首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have previously shown that immunization of C57BL/10 (H-2b) mice with the tobacco mosaic virus protein (TMVP) or with its tryptic peptide number 8, representing residues 93-112 of TMVP, induces T cells which proliferate in vitro in response to TMVP and peptide 8. In contrast, immunization of congenic B10.BR (H-2k) mice with either TMVP or with peptide 8 induces T cells which respond in vitro to the homologous but not the heterologous antigen. The capacity to exhibit cross-reactivity between TMVP and peptide 8 on the T cell level has been shown to be under major histocompatibility complex (MHC)-linked genetic control. The lack of cross-reactivity has been attributed to the inability of the H-2k APC to present the appropriate epitope to T cells. In the present paper, we report results of a comparative analysis of the role of structural aspects of the epitope on the proliferative T cell responses from TMVP and peptide 8-immune C57BL/10 (H-2b) and B10.BR (H-2k) mice. Utilizing a panel of synthetic peptides representing portions of peptide 8 and a panel of peptide-protein conjugates, we have determined that peptide 8-immune T cells of the H-2k strain appear to recognize a single epitope within peptide 8, located at its N-terminus. In contrast, in the H-2b strain, both TMVP and peptide 8-immune T cells appear to recognize two overlapping epitopes within peptide 8; one located in the middle region and the other toward the N-terminus. Experiments with H-2b T cells revealed that random amino acids added to the carboxyl or amino-terminus of nonstimulatory peptides can confer activity to these peptides, demonstrating limited specificity of interaction between antigen and Iab. Results of experiments dealing with fixation of antigen-presenting cells suggest that TMVP requires processing in order to be recognized by peptide 8-immune H-2b proliferative T cells whereas peptide 8 does not. Taken together the results suggest that the T cell responsiveness to TMVP and peptide 8 exhibited by these two congenic strains H-2b and H-2k is not only controlled by the strains MHC but is also influenced by antigen processing. Antigen processing may eliminate a potential epitope for the primary induction and the secondary stimulation of B10.BR T cells.  相似文献   

2.
We have previously shown that sc immunization of C57BL/10 (H-2b) mice with the tobacco mosaic virus protein (TMVP) or with its tryptic peptide number 8, representing residues 93-112 of TMVP, induces T cells which proliferate in vitro in response to TMVP and to peptide 8. In contrast, immunization of B10.BR (H-2k) mice either with TMVP or with peptide 8 induces T cells which respond in vitro to the homologous but not the heterologous Ag. In the present article , we report that in the B10.BR (H-2k) strain, ip prepriming with (TMVP) 7 days prior to sc immunization with peptide 8 causes a drastic reduction in the in vitro proliferative response of peptide 8-specific T cells while no such effect is seen in the congenic C57BL/10 (H-2b) strain. This suppression of T cell responsiveness can be transferred with TMVP-primed spleen cells. Moreover, deleting T cells from the transferred spleen cells abrogates the suppressive effect. In both H-2 haplotypes, ip prepriming with peptide 8 causes suppression of the proliferative T cell response induced by subsequent immunization with peptide 8. This prepriming has no effect on the response to TMVP immunization of B10.BR mice but does effect the response of C57BL/10 mice. Using various synthetic peptides to analyze the specificity of the suppression, we have determined that (1) T cells involved in the suppression of the proliferative T cell response to a single peptide determinant do not suppress the proliferative T cell response to other determinants on the protein antigen and (2) these T cells with suppressor function, and proliferating T cells which are ultimately regulated, can exhibit specificity for the same epitope. These studies suggest that there may exist fundamental differences as to how T cells which participate in suppression an proliferating T cells (which include mainly T helper cells) recognize protein antigens.  相似文献   

