首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Flavopiridol (L86-8275) ((-)-cis-5, 7-dihydroxy-2-(2-chlorophenyl)-8-[4-(3-hydroxy-1-methyl)-piperidinyl] -4H-benzopyran-4-one), a potential antitumor drug, currently in phase II trials, has been shown to be an inhibitor of muscle glycogen phosphorylase (GP) and to cause glycogen accumulation in A549 non-small cell lung carcinoma cells (Kaiser, A., Nishi, K., Gorin, F.A., Walsh, D.A., Bradbury, E. M., and Schnier, J. B., unpublished data). Kinetic experiments reported here show that flavopiridol inhibits GPb with an IC(50) = 15.5 microm. The inhibition is synergistic with glucose resulting in a reduction of IC(50) for flavopiridol to 2.3 microm and mimics the inhibition of caffeine. In order to elucidate the structural basis of inhibition, we determined the structures of GPb complexed with flavopiridol, GPb complexed with caffeine, and GPa complexed with both glucose and flavopiridol at 1.76-, 2.30-, and 2.23-A resolution, and refined to crystallographic R values of 0.216 (R(free) = 0.247), 0.189 (R(free) = 0.219), and 0.195 (R(free) = 0.252), respectively. The structures provide a rational for flavopiridol potency and synergism with glucose inhibitory action. Flavopiridol binds at the allosteric inhibitor site, situated at the entrance to the catalytic site, the site where caffeine binds. Flavopiridol intercalates between the two aromatic rings of Phe(285) and Tyr(613). Both flavopiridol and glucose promote the less active T-state through localization of the closed position of the 280s loop which blocks access to the catalytic site, thereby explaining their synergistic inhibition. The mode of interactions of flavopiridol with GP is different from that of des-chloro-flavopiridol with CDK2, illustrating how different functional parts of the inhibitor can be used to provide specific and potent binding to two different enzymes.  相似文献   

2.
The role of glycogenolysis in normal and cancer cells was investigated by inhibiting glycogen phosphorylase (GP) with the synthetic inhibitor CP-91,149. A549 non-small cell lung carcinoma (NSCLC) cells express solely the brain isozyme of GP, which was inhibited by CP-91,149 with an IC(50) of 0.5 microM. When treated with CP-91,149, A549 cells accumulated glycogen with associated growth retardation. Treated normal skin fibroblasts also accumulated glycogen with G1-cell cycle arrest that was associated with inhibition of cyclin E-CDK2 activity. Overall, cells expressing high levels of brain GP were growth inhibited by CP-91,149 correlating with glycogen accumulation whereas cells expressing low levels of brain GP were not affected by the drug. Analyses of 59 tumor cell lines represented in the NCI drug screen identified that every cell line expressed brain GP but the profile was dominated by a few highly GP expressing cell lines with lower than mean GP-a enzymatic activities. The correlation program, COMPARE, identified that the brain GP protein measured in the NCI cell lines corresponded with brain GP mRNA expression, ADP-ribosyltransferase 3, and colony stimulating factor 2 receptor alpha in the 10,000 gene microarray database with similar correlation coefficients. These results suggest that brain GP is present in proliferating cells and that high protein levels correspond with the ability of CP-91,149 to inhibit cell growth.  相似文献   

3.
The experimental evaluation of the contribution of glycogen phosphorylase (GP) to biochemical pathways is limited to methods that raise cAMP, activating the cAMP-dependent protein kinase/phosphorylase kinase/GP cascade. Such methods convert the unphosphorylated form, "GPb," which catalyzes glycogenolysis only in the presence of appropriate allosteric activators such as AMP, to the phosphorylated, constitutively activated form, "GPa." However, activation of GP in this way is indirect, requires a functional cAMP kinase cascade, and is complicated by other actions of cAMP. Here, we demonstrate a strategy for the experimental manipulation of GP in intact dermal fibroblasts, involving activation by the membrane-permeable adenosine analog 5-aminoimidazole-4-carboxamide riboside (AICAR) and inhibition by caffeine and Pfizer compound CP-91149, which bind to GP at distinct sites. Potential complications because of activation of AMP-activated protein kinase by AICAR were assessed with metformin, which activates this kinase but does not activate GP. Using this strategy, we show that glycogen can be a significant and regulatable precursor of mannosyl units in lipid-linked oligosaccharides and glycoproteins.  相似文献   

