首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We have demonstrated previously that the G protein alpha subunit Gz alpha (or Gx alpha) in human platelets is subject to phosphorylation by agents that activate protein kinase C, including phorbol 12-myristate 13-acetate, thrombin, and the thromboxane A2 analog U46619. We examine here the site and selectivity of phosphorylation both in vitro using recombinant G protein alpha subunits and in situ using permeabilized and intact platelets. Protein kinase C catalyzes the rapid and nearly stoichiometric phosphorylation of recombinant Gz alpha, with the modification occurring preferentially for the GDP-bound form of the subunit. Under the same conditions, phosphorylation of recombinant Gi alpha 1, Gi alpha 2, Gi alpha 3, Gs alpha-S, Gs alpha-L, and Go alpha 1 was minimal. Phosphorylation of both rGz alpha and platelet Gz alpha occurs at a serine residue near the amino terminus. This conclusion is supported by phosphoamino acid analysis and the incorporation of radiolabel from [gamma-32P]ATP into the amino-terminal CNBr peptide (residues 2-53 of the encoded protein). One of the antisera used in this study (6354, directed toward residues 24-33) recognizes only the nonphosphorylated form of Gz alpha, providing strong evidence that Ser25 or Ser27 is the site of phosphorylation. Results obtained with 6354 also suggest that phorbol ester-promoted phosphorylation of Gz alpha approaches 1 mol of phosphate per mol of subunit in permeabilized platelets.  相似文献   

2.
Polyclonal antisera directed against conserved and subtype-specific peptide sequences of the alpha-subunits of guanine nucleotide-binding regulatory proteins (G proteins) were used to characterize the nature of mammalian sperm G proteins and to determine whether their localization was consistent with their proposed roles in mediating ZP3-induced acrosomal exocytosis. Mouse and guinea pig sperm exhibit positive immunofluorescence in the acrosomal region using an antiserum directed against a peptide region common to all alpha-subunits of G proteins (G alpha). The immunofluorescence disappears after sperm have undergone the acrosome reaction, suggesting that the immunoreactive material is associated with the plasma membrane/outer acrosomal membrane region overlying the acrosome. The presence of G proteins in this region is confirmed by the presence of a Mr 41,000 substrate for pertussis toxin (PT)-catalyzed [32P]ADP-ribosylation in purified plasma membrane/outer acrosomal membrane hybrid vesicles obtained from acrosome-reacted guinea pig sperm. Immunoprecipitation and polyacrylamide gel electrophoresis of PT-catalyzed [32P]ADP-ribosylated protein(s) using anti-peptide antisera generated against sequences unique to Gi alpha 1, Gi alpha 2, and Gi alpha 3 confirm the existence of all three Gi subtypes in mouse sperm extracts. Indirect immunofluorescence using an antiserum directed against a peptide region present in Gz alpha, a PT-insensitive G protein, demonstrates positive immunoreactivity in the postacrosomal/lateral face region of the mouse sperm head. This immunoreactivity is retained during acrosomal exocytosis in response to solubilized ZP and then disappears subsequent to this exocytotic event. These data demonstrate that Gi protein alpha-subunits are present in the acrosomal region of mammalian sperm, consistent with their postulated role in regulating ZP3-mediated acrosomal exocytosis, and that PT-insensitive Gz alpha is found in a region of the sperm head distinct from that of the Gi alpha subunits.  相似文献   

3.
Increases in the intracellular Ca2+ concentration of human platelets caused by receptor agonists, such as thrombin, 9,11-epithio-11,12-methanothromboxane A2 (STA2), platelet-activating factor (PAF) and arginine-vasopressin, were inhibited by prior addition of 12-O-tetradecanoylphorbol 13-acetate (TPA) in time-dependent and concentration-dependent manners. The inhibitions were mostly reversed by staurosporine, and inhibitor of protein kinase C, added 1 min before TPA. Prior treatment of platelets with thrombin or STA2, the efficacious Ca2+ mobilizer, suppressed the increase in the intracellular Ca2+ concentration of the cells to other agonists, but treatment with less efficacious PAF or vasopressin did not. The heterologous receptor desensitizations were also reversed by staurosporine. The antibody, directed against the carboxy-terminal region of the alpha subunits 1 and 2 of the inhibitory guanine-nucleotide-binding proteins (Gi1 alpha and Gi2 alpha), was raised in rabbit and was used to immunoprecipitate Gi alpha in 32P-labeled platelets. The radioactivity was detected in Gi alpha after incubation of 32P-labeled platelets with TPA, thrombin or STA2, but not in the cells incubated with PAF or vasopressin. The time-dependency or concentration-dependency of TPA-induced phosphorylation of Gi alpha was similar to the dependency of its inhibitory action on agonist-induced Ca2+ mobilization. Thus, strong activation of Ca2+/phospholipid-dependent protein kinase C by phorbol ester or agonists of certain Ca(2+)-mobilizing receptors leads to phosphorylation of the alpha subunit of guanine-nucleotide-binding protein, thereby impairing the coupling of the G protein to receptors as a feedback regulatory component of the receptor-triggered intracellular Ca(2+)-mobilizing system.  相似文献   