3.
Rabies virus-specific T cell clones isolated from a human vaccine recipient were studied for their fine specificity and genetic restriction using synthetic peptides of the viral Ag and mouse fibroblasts transfected with human MHC genes. Two clones were found to react with an epitope present in the rabies glycoprotein, which was presented by the HLA-DR7 molecule. Other T cell clones recognized synthetic epitopes corresponding to the rabies nucleoprotein in association with the HLA-DR7 or HLA-DQw3 molecule, and one clone responded to the viral nucleocapsid Ag in the presence of HLA-DPw4. T cell clones that exhibited different cross-reactivity patterns among several virus strains were found to recognize closely situated epitopes (within 15 amino acid residues), which were presented in the context of the same MHC molecule. The lack of recognition of a particular virus strain by a T cell clone was attributable in some cases to amino acid variations of the Ag that appear to affect the T cell's receptor for Ag specificity and not the ability of that epitope to associate with the corresponding MHC molecule. Comparisons of the T cell cross-reactivity patterns with various rabies and rabies-related viruses, the fine antigenic specificity, and MHC restriction may aid in understanding the role of individual amino acid variations among virus strains in the induction of cross-protective immunity.  相似文献   

4.
C57BL/6 (B6) mice respond to immunization with acetylcholine receptor (AChR) from Torpedo californica as measured by T cell proliferation, antibody production, and the development of muscle weakness resembling human myasthenia gravis. The congenic strain B6.C-H-2bm12 (bm12), which differs from B6 by three amino acid substitutions in the beta-chain of the MHC class II molecule I-A, develops a T cell proliferative response but does not produce antibody or develop muscle weakness. By examining the fine specificity of the B6 and bm12 T cell responses to AChR by using T cell clones and synthetic AChR peptides, we found key differences between the two strains in T cell epitope recognition. B6 T cells responded predominantly to the peptide representing alpha-subunit residues 146-162; this response was cross-reactive at the clonal level to peptide 111-126. Based on the sequence homology between these peptides and the T cell response to a set of truncated peptides, the major B6 T cell epitope was determined to be residues 148-152. The cross-reactivity of peptides 146-162 and 111-126 could also be demonstrated in vivo. Immunization of B6 mice with either peptide primed for T cell responses to both peptides. In contrast, immunization of bm12 mice with peptide 111-126 primed for an anti-peptide response, which did not cross-react with 146-162. Peptide-reactive T cells were not elicited after immunization of bm12 mice with 146-162. These results define a major T cell fine specificity in experimental autoimmune myasthenia gravis-susceptible B6 mice to be directed at alpha-subunit residues 148-152. T cells from disease-resistant bm12 mice fail to recognize this epitope but do recognize other portions of AChR. We postulate that alpha-148-152 is a disease-related epitope in murine experimental autoimmune myasthenia gravis. In this informative strain combination, MHC class II-associated determinant selection, rather than Ag responsiveness per se, may play a major role in determining disease susceptibility.  相似文献   

5.
Raising tumor-specific allorestricted T cells in vitro for adoptive transfusion is expected to circumvent host tumor tolerance. However, it has been assumed that alloreactive T cell clones activated in vitro ranges from peptide-specific with high avidity to peptide-degenerate with low avidity. In this study, we examined the peptide specificity and cross-reactivity of T cell responses in vitro to an allogeneic epitope and a nominal epitope with a modified co-culture of lymphocytes and autologous monocytes. After binding to the monocyte via the interaction of its Fc part and the cell surface IgG Fc receptor type I (FcγRI), a fusion protein consisting of the extracellular domains of HLA-A2 molecule and the Fc region of IgG1 (the dimer) introduced a single epitope into the co-culture. The dimer-coated monocytes stimulated the proliferation of autologous CD8+ T cells after co-culturing. The CD8+ T cell responses were self-HLA-restricted for HLA-A2-positive (HLA-A2+ve) samples and allo-HLA-restricted for HLA-A2-negative (HLA-A2-ve) samples, since the co-cultural bulks stained with HLA-A2 tetramers, human interferon-gamma (IFN-γ) production in response to T cell receptor (TCR) ligands, and cytotoxicity against a panel of target cells exhibited peptide-specific properties. Two HLA-A2-restricted peptides with sequence homology were included, allowing the comparison of cross-reactivity between allo-antigen- and nominal antigen-induced CD8+ T cell responses. Interestingly, the allo- and self-HLA-restricted CD8+ T cell responses were similar in the peptide cross-reactivity, although the allorestricted T cell response seemed, overall, more intensive and had higher binding affinity to specific tetramer. Our findings indicated the alloreactive T cells raised by the co-culture in vitro were as peptide specific and cross-reactive as the self-HLA-restricted ones.  相似文献   