4.
We investigated in vitro inhibition of mammalian carbohydrate-degrading enzymes by six-membered sugar mimics and their evaluation in cell cultures. 1-Deoxynojirimycin (DNJ) showed no significant inhibition toward glycogen phosphorylase (GP) but was a potent inhibitor of another glycogen-degrading enzyme, amylo-1,6-glucosidase (1,6-GL), with an IC(50) value of 0.16 microM. In primary rat hepatocytes, the inhibition of glycogen breakdown by DNJ reached plateau at 100 microM with 25% inhibition and then remained unchanged. The potent GP inhibitor 1,4-dideoxy-1,4-imino-D-arabinitol (D-AB1) inhibited hepatic glucose production with an IC(50) value of about 9 microM and the inhibition by D-AB1 was further enhanced in the presence of DNJ. DNJ and alpha-homonojirimycin (HNJ) are very potent inhibitors of rat intestinal maltase, with IC(50) values of 0.13 and 0.08 microM, respectively, and also showed a similar strong inhibition toward maltase in Caco-2 cell model system, with IC(50) value of 0.05 and 0.10 microM, respectively. D-Isofagomine (D-IFG) and L-IFG are competitive and noncompetitive inhibitors of human lysosomal beta-glucosidase (beta-GL), respectively, with K(i) values of 8.4 nM and 6.9 microM. D-IFG increased intracellular beta-GL activity by twofold at 10 microM in Gaucher N370S cell line as an 'active-site-specific' chaperone, and surprisingly a noncompetitive inhibitor L-IFG also increased intracellular beta-GL activity by 1.6-fold at 500 microM.  相似文献   

5.
We have examined the effect of several flavonoids on the activity of phosphorylase kinase from rabbit skeletal muscle. From 14 flavonoids tested, the flavones quercetin and fisetin were found to be efficient inhibitors of nonactivated phosphorylase kinase when assayed at pH 8.2, causing 50% inhibition at a concentration of about 50 microM, while the flavanone hesperetin stimulated phosphorylase kinase activity about 2-fold when tested at 250 microM. The efficiency of quercetin in inhibiting the kinase is higher when the enzyme is stimulated either by ethanol or by alkaline pH. Both casein and troponin phosphorylation by phosphorylase kinase and the autophosphorylation of the kinase were inhibited by quercetin. In addition, quercetin was found to be a competitive inhibitor of ATP for the phosphorylation of phosphorylase b at pH 8.2. These observations suggest that the inhibitory effect of the flavone is directly on the phosphorylase kinase molecule. Trypsin-activated phosphorylase kinase was inhibited by quercetin and stimulated by hesperetin, as for the native enzyme.  相似文献   

6.
Acyl ureas were discovered as a novel class of inhibitors for glycogen phosphorylase, a molecular target to control hyperglycemia in type 2 diabetics. This series is exemplified by 6-{2,6-Dichloro- 4-[3-(2-chloro-benzoyl)-ureido]-phenoxy}-hexanoic acid, which inhibits human liver glycogen phosphorylase a with an IC(50) of 2.0 microM. Here we analyze four crystal structures of acyl urea derivatives in complex with rabbit muscle glycogen phosphorylase b to elucidate the mechanism of inhibition of these inhibitors. The structures were determined and refined to 2.26 Angstroms resolution and demonstrate that the inhibitors bind at the allosteric activator site, where the physiological activator AMP binds. Acyl ureas induce conformational changes in the vicinity of the allosteric site. Our findings suggest that acyl ureas inhibit glycogen phosphorylase by direct inhibition of AMP binding and by indirect inhibition of substrate binding through stabilization of the T' state.  相似文献   

7.
Three forms of phosphorylase (I, II and III), two of which (I and II) were active in the presence of AMP and one (III) was active without AMP, were isolated from human skeletal muscles. The pI values for phosphorylases b(I) and b(II) were found to be identical (5.8-5.9). During chromatofocusing a low molecular weight protein (M(r) = 20-21 kDa, pI 4.8) was separated from phosphorylase b(II). This process was accompanied by an increase of the enzyme specific activity followed by its decline. During reconstitution of the complex the activity of phosphorylase b(II) returned to the initial level. Upon phosphorylation the amount of 32P incorporated into phosphorylase b(II) was 2 times as low as compared with rabbit phosphorylase b and human phosphorylase b(I). It may be supposed that in the human phosphorylase b(II) molecule one of the two subunits undergoes phosphorylation in vivo. This form of the enzyme is characterized by a greater affinity for glycogen and a lower sensitivity to allosteric effectors (AMP, glucose-6-phosphate, caffeine) compared with phosphorylase b(I). Thus, among the three phosphorylase forms obtained in this study, form b(II) is the most unusual one, since it is partly phosphorylated by phosphorylase kinase to form a complex with a low molecular weight protein which stabilizes its activity. A partially purified preparation of phosphorylase kinase was isolated from human skeletal muscles. The enzyme activity necessitates Ca2+ (c0.5 = 0.63 microM). At pH 6.8 the enzyme is activated by calmodulin (c0.5 = 15 microM). The enzyme activity ratio at pH 6.8/8.2 is equal to 0.18.  相似文献   