4.
Gz, a guanine nucleotide-binding protein with unique biochemical properties   总被引:12,自引:0,他引:12  
Cloning of a complementary DNA (cDNA) for Gz alpha, a newly appreciated member of the family of guanine nucleotide-binding regulatory proteins (G proteins), has allowed preparation of specific antisera to identify the protein in tissues and to assay it during purification from bovine brain. Additionally, expression of the cDNA in Escherichia coli has resulted in the production and purification of the recombinant protein. Purification of Gz from bovine brain is tedious, and only small quantities of protein have been obtained. The protein copurifies with the beta gamma subunit complex common to other G proteins; another 26-kDa GTP-binding protein is also present in these preparations. The purified protein could not serve as a substrate for NAD-dependent ADP-ribosylation catalyzed by either pertussis toxin or cholera toxin. Purification of recombinant Gz alpha (rGz alpha) from E. coli is simple, and quantities of homogeneous protein sufficient for biochemical analysis are obtained. Purified rGz alpha has several properties that distinguish it from other G protein alpha subunit polypeptides. These include a very slow rate of guanine nucleotide exchange (k = 0.02 min-1), which is reduced greater than 20-fold in the presence of mM concentrations of Mg2+. In addition, the rate of the intrinsic GTPase activity of Gz alpha is extremely slow. The hydrolysis rate (kcat) for rGz alpha at 30 degrees C is 0.05 min-1, or 200-fold slower than that determined for other G protein alpha subunits. rGz alpha can interact with bovine brain beta gamma but does not serve as a substrate for ADP-ribosylation catalyzed by either pertussis toxin or cholera toxin. These studies suggest that Gz may play a role in signal transduction pathways that are mechanistically distinct from those controlled by the other members of the G protein family.  相似文献   

5.
Treatment of rat hepatocytes with epidermal growth factor (EGF) produced an enhanced tyrosine phosphorylation of the EGF receptor and phospholipase C-gamma (PLC-gamma) in conjunction with the mobilization of Ca2+. Approximately 30% of the total PLC-gamma was tyrosine-phosphorylated with a maximum being reached after 30 s of incubation with EGF. Pretreatment of the rats with pertussis toxin prior to isolation of the hepatocytes blocked EGF-induced tyrosine phosphorylation of PLC-gamma and Ca2+ mobilization but had no effect on autophosphorylation of the EGF receptor or Ca2+ responses elicited by angiotensin II or phenylephrine. Under these conditions Gi protein alpha subunits were fully ADP-ribosylated. A 41-kDa Gi protein alpha subunit was found to be present in the anti-PLC-gamma immune complex after EGF stimulation as shown by in vitro ADP-ribosylation using [32P]NAD+ and activated pertussis toxin. The kinetics of association between PLC-gamma with Gi alpha protein reached a maximum after 1 min of incubation with EGF. Antibodies specific for the EGF receptor also coimmunoprecipitated a Gi protein alpha subunit. Treatment of hepatocytes with EGF caused first an increase and then a decrease in the amount of Gi protein alpha subunit associated with the EGF receptor. In contrast, studies with cultured rat liver (WB) cells, a cell line in which EGF stimulation of phosphoinositide hydrolysis is not inhibited by pertussis toxin, showed that a stable complex of Gi alpha was not formed with either PLC-gamma or EGF receptor immunoprecipitates. These results indicate that a pertussis toxin-sensitive Gi protein is uniquely involved in the signal transduction pathway mediating EGF-induced activation of PLC-gamma and Ca2+ mobilization in hepatocytes.  相似文献   