6.
The functional heterogeneity of memory B cells induced by a single determinant, consisting of a decapeptide representing amino acid residues 103-112 of tobacco mosaic virus protein (TMVP), was analyzed. Decapeptide specific antibodies were elicited in mice adoptively transferred with TMVP-immune spleen cells when challenged with TMVP, decapeptide conjugated to succinylated human gamma-globulin (SHGG), or decapeptide conjugated to Brucella abortus (BA). Whereas secondary stimulation by either TMVP or decapeptide-SHGG was dependent on appropriately primed T cells, stimulation by decapeptide-BA was independent of conventional T cell help. Furthermore, memory B cells responsive to TMVP (TD), decapeptide-SHGG (TD), or decapeptide-BA (TI. 1 prototype) were shown to consist of overlapping populations because adoptive recipients of TMVP-primed cells challenged simultaneously with TD and TI decapeptide antigens did not result in a higher antibody response than that elicited by one of the TD antigens injected alone. However, decapeptide-BA consistently induced a smaller antidecapeptide response than either TMVP or decapeptide-SHGG. This suggested that only a fraction of the memory B cell population which was activated by the original priming antigen (thymus-dependent) was also responsive to secondary in vivo stimulation by the priming hapten conjugated to Brucella abortus. Detailed analyses of the antibodies induced in the recipients of TMVP-immune spleen cells after secondary challenge with either TMVP, decapeptide-SHGG, or decapeptide-BA failed to distinguish between the responsive memory B cells; the antidecapeptide antibodies induced by all three immunogens shared the same fine specificities and immunoglobulin isotype composition. These data are viewed as further evidence that subsets of TD-primed B cells, which may display differential sensitivity to cross-stimulation with TD and TI forms of the antigen, represent distinct stages of memory B cell maturation within a common B cell lineage. In support of this conclusion, we establish a developmental relationship between TI and/or TD responsive decapeptide memory B cell in the following communication.  相似文献   

7.
HIV diversity may limit the breadth of vaccine coverage due to epitope sequence differences between strains. Although amino acid substitutions within CD8(+) T cell HIV epitopes can result in complete or partial abrogation of responses, this has primarily been demonstrated in effector CD8(+) T cells. In an HIV-infected Kenyan cohort, we demonstrate that the cross-reactivity of HIV epitope variants differs dramatically between overnight IFN-gamma and longer-term proliferation assays. For most epitopes, particular variants (not the index peptide) were preferred in proliferation in the absence of corresponding overnight IFN-gamma responses and in the absence of the variant in the HIV quasispecies. Most proliferating CD8(+) T cells were polyfunctional via cytokine analyses. A trend to positive correlation was observed between proliferation (but not IFN-gamma) and CD4 counts. We present findings relevant to the assessment of HIV vaccine candidates and toward a better understanding of how viral diversity is tolerated by central and effector memory CD8(+) T cells.  相似文献   