8.
Biorn AC  Graves DJ 《Biochemistry》2001,40(17):5181-5189
Glycogen phosphorylase is a muscle enzyme which metabolizes glycogen, producing glucose-1-phosphate, which can be used for the production of ATP. Phosphorylase activity is regulated by phosphorylation/dephosphorylation, and by the allosteric binding of numerous effectors. In this work, we have studied 10 site-directed mutants of glycogen phosphorylase (GP) in its amino-terminal regulatory region to characterize any changes that the mutations may have made on its structure or function. All of the GP mutants had normal levels of activity in the presence of the allosteric activator AMP. Some of the mutants were observed to have altered AMP-binding characteristics, however. R16A and R16E were activated at very low AMP concentration and crystallized at low temperature, like the phosphorylated form of GP, phosphorylase a, and unlike the dephospho-form, phosphorylase b. This indicates that even without phosphorylation, the structures of these mutants are more like phosphorylase a than phosphorylase b. These mutants were also very poorly phosphorylated in the presence of the inhibitor glucose, while phosphorylase b was phosphorylated normally with this inhibitor present. In contrast to R16A and R16E, four other mutants behaved like phosphorylase b after phosphorylation. R69E was only partially activated by phosphorylation, and I13G, R43E, and R43E/R69E were completely inactive after phosphorylation. We propose a model for the many functions of the amino terminus to explain the many varied effects of these mutations.  相似文献   

9.
The bioactivity in hepatocytes of glycogen phosphorylase inhibitors that bind to the active site, the allosteric activator site and the indole carboxamide site has been described. However, the pharmacological potential of the purine nucleoside inhibitor site has remained unexplored. We report the chemical synthesis and bioactivity in hepatocytes of four new olefin derivatives of flavopiridol (1-4) that bind to the purine site. Flavopiridol and 1-4 counteracted the activation of phosphorylase in hepatocytes caused by AICAR (5-aminoimidazole-4-carboxamide 1-beta-D-ribofuranoside), which is metabolised to an AMP analogue. Unlike an indole carboxamide inhibitor, the analogues 1 and 4 suppressed the basal rate of glycogenolysis in hepatocytes by allosteric inhibition rather than by inactivation of phosphorylase, and accordingly caused negligible stimulation of glycogen synthesis. However, they counteracted the stimulation of glycogenolysis by dibutyryl cAMP by both allosteric inhibition and inactivation of phosphorylase. Cumulatively, the results show key differences between purine site and indole carboxamide site inhibitors in terms of (i) relative roles of dephosphorylation of phosphorylase-a as compared with allosteric inhibition, (ii) counteraction of the efficacy of the inhibitors on glycogenolysis by dibutyryl-cAMP and (iii) stimulation of glycogen synthesis.  相似文献   

10.
Flavopiridol is a cyclin-dependent kinase inhibitor and inhibits the growth of various cancer cells. The effect of flavopiridol on lipopolysaccharide (LPS)-induced proinflammatory mediator production was examined in RAW 264.7 macrophage-like cells. Flavopiridol significantly reduced the production of tumor necrosis factor-α and, to a lesser extent, nitric oxide in LPS-stimulated cells. Flavopiridol inhibited the activation of nuclear factor-κB and IκB kinase in response to LPS. Flavopiridol also inhibited the activation of a series of mitogen-activated protein kinases, such as p38, stress-activated protein kinase/c-Jun N-terminal kinase and extracellular signal-regulated kinase 1/2 in response to LPS. However, flavopiridol did not alter the expression of tumor necrosis factor receptor-associated factor 6, myeloid differentiation factor 88 (MyD88) or CD14/toll-like receptor (TLR) 4. Flavopiridol inhibited nitric oxide production induced by a MyD88-dependent TLR2 ligand, but not a MyD88-independent TLR3 ligand. Further, flavopiridol did not alter the phosphorylation of interferon regulatory factor 3 in the MyD88-independent pathway. Therefore, it was suggested that flavopiridol exclusively inhibited the activation of nuclear factor-κB and mitogen-activated protein kinases in the MyD88-dependent pathway. Flavopiridol might be useful for the prevention of LPS-induced inflammatory response.  相似文献   