6.
Using specific antibodies against the alpha subunit of the inhibitory GTP-binding protein Gi, we analyzed the association of Gi alpha with other cellular components in human platelets. Three tyrosine phosphorylated proteins with molecular mass of 63, 58, and 55 kDa were specifically associated with Gi alpha in resting platelets. Stimulation of platelets with epinephrine, but not with thrombin, induced an increase of the reactivity of the 63- and 55-kDa proteins to anti-phosphotyrosine antibodies on western blotting. By in vitro kinase assay we found that epinephrine induced the association of kinase activity with Gi alpha and that the 63-kDa protein was phosphorylated by this activity. The association of kinase activity with Gi alpha in epinephrine-stimulated platelets paralleled the association of pp60src with Gi alpha, as detected by western blotting analysis using specific anti-pp60src monoclonal antibodies. The interaction of pp60src with Gi alpha may play a role in the mechanism of platelet activation by epinephrine or in the epinephrine-induced potentiation of the action of other platelet agonists.  相似文献   

7.
Akt activation in platelets depends on Gi signaling pathways   总被引:10,自引:0,他引:10  
The serine-threonine kinase Akt has been established as an important signaling intermediate in regulating cell survival, cell cycle progression, as well as agonist-induced platelet activation. Stimulation of platelets with various agonists including thrombin results in Akt activation. As thrombin can stimulate multiple G protein signaling pathways, we investigated the mechanism of thrombin-induced activation of Akt. Stimulation of platelets with a PAR1-activating peptide (SFLLRN), PAR4-activating peptide (AYPGKF), and thrombin resulted in Thr308 and Ser473 phosphorylation of Akt, which results in its activation. This phosphorylation and activation of Akt were dramatically inhibited in the presence of AR-C69931MX, a P2Y12 receptor-selective antagonist, or GF 109203X, a protein kinase C inhibitor, but Akt phosphorylation was restored by supplemental Gi or Gz signaling. Unlike wild-type mouse platelets, platelets from Galphaq-deficient mice failed to trigger Akt phosphorylation by thrombin and AYPGKF, whereas Akt phosphorylation was not affected by these agonists in platelets from mice that lack P2Y1 receptor. However, ADP caused Akt phosphorylation in Galphaq- and P2Y1-deficient platelets, which was completely blocked by AR-C69931MX. In contrast, ADP failed to cause Akt phosphorylation in platelets from mice treated with clopidogrel, and thrombin and AYPGKF induced minimal phosphorylation of Akt, which was not affected by AR-C69931MX in these platelets. These data demonstrate that Gi, but not Gq or G12/13, signaling pathways are required for activation of Akt in platelets, and Gi signaling pathways, stimulated by secreted ADP, play an essential role in the activation of Akt in platelets.  相似文献   

8.
Adrenaline or UK 14304 (a specific alpha 2-adrenoceptor agonist) and phorbol ester (phorbol 12,13-dibutyrate; PdBu) or bioactive diacylglycerols (sn-1,2-dioctanoylglycerol; DiC8) synergistically induced platelet aggregation and ATP secretion. The effect on aggregation was more pronounced than the effect on secretion, and it was observed in aspirinized, platelet-rich plasma or suspensions of washed aspirinized platelets containing ADP scavengers. No prior shape change was found. In the presence of adrenaline, DiC8 induced reversible aggregation and PdBu evoked irreversible aggregation that correlated with the different kinetics of DiC8- and PdBu-induced protein kinase C activation. Adrenaline and UK 14304 did not induce or enhance phosphorylation induced by DiC8 or PdBu of myosin light chain (20 kDa), the substrate of protein kinase C (47 kDa), or a 38 kDa protein. Immunoprecipitation studies using a Gcommon alpha antiserum or a Gi alpha antiserum showed that Gi alpha is not phosphorylated after exposure of platelets to PdBu or PdBu plus adrenaline. Adrenaline, PdBu or adrenaline plus PdBu did not cause stimulation of phospholipase C as reflected in production of [32P]phosphatidic acid. Adrenaline caused a small increase of Ca2+ in the platelet cytosol of platelets loaded with Indo-1; this effect was also observed in the absence of extracellular Ca2+. However, under conditions of maximal aggregation induced by adrenaline plus PdBu, no increase of cytosolic Ca2+ was observed. Platelet aggregation induced by PdBu plus adrenaline was not inhibited by a high intracellular concentration of the calcium chelator Quin-2. These experiments indicate that alpha 2-adrenoceptor agonists, known to interact with Gi, and protein kinase C activators synergistically induced platelet aggregation through a novel mechanism. The synergism occurs distally to Gi protein activation and protein kinase C-dependent protein phosphorylation and does not involve phospholipase C activation or Ca2+ mobilization.  相似文献   