8.
Specificity of T lymphocyte lines for peptides of myelin basic protein   总被引:8,自引:0,他引:8  
T lymphocyte lines specific for myelin basic protein (BP) can mediate experimental autoimmune encephalomyelitis (EAE), or can protect against the active induction of the disease. To investigate the antigenic fine specificity of guinea pig (GP) BP-specific T cell lines raised from different rat strains, and to determine whether functionally different T lymphocyte lines and clones recognized the same or different regions of the BP molecule, the proliferation responses of line cells were assessed after stimulation with purified peptides of GP-BP. Lewis rat T cell lines and clones selected for responses to whole GP-BP responded selectively to the 68-88 amino acid sequence of GP-BP, but not to the 1-37, 43-67, or 89-169 sequences. The region of GP-BP recognized by Lewis T cells was additionally defined to include the 75-80 amino acid sequence, because a T cell clone responded equally to GP and rat BP which differed by only one amino acid at position 79, but did not respond to human or bovine BP, which had a Gly-His insertion in this region. T lymphocyte lines derived from the F344 and PVG (Weizmann) rat strains shared the same selective response to peptide 68-88, but lines from BN rats responded to an epitope(s) outside of the 68-88 sequence. The functional capacity of the various T cell lines to mediate experimental autoimmune encephalomyelitis (EAE) or to induce resistance against EAE was independent of their specificity for the different GP-BP peptides; lines specific for epitope(s) within or excluded from the 68-88 sequence could be encephalitogenic depending on their strain of origin, and various lines specific for the 68-88 peptide could induce both disease and protection, disease only, or neither activity.  相似文献   

9.
Multiple Ag peptide (MAP) system without the use of a protein carrier was used as a vaccine model in three species of animals. Synthetic peptides from the V3 region of the gp120 of IIIB, RF and MN HIV-1 isolates were used as the Ag. MAP consisting of various chain lengths, from 11 to 24 residues, were prepared in a monoepitope configuration containing four repeats of each individual peptide. In parallel, they were synthesized in a diepitope configuration adding at the carboxyl-terminus of the V3 peptides a conserved sequence, known to be a Th cell epitope of gp120. The antibody response elicited by the monoepitope constructs was species-dependent. Rabbits produced immunity against all nine peptides, whereas mice were strongly reactive mainly to the longest sequence of the IIIB isolate. The immune response of guinea pigs was intermediate to those of rabbits and mice. Diepitope MAPs were immunogenic in all three species and elicited significantly higher titers than those raised by the immunization with the monoepitope MAPs. The response was type specific; the high-titered antibodies were reactive mostly against the isolate from which the peptides were derived, with a small cross-reactivity in ELISA between IIIB and RF strains. The dominant antigenic site of the B cell epitope, IIIB sequence, was located at the amino and central part of the MAP and a sequence overlapping the putative V3 reverse-turn was particularly reactive with the raised antibodies. Moreover, sera from the immunized animals inhibited virus-dependent cell fusion. These results show that MAP, with a chemically defined structure and without the use of a protein carrier, can be potentially useful for the design of synthetic HIV-1 vaccine candidates.  相似文献   

10.
The C-terminal region of Pseudomonas aeruginosa strain K (PAK) pilin comprises both an epitope for the strain-specific monoclonal antibody PK99H, which blocks pilus-mediated adherence, and the adherence binding domain for buccal and tracheal epithelial cells. The PK99H epitope was located in sequence 134-140 (Asp-Glu-Gln-Phe-Ile-Pro-Lys) by using a single alanine replacement analysis on the 17-residue synthetic peptide corresponding to the PAK C-terminal sequence 128-144. Indeed, a 7-residue peptide corresponding to this sequence was shown to have a similar binding affinity to that of the native conformationally constrained (disulfide bridged) 17-residue peptide. This epitope was found to contain two critical residues (Phe137 and Lys140) and one nonessential residue (Gln136). Interestingly, the peptide, Phe-Ile-Pro-Lys, which constitutes the four most important side chains for antibody binding did not bind to PK99H. It was of interest to investigate the structural basis of the strain-specificity of PK99H utilizing naturally occurring pilin sequences. Therefore, all different residues found in the sequence corresponding to the PK99H epitope of the four other strains (PAO, CD4, K122-4, and KB7) were substituted one at a time in the PAK sequence and the changes in binding affinity of these analogs to the antibody PK99H were determined by competitive ELISA. The strain-specificity of PK99H for strains PAO, K122-4, and KB7 can be explained by the accumulated sequence changes in these strains, and at least two amino acid changes were required to explain the strain-specificity of PK99H. Similarly, cross-reactivity of PK99H with CD4 can be explained by the fact that there was only one side chain responsible for decreasing binding affinity compared to the PAK sequence.  相似文献   