11.
The inhibition of rabbit skeletal muscle glycogen phosphorylase B by FMN and its analogues with substituents in the positions 6 and 8 has been studied. Inhibiting action of FMN is manifested in reducing the limiting rate of enzymic reaction and in increasing the half-saturation concentration of AMP. The inhibitor half-saturation values (in microM) increase in the following order: FMN (13,5), 6-bromo-FMN (27), 8 alpha-hydroxy-FMN (30), 8-dimethylamino(nor)-FMN (33), 6-(N-acetyl-L-cysteine-S-yl)-FMN (44), 6-amino-FMN (96), 8-hydroxy(nor)-FMN (109), 6-nitro-FMN (170), 8 alpha-(N-acetyl-L-cysteine-S-yl)-FMN (260). The existence of the glycogen phosphorylase B complexes with FMN or its analogues has been proved by spectrophotometry and sedimentation in analytical ultracentrifuge. FMN has been shown to hinder AMP-induced transition of dimeric form of the enzyme to tetrameric one. AMP at high concentrations has been found to inhibit glycogen phosphorylase B.  相似文献   

12.
13.
The main kinetic parameters for purified phosphorylase kinase from chicken skeletal muscle were determined at pH 8.2: Vm = 18 micromol/min/mg; apparent Km values for ATP and phosphorylase b from rabbit muscle were 0.20 and 0.02 mM, respectively. The activity ratio at pH 6.8/8.2 was 0.1-0.4 for different preparations of phosphorylase kinase. Similar to the rabbit enzyme, chicken phosphorylase kinase had an absolute requirement for Ca2+ as demonstrated by complete inhibition in the presence of EGTA. Half-maximal activation occurred at [Ca2+] = 0.4 microM at pH 7.0. In the presence of Ca2+, the chicken enzyme from white and red muscles was activated 2-4-fold by saturating concentrations of calmodulin and troponin C. The C0.5 value for calmodulin and troponin C at pH 6.8 was 2 and 100 nM, respectively. Similar to rabbit phosphorylase kinase, the chicken enzyme was stimulated about 3-6-fold by glycogen at pH 6.8 and 8.2 with half-maximal stimulation occurring at about 0.15% glycogen. Protamine caused 60% inhibition of chicken phosphorylase kinase at 0.8 mg/ml. ADP (3 mM) at 0.05 mM ATP caused 85% inhibition with Ki = 0.2 mM. Unlike rabbit phosphorylase kinase, no phosphorylation of the chicken enzyme occurred in the presence of the catalytic subunit of cAMP-dependent protein kinase. Incubation with trypsin caused 2-fold activation of the chicken enzyme.  相似文献   

14.
Glycogen phosphorylase isolated from bovine skeletal muscles was found to be homogeneous during polyacrylamide gel electrophoresis. The enzyme phosphorylation by phosphorylase kinase is accompanied by the incorporation of one mole of labeled phosphate per protein dimer; therefore the enzyme is represented by a partly phosphorylated form. The presence of a phosphate group prevents the removal of the protein-bound pyridoxal phosphate. The partly phosphorylated bovine phosphorylase possesses a low affinity for AMP and is inactive in the presence of IMP. Bovine phosphorylase a obtained from the partly phosphorylated enzyme has a molecular mass corresponding to a dimer. Both forms of bovine phosphorylase exhibit high cooperativity towards the substrate. The mechanism of phosphorylase a activation by AMP and IMP is identical: the nucleotides increase the enzyme affinity for the substrate as well as the maximal rate of the enzymatic reaction. Study of the enzyme inhibition by caffeine revealed the cooperativity of caffeine-binding centers. The equilibrium between the active and inactive enzyme conformations in the presence of caffeine is markedly shifted towards the inactive (T) form of glycogen phosphorylase.  相似文献   

