor-induced preconditioning is mediated by COX-2. A functional coupling between COX-2 and upregulated PGI(2) synthase appears to underlie this cardioprotective phenomenon in the rat. 相似文献
11.
Contribution of endocannabinoids in the endothelial protection afforded by ischemic preconditioning in the isolated rat heart 总被引:8,自引:0,他引:8
The aim of the present study was to assess the contribution of endogenous cannabinoids in the protective effect of ischemic preconditioning on the endothelial function in coronary arteries of the rat. Isolated rat hearts were exposed to a 30-min low flow ischemia (1 ml/min) followed by 20-min reperfusion, after which the response to the endothelium-dependent vasodilator, serotonine (5-HT), was compared with that of the endothelium-independent vasodilator, sodium nitroprusside (SNP). In untreated hearts, ischemia-reperfusion diminished selectively 5-HT-induced vasodilatation, compared with time-matched sham hearts, the vasodilatation to SNP being unaffected. A 5-min zero-flow preconditioning ischemia in untreated hearts preserved the vasodilatation produced by 5-HT. Blockade of either CB(1)-receptors with SR141716A or CB(2)-receptors with SR144528 abolished the protective effect of preconditioning on the 5-HT vasodilatation. Perfusion with either palmitoylethanolamide or 2-arachidonoylglycerol 15 min before and throughout the ischemia mimicked preconditioning inasmuch as it protected the endothelium in a similar fashion. This protection was blocked by SR144528 in both cases, whereas SR141716A only blocked the effect of PEA. The presence of CB(1) and CB(2)-receptors in isolated rat hearts was confirmed by Western blots. In conclusion, the data suggest that endogenous cannabinoids contribute to the endothelial protective effect of ischemic preconditioning in rat coronary arteries. 相似文献
12.
M Kurzelewski E Czarnowska M Maczewski A Beresewicz 《Journal of physiology and pharmacology》1999,50(4):617-628
It has been demonstrated that ischemic preconditioning (IPC) affords protection against the post-ischemic endothelial dysfunction. Here, a hypothesis was tested that IPC, by protecting the endothelium, prevents also the adherence of granulocytes (PMNs) in the post-ischemic heart. Langendorff-perfused guinea-pig hearts were subjected to 30 min ischemia/30 min reperfusion (IR) and peritoneal PMNs were infused between 15 and 25 min of the reperfusion. Acetylcholine (ACh)-induced coronary vasodilatation and nitrite outflow were used to measure endothelial function and coronary flow response to sodium nitroprusside (SNP) served as a measure of endothelium-independent vascular function. The endothelial adherence of PMNs to the coronary microvessels was assessed in histological preparation of the myocardium. In the hearts subjected to IR, ACh-induced vasodilatation and nitrite outflow were reduced by 55% and 69%, respectively, SNP response remained unaltered, and 22% of microvessels were occupied by PMNs, as compared to 2% in the sheam perfused hearts. These alterations were attenuated by IPC (3 x 5 min ischemia). A selectin blocker, sulfatide, prevented IR-induced PMNs adherence and did not affect the responses to ACh and SNP. These data demonstrate that IR leads to the endothelial dysfunction and to the selectin-mediated PMNs adhesion in the isolated guinea-pig and that IPC attenuates both alterations. We speculate that the pro-adhesive effect of IR is secondary to the endothelial injury and that the anti-PMNs action represents a novel cardioprotective mechanism of IPC. 相似文献
13.
14.
目的:分别观察给予HO-1诱导剂和抑制剂对心肌相对缺血再灌注损伤和缺血预适应的影响,探讨HO-1在缺血预适应中的作用.方法:实验动物随机分为对照组(CN)、缺血/再灌损伤组(I/R)、缺血预适应 缺血/再灌损伤组(PC)、HO-1诱导剂 缺血/再灌损伤组(HM)、HO-1抑制剂 缺血预适应组(ZP).心肌缺血/再灌损伤采用相对缺血/再灌损伤模型,缺血预适应则为相对缺血5min恢复5min,反复2次.测定心功能、MDA及HO-1活性变化.结果:HM组HO-1活性升高,心功能恢复率均显著高于IR组(P<0.01),MDA含量显著低于IR组(P<0.05).ZP组活性降低,心功能恢复率显著低于PC组(P<0.05),MDA含量显著高于PC组(P<0 05).结论:HO-1是缺血预适应释放的内源性活性物质之一. 相似文献
15.
The objective of this study was to investigate if a variation in extracellular-K+ concentrations alters the effects of global preconditioning on ischemia-induced arrhythmias. Rat hearts were Langendorff-perfused with Krebs-Henseleit solution and randomised in 8 groups (n = 12/group): four control groups (K+: 2, 4, 6, or 8 mmol/L) which underwent 30-min coronary artery occlusion and four preconditioned groups (K+: 2, 4, 6, or 8 mmol/L) in which the 30-min regional ischemia was preceded by 2 cycles of 3 min global ischemia. In the presence of low K+ (2 mmol/L), there were no differences between control and preconditioning groups in the number of ventricular premature beats (VPBs): 194 ± 64 vs. 217 ± 81, the incidence of ventricular tachycardia (VT): 100% vs. 100% and of ventricular fibrillation (VF): 100% vs. 100%. In the presence of normal K+ concentration (4 mmol/L), ischemic preconditioning reduced the number of VPBs from 88 ± 26 to 25 ± 10, (p < 0.05), the incidence of VT from 100 to 50% (p < 0.05), and of VF from 67 to 16% (p < 0.05). In the condition of higher K+ concentration (6 mmol/L), VPBs (34 ± 8 vs. 11 ± 4), the incidence of VT (100% vs. 25%; p < 0.05 ) and VF (25% vs. 8%) were further reduced in preconditioned hearts. In the condition of K+ concentration (8 mmol/L), there were no differences in VPBs (11 ± 3 vs. 7 ± 2), the incidence of VT (8% vs. 0%) and VF (8% vs. 0%) between control and preconditioned hearts. Our data show that ischemic preconditioning affords protection against arrhythmias during coronary artery occlusion in the isolated rat heart and that hypokalemia abolishes the antiarrhythmic effects of global preconditioning. 相似文献
16.