11.
以猪IgG重链恒定区为抗原载体的抗口蹄疫病毒DNA疫苗的研制   总被引:10,自引:0,他引:10  
口蹄疫(Foot-and-Mouth Disease, FMD)是当今世界上最为严重的家畜传染病之一,主要危害猪、牛、羊等偶蹄动物.FMD的致病原为FMD病毒(FMDV),属小RNA病毒科口蹄疫病毒属,有A、O、C、SATⅠ、SATⅡ、SATⅢ及AsiaⅠ共7个血清型.FMDV结构较简单,完整的病毒颗粒由4种结构蛋白VP1、VP2、VP3及VP4各60个拷贝构成的衣壳包裹一条单股正链RNA组成,其中VP1是主要的抗原蛋白[1].  相似文献   

12.
Different strategies have been used to increase the immunogenicity of an antigenic HIV peptide as a vaccine candidate. The selected B-cell epitope comprises 15 amino acids (317-331) of the V3 region of HIV-1, JY1 isolate (subtype D), in tandem with a T-helper epitope corresponding to the 830-844 region of tetanus toxoid. Several presentations, including oligomerization, multiple antigenic peptide dendrimers, and conjugation to dextran beads or to other macromolecular carriers, have been synthesized and evaluated. Murine sera from the different presentations of the V3 epitope have been compared with regard to antibody titers and cross-reactivity with heterologous HIV subtypes. The dendrimer version of the peptide conjugated to HBsAg protein was a better immunogen than the dendrimer alone and showed a higher immunogenicity than other multimeric presentations or than the peptide alone conjugated to dextran. The dendrimer version, either alone or conjugated to HBSAg, enhanced cross-reactivity toward heterologous V3 sequences relative to monomeric peptide. In addition, fine epitope mapping of the entire JY1 sequence by sera from the different immunization groups was performed by the spot synthesis technique. Results showed that the amino acids involved in molecular recognition were LXQXXY or LXQXLY, with particularly strong recognition of the C-terminal region LGQALY. However, cross-reactivity toward the heterologous sequences did not completely correlate with recognition of particular amino acids in the primary sequences. These results can find application in the development of HIV vaccine candidates.  相似文献   

13.
The amino acid sequences recognized by monoclonal antibodies (MAbs) specific for the antigenic site IV of the spike protein S of transmissible gastroenteritis virus were analyzed by PEPSCAN. All MAbs of group IV recognized peptides from the S region consisting of residues 378 to 390. In addition, the neutralizing MAbs (subgroup IV-A) also bound to peptides from the region consisting of residues 1173 to 1184 and to several other peptides with a related amino acid composition. The contribution of the individual residues of both sequences to the binding of a MAb was determined by varying the length of the peptide and by a consecutive deletion or replacement of parental residues by the 19 other amino acids. The sequence consisting of residues 326 to 558, tested as part of a cro-beta-galactosidase hybrid protein, was antigenic, but the sequence consisting of residues 1150 to 1239 was not. Furthermore, antibodies raised in rabbits against the peptide SDSSFFSYGEIPFGN (residues 377 to 391), but not those raised against the peptide VRASRQLAKDKVNEC (residues 1171 to 1185), recognized the virus and had neutralizing activity. We infer that the epitope of the neutralizing MAbs is composite and consists of the linear sequence SFFSYGEI (residues 380 to 387) with contributions of A, D, K, N, Q, or V residues from other parts of the S molecule. The complex epitope was simulated by synthesizing peptides in which the sequences consisting of residues 380 to 387 and 1176 to 1184 were combined. MAbs of subgroup IV-A recognized the combination peptides two to six times better than the individual sequences. These results may offer prospects for the development of an experimental vaccine.  相似文献   