15.
16.
The activity of glycogen phosphorylase is controlled by two nucleotide sites. We have found that organic solvents affect the regulatory properties of phosphorylase by altering the binding at these two sites. At the activator site, the Ka for AMP is lowered 10-fold in the presence of 10% 1,2-dimethoxyethane while, at the inhibitor site, the Ki for caffeine is increased 6-fold. The stimulation of activity by organic solvents is highly dependent on the enzyme's activity state. Phosphorylase b, which has a requirement for a nucleotide activator, loses this requirement in the presence of organic solvents, while the active form of the enzyme, phosphorylase a, is only slightly stimulated by organic solvents. The activation profile obtained with rabbit liver phosphorylase suggests that differences in the properties of this enzyme from rabbit muscle phosphorylase might be explained by a change in the relative affinity for AMP at the two nucleotide sites. The results also suggest that 1,2-dimethoxyethane may be useful to determine accurately the activities of different forms of liver phosphorylase.  相似文献   

17.
The specificity of 4,5,6,7-tetrabromo-2-azabenzimidazole (TBB), an ATP/GTP competitive inhibitor of protein kinase casein kinase-2 (CK2), has been examined against a panel of 33 protein kinases, either Ser/Thr- or Tyr-specific. In the presence of 10 microM TBB (and 100 microM ATP) only CK2 was drastically inhibited (>85%) whereas three kinases (phosphorylase kinase, glycogen synthase kinase 3 beta and cyclin-dependent kinase 2/cyclin A) underwent moderate inhibition, with IC(50) values one--two orders of magnitude higher than CK2 (IC(50)=0.9 microM). TBB also inhibits endogenous CK2 in cultured Jurkat cells. A CK2 mutant in which Val66 has been replaced by alanine is much less susceptible to inhibition by TBB as well as by another ATP competitive inhibitor, emodin. These data show that TBB is a quite selective inhibitor of CK2, that can be used in cell-based assays.  相似文献   

18.
A series of novel benzamide derivatives was designed, synthesized, and their inhibitory activities against glycogen phosphorylase (GP) in the direction of glycogen synthesis by the release of phosphate from glucose-1-phosphate were evaluated. The structure-activity relationships (SAR) of these compounds are also presented. Within this series of compounds, 4m is the most potent GPa inhibitor (IC(50)=2.68 microM), which is nearly 100 times more potent than the initial compound 1. Analysis of mapping between pharmacophores of different binding sites and each compound demonstrated that these benzamide derivatives bind at the dimer interface of the rabbit muscle enzyme, and possible docking modes of compound 4m were explored by molecular docking simulation.  相似文献   

19.
The synthesis of a series of maslinic acid derivatives is described and their effect on rabbit muscle glycogen phosphorylase a evaluated. Within this series of compounds, 15 (IC(50)=7 microM) is the most potent GPa inhibitor. SAR of the maslinic acid derivatives are discussed.  相似文献   

20.
Skeletal muscle phosphorylase kinase (PhK) is an (alphabetagammadelta) 4 hetero-oligomeric enzyme complex that phosphorylates and activates glycogen phosphorylase b (GP b) in a Ca (2+)-dependent reaction that couples muscle contraction with glycogen breakdown. GP b is PhK's only known in vivo substrate; however, given the great size and multiple subunits of the PhK complex, we screened muscle extracts for other potential targets. Extracts of P/J (control) and I/lnJ (PhK deficient) mice were incubated with [gamma- (32)P]ATP with or without Ca (2+) and compared to identify potential substrates. Candidate targets were resolved by two-dimensional polyacrylamide gel electrophoresis, and phosphorylated glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was identified by matrix-assisted laser desorption ionization mass spectroscopy. In vitro studies showed GAPDH to be a Ca (2+)-dependent substrate of PhK, although the rate of phosphorylation is very slow. GAPDH does, however, bind tightly to PhK, inhibiting at low concentrations (IC 50 approximately 0.45 microM) PhK's conversion of GP b. When a short synthetic peptide substrate was substituted for GP b, the inhibition was negligible, suggesting that GAPDH may inhibit predominantly by binding to the PhK complex at a locus distinct from its active site on the gamma subunit. To test this notion, the PhK-GAPDH complex was incubated with a chemical cross-linker, and a dimer between the regulatory beta subunit of PhK and GAPDH was formed. This interaction was confirmed by the fact that a subcomplex of PhK missing the beta subunit, specifically an alphagammadelta subcomplex, was unable to phosphorylate GAPDH, even though it is catalytically active toward GP b. Moreover, GAPDH had no effect on the conversion of GP b by the alphagammadelta subcomplex. The interactions described herein between the beta subunit of PhK and GAPDH provide a possible mechanism for the direct linkage of glycogenolysis and glycolysis in skeletal muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号