目的:观察血红素氧合酶-1(HO-1)mRNA在缺血预适应中的变化.方法:实验动物随机分为对照组(CN)、缺血/再灌损伤组(I/R)、缺血预适应 缺血/再灌损伤组(PC).结果:PC组的心功能恢复率高于I/R组(P<0.05),MDA含量低于I/R组(P<0.05),HO-1 mRNA又高于I/R组(P<0.05).结论:HO-1mRNA表达上调与缺血预适应保护缺血/再灌注损伤心肌有关. 相似文献
17.
An J Camara AK Rhodes SS Riess ML Stowe DF 《American journal of physiology. Heart and circulatory physiology》2005,288(6):H2620-H2627
Ischemic preconditioning (IPC) induces distinctive changes in mitochondrial bioenergetics during warm (37 degrees C) ischemia and improves function and tissue viability on reperfusion. We examined whether IPC before 2 h of hypothermic (27 degrees C) ischemia affords additive cardioprotection and improves mitochondrial redox balance assessed by mitochondrial NADH and flavin adenine dinucleotide (FAD) autofluorescence in intact hearts. A mediating role of ATP-sensitive K(+) (K(ATP)) channel opening was investigated. NADH and FAD fluorescence was measured in the left ventricular wall of guinea pig isolated hearts assigned to five groups of eight animals each: hypothermia alone, hypothermia with ischemia, IPC with cold ischemia, 5-hydroxydecanoic acid (5-HD) alone, and 5-HD with IPC and cold ischemia. IPC consisted of two 5-min periods of warm global ischemia spaced 5 min apart and 15 min of reperfusion before 2 h of ischemia at 27 degrees C and 2 h of warm reperfusion. The K(ATP) channel inhibitor 5-HD was perfused from 5 min before until 5 min after IPC. IPC before 2 h of ischemia at 27 degrees C led to better recovery of function and less tissue damage on reperfusion than did 27 degrees C ischemia alone. These improvements were preceded by attenuated increases in NADH and decreases in FAD during cold ischemia and the reverse changes during warm reperfusion. 5-HD blocked each of these changes induced by IPC. This study indicates that IPC induces additive cardioprotection with mild hypothermic ischemia by improving mitochondrial bioenergetics during and after ischemia. Because effects of IPC on subsequent changes in NADH and FAD were inhibited by 5-HD, this suggests that mitochondrial K(ATP) channel opening plays a substantial role in improving mitochondrial bioenergetics throughout mild hypothermic ischemia and reperfusion. 相似文献
18.
为研究HSP27的磷酸化与其细胞内定位之间的关系,利用定点突变和DNA重组技术构建EGFP融合的HSP27野生型和第82位丝氨酸突变体的真核表达载体并转染NIH 3T3细胞,观察两者在静息状态和亚砷酸盐刺激下的细胞内定位情况.利用p38 MAPK特异性抑制剂SB203580预处理细胞后,观察对HSP27磷酸化和细胞内定位的影响.结果发现,野生型HSP27受到NaAsO2刺激后移位入核,而其突变体HSP27(S82A)不能入核.同时,SB203580的预处理使HSP27的磷酸化和NaAsO2诱导的移位入核都被阻断.这些结果表明,p38介导的HSP27磷酸化在其细胞内定位中具有重要作用 相似文献
19.
全脑缺血预处理诱导大鼠海马缺血耐受的实验研究 总被引:14,自引:3,他引:14
目的和方法:采用大鼠四血管闭塞全脑缺血模型(4-vessel occlusion,4VO)及组织病理学方法,观察预缺血的持续时间,和预缺血与其后的损伤性缺血之间的间隔时间对海马缺血耐受形成的影响。结果:缺血6min即可导致海马组织明显的神经元延迟性死亡(delayed neuron death,DND),而缺血3min不足以引起海马组织明显的DND。经过3min缺血预处理,可对间隔1d和3d后6min缺血引起的大鼠海马DND产生明显的保护作用(P<0.01)。但是,1min缺血预处理对间隔1d后6min缺血引起的DND不产生明显影响;5min缺血预处理时间隔1d后6min缺血,以及3min缺血预处理对间隔1h后6min缺血引起的DND不但没有保护作用,反而有使海马组织损伤累积加重的趋势。结论:在4VO大鼠模型中,全脑缺血预处理确能诱导海马对缺血性损伤产生耐受,诱导海马缺血耐受所需缺血预处理的适宜期间为3min左右,预缺血与后续损伤性缺血之间需要间隔足够的时间,适宜间隔在1-3d左右。 相似文献