14.
Syngeneic mice immunized with tobacco mosaic virus protein (TMVP) can differ with respect to their ability to produce antibodies that bind a decapeptide epitope representing residues 103 to 112 of TMVP, and with respect to the fine specificity of the decapeptide binding antibodies as determined by their ability to bind several synthetic analogues of the decapeptide. To elucidate the mechanism responsible for the differences between the syngeneic animals in their ability to make anti-decapeptide antibodies, spleen cells from a large number of naive CSW mice were pooled, and aliquots were transferred (either including or excluding resident T cells) into naive recipients that were subsequently immunized with TMVP. Examination of the frequency and fine specificity of anti-decapeptide antibodies revealed that the recipients exhibited various clonalities of decapeptide binding antibody responses similar to those seen in a normal population of CSW mice. Moreover, the response of each individual mouse was of a restricted clonality despite the availability of a more extensive repertoire of decapeptide-recognizing clones. The results indicate that the selection of the clonality of the antibody response was not determined by the presence (or absence) of particular clones of B or T cells and that the mechanism responsible for generating differences between mice must have acted, subsequent to introduction of the Ag, by activation of a limited number of clones randomly selected by Ag and/or by Ag-driven mutation. The long term nature of the antibody response to the decapeptide epitope was also investigated. The response was shown to be "locked-in" for the life of the immunized individual. Thus, individuals that responded to TMVP but that did not produce antibodies to the decapeptide after the first set of immunizations with TMVP maintained their non-responsiveness to the decapeptide after the second set of immunizations with the protein. However, individuals that responded to an initial set of immunizations with TMVP by producing antibodies to the decapeptide epitope continue to produce antibodies to the decapeptide after a second set of immunizations with TMVP. The fine specificity of the decapeptide-binding antibodies also appeared to be "locked in" throughout the life of the immunized individual. The long term maintenance of the clonability of the antibody response does not appear to be influenced by Ag-specific T cells and is strictly a function of memory B cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
Nogo-A is a potent inhibitor of axonal outgrowth in the central nervous system of adult mammals, where it is expressed as a membrane protein on oligodendrocytes and in myelin. Here we describe an attempt to identify linear peptide epitopes in its sequence that are responsible for the interaction either with the Nogo receptor (NgR) or with the neutralizing monoclonal antibody IN-1. Analysis of an array of immobilized overlapping 15 mer peptides covering the entire amino acid sequence of human Nogo-A (1192 residues) revealed a single epitope with prominent binding activity both towards the recombinant NgR and the IN-1 F(ab) fragment. Further truncation and substitution analysis yielded the minimal epitope sequence 'IKxLRRL' (x not equal to P), which occurs within the so-called Nogo66 region (residues 1054-1120) of Nogo-A. The bacterially produced Nogo66 fragment exhibited binding activity both for the recombinant NgR and for the IN-1 F(ab) fragment on the Western blot as well as in ELISA. Unexpectedly, the synthetic epitope peptide and the recombinant Nogo66 showed cross-reactivity with the 8-18C5 F(ab) fragment, which is directed against myelin oligodendrocyte glycoprotein (MOG) as a structurally unrelated target. On the other hand, the recombinant N-terminal domain of Nogo-A (residues 334-966) was shown to specifically interact on the Western blot and in an ELISA with the IN-1 F(ab) fragment but not with the recombinant NgR, which is in agreement with previous results. Hence, our data suggest that there is a distinct binding site for the Nogo receptor in the Nogo66 region of Nogo-A, whereas its interaction with NgR is less specific than anticipated before. Although there probably exists a non-linear epitope for the neutralizing antibody IN-1 in the N-terminal region of Nogo-A, which is likely to be accessible from outside the cell, a previously postulated second binding site for NgR in this region (called Nogo-A-24) remains elusive.  相似文献   

16.
Lin M  Lin F  Mallory M  Clavijo A 《Journal of virology》2000,74(24):11619-11625
The major structural glycoprotein E2 of classical swine fever virus (CSFV) is responsible for eliciting neutralizing antibodies and conferring protective immunity. The current structural model of this protein predicts its surface-exposed region at the N terminus with a short stretch of the C-terminal residues spanning the membrane envelope. In this study, the N-terminal region of 221 amino acids (aa) covering aa 690 to 910 of the CSFV strain Alfort/187 E2, expressed as a fusion product in Escherichia coli, was shown to contain the epitope recognized by a monoclonal antibody (WH303) with affinity for various CSFV strains but not for the other members of the Pestivirus genus, bovine viral diarrhea virus (BVDV) and border disease virus (BDV). This region also contains the sites recognized by polyclonal immunoglobulin G (IgG) antibodies of a pig hyperimmune serum. Serial deletions of this region precisely defined the epitope recognized by WH303 to be TAVSPTTLR (aa 829 to 837) of E2. Comparison of the sequences around the WH303-binding site among the E2 proteins of pestiviruses indicated that the sequence TAVSPTTLR is strongly conserved in CSFV strains but highly divergent among BVDV and BDV strains. These results provided a structural basis for the reactivity patterns of WH303 and also useful information for the design of a peptide containing this epitope for potential use in the detection and identification of CSFV. By deletion analysis, an antigenic domain capable of reacting with pig polyclonal IgG was found 17 aa from the WH303 epitope within the N-terminal 123 residues (aa 690 to 812). Small N- or C-terminal deletions introduced into the domain disrupt its reactivity with pig polyclonal IgG, suggesting that this is the minimal antigenic domain required for binding to pig antibodies. This domain could have eliminated or reduced the cross-reactivity with other pestiviruses and may thus have an application for the serological detection of CSFV infection; evaluation of this is now possible, since the domain has been expressed in E. coli in large amounts and purified to homogeneity by chromatographic methods.  相似文献   

17.
We have established a murine hybridoma cell line RG719 which produces a rabies virus-neutralizing IgM-type monoclonal antibody (referred to as MAb RG719). Immunoblot analysis indicated that the antibody recognized a sequential epitope of G protein. Among four rabies virus strains tested, the antigenicity to MAb RG719 was absent from the Nishigahara strain, while the other three strains (HEP, ERA and CVS) reacted to the MAb. Studies with deletion mutants of the G protein indicated that the epitope was located in a middle region of the primary structure of G protein, ranging from position 242 to 300. By comparing the estimated amino acid sequence of the four strains, we found in this region two amino acids (at positions 263 and 291) which are common to three of those strains but are not shared by the Nishigahara strain. The site-directed point mutagenesis revealed that replacement of phenylalanine-263 by leucine destroyed the epitope of the HEP G protein, while the epitope was generated on the Nishigahara G protein whose leucine-263 was replaced by phenylalanine. These observations suggest that phenylalanine-263 is essential for constructing the epitope for MAb RG719. The synthetic 20-mer peptide produced by mimicking the amino acid sequence (ranging from amino acid positions 249 to 268) of the presumed epitope region was shown to bind specifically to MAb RG719 and also to raise the virus-neutralizing antibodies in rabbits. Vaccination with the HEP vaccine produced in Japan induced in humans and rabbits production of significant amounts of the antibodies which reacted with the 20-mer peptide.  相似文献   

18.

Background

Cytotoxic T cell (CTL) cross-reactivity is believed to play a pivotal role in generating immune responses but the extent and mechanisms of CTL cross-reactivity remain largely unknown. Several studies suggest that CTL clones can recognize highly diverse peptides, some sharing no obvious sequence identity. The emerging realization in the field is that T cell receptors (TcR) recognize multiple distinct ligands.

Principal Findings

First, we analyzed peptide scans of the HIV epitope SLFNTVATL (SFL9) and found that TCR specificity is position dependent and that biochemically similar amino acid substitutions do not drastically affect recognition. Inspired by this, we developed a general model of TCR peptide recognition using amino acid similarity matrices and found that such a model was able to predict the cross-reactivity of a diverse set of CTL epitopes. With this model, we were able to demonstrate that seemingly distinct T cell epitopes, i.e., ones with low sequence identity, are in fact more biochemically similar than expected. Additionally, an analysis of HIV immunogenicity data with our model showed that CTLs have the tendency to respond mostly to peptides that do not resemble self-antigens.

Conclusions

T cell cross-reactivity can thus, to an extent greater than earlier appreciated, be explained by amino acid similarity. The results presented in this paper will help resolving some of the long-lasting discussions in the field of T cell cross-reactivity.  相似文献   

19.
The BALB/cByJ mouse strain displays an immunodominant T cell response directed at the same CD4(+) T cell epitope peptide region in human IFN-beta, as detected in a human population-based assay. BALB/cByJ mice also recognize a second region of the protein with a lesser magnitude proliferative response. Critical residue testing of the immunodominant peptide showed that both BALB/cByJ mice and the human population response were dependent on an isoleucine residue at position 129. A variant IFN-beta molecule was constructed containing the single amino acid modification, I129V, in the immunodominant epitope. The variant displayed 100% of control antiproliferation activity. Mice immunized with unmodified IFN-beta responded weakly in vitro to the I129V variant. However, BALB/cByJ mice immunized with the I129V variant were unable to respond to either the I129V variant or the unmodified IFN-beta molecule by either T cell proliferation or Ag-specific IgG1 Ab production. This demonstrates that a single amino acid change in an immunodominant epitope can eliminate an immune response to an otherwise intact therapeutic protein. The elimination of the immunodominant epitope response also eliminated the response to the subdominant epitope in the protein. Modifying functionally immunodominant T cell epitopes within proteins may obviate the need for additional subdominant epitope modifications.  相似文献   

20.
The M2 protein of respiratory syncytial virus (RSV) is a protective antigen in H-2d, but not H-2b or H-2k mice. None of the other RSV proteins, excluding the surface glycoproteins that induce neutralizing antibodies, is protective in mice bearing these haplotypes. Thus, the M2 protein stands alone as a nonglycoprotein-protective antigen of RSV. The M2 protein is a target for murine Kd-restricted cytotoxic T lymphocytes (CTLs), and the resistance induced by infection with a vaccinia virus-RSV M2 (vac-M2) recombinant is mediated by CD8+ CTLs. Since the nonameric consensus sequence for H-2 Kd-restricted T-cell epitopes and the amino acid sequence of the M2 protein of subgroup A and B strains of RSV are known, the present study sought to identify the specific epitope(s) on the M2 protein recognized by CD8+ CTLs. This was done by examining the ability of four predicted Kd-specific motif peptides present in the M2 amino acid sequence of an RSV subgroup A strain to sensitize target cells for lysis by pulmonary or splenic CTLs obtained from mice infected with RSV or vac-M2. The following observations were made. First, two of the four peptides sensitized target cells for lysis by pulmonary or splenic CTLs induced by infection with either vac-M2 or RSV. Second, one of the two peptides, namely the 82-90 (M2) peptide, sensitized targets at a very low peptide concentration (10(-10) to 10(-12) M). Third, cold-target competition experiments revealed that the predominant CTL population induced by infection with vac-M2 or RSV recognized the 82-90 (M2) peptide, and this CTL population appeared to recognize the 71-79 (M2) peptide in a cross-reactive manner. Fourth, CTL recognition of targets sensitized with either the 71-79 (M2) or the 82-90 (M2) peptide was Kd restricted. Fifth, CTLs induced by infection with RSV subgroup A or B strains recognized the two M2 peptides. The findings suggest that the M2 protein of RSV contains an immunodominant Kd-restricted CTL epitope consisting of amino acid residues 82 to 90 (SYIGSINNI), which are shared by subgroup A and B RSVs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号