9.
Guanine nucleotide-binding proteins (G proteins) are important signal transducing molecules found in all cells. G proteins are associated with the plasma membrane/outer acrosomal membrane region of acrosome-intact sperm and at least one G protein is involved in the zona pellucida-induced acrosome reaction. With the goal of elucidating the functions of these proteins during spermatogenesis, we investigated the types of G proteins present in spermatogenic cells and when they first become associated with the developing acrosome. Using bacterial toxin-catalyzed [32P]ADP-ribosylation in conjunction with immunoprecipitation and immunofluorescence utilizing antibodies directed against specific regions of various G protein isotypes, the alpha subunits of Gi1, Gi2, Gi3, and G(o) were detected in mouse spermatocytes and spermatids. An antiserum recognizing a conserved sequence of G alpha i subtypes localized to the proacrosomal granules of spermatocytes and the developing acrosome of spermatids. Levels of G alpha o diminished as spermatocytes developed into spermatids such that G alpha o was not detected in cauda epididymal sperm. Immunoreactivity using G alpha o-specific antisera did not display a distinct regionalization within any of the spermatogenic cell types. G alpha s was not detected in the developing spermatogenic cells or sperm. The association of G alpha i with the developing acrosome suggests a role for G proteins may have a role in acrosome biogenesis as well as being part of a complex required later for signal transduction leading to acrosomal exocytosis.  相似文献   

10.
Recently, we characterized a surface antigen (Z-1) of guinea pig macrophages by monoclonal anti-Z-1 antibody. The Z-1 antigen consists of two different polypeptide chains; alpha (140 kDa) and beta (95 kDa). This antigen is closely correlated with the phagocytic activity of the cells for zymosan and presumably functions as a receptor for zymosan. In the present study, the effect of phorbol 12-myristate 13-acetate (PMA) on the function of Z-1 was examined. Incubation of ortho-[32P]phosphate-labeled macrophages with PMA greatly increased the phosphorylation of the beta subunit of Z-1 but not that of the alpha subunit. Optimal phosphorylation was observed when cells were incubated with 300 ng/ml of PMA for 60-120 min. The PMA-induced phosphorylation was markedly suppressed by treatment of the macrophages with H-7, an inhibitor of protein kinase C. A chemotactic peptide, N-formyl-Met-Leu-Phe (fMLP) also caused phosphorylation of the beta subunit. Unlike PMA, fMLP maximized the phosphorylation within 30 s. Purified Z-1 was an excellent substrate for the exogenously added protein kinase C only in the presence of both Ca2+ and phosphatidylserine. H-7 completely inhibited the in vitro phosphorylation. These data suggest that the beta subunit of Z-1 is phosphorylated by protein kinase C. The phosphorylation of Z-1 by PMA and fMLP coincided with inhibition of zymosan phagocytosis. A linear relationship was obtained between the level of phosphorylation of Z-1 and the degree of inhibition of zymosan phagocytosis induced by PMA. Thus, the results suggest that zymosan uptake is negatively regulated by protein kinase C-mediated phosphorylation of the beta subunit of Z-1.  相似文献   

11.
The contribution of the GTP-binding protein, Gi, to EGF, phorbol dibutyrate (PdBu)-, and insulin-stimulated DNA synthesis was examined in BALB/c3T3 cells. Pertussis toxin inhibited DNA synthesis by each agonist, particularly at suboptimal agonist concentrations, but the inhibition could be partially overcome with higher agonist concentrations and combinations of these agonists. This suggested that (1) some, but not all, of the mitogenic signals for all three agonists were transduced by Gi (2) Gi may be activated by post-receptor mechanisms involving protein kinase C. Gi alpha-specific antibodies and ADP-ribosylation by pertussis toxin using 32P-NAD each labelled a single protein band, representing one or more species of Gi alpha. Pertussis toxin treatment increased the synthesis of Gi alpha. These results are discussed in relation to possible direct effects of Gi alpha on nuclear control during division.  相似文献   

12.
The protein kinase C activators phorbol myristate acetate (PMA), mezerein, oleoylacetylglycerol, and (-)-indolactam V, although without direct effect on arachidonic acid release, greatly enhance the release of platelet arachidonic acid caused by the Ca2+ ionophores A23187 and ionomycin. In contrast, 4 alpha-phorbol 12,13-didecanoate and (+)-indolactam V, which lack the ability to activate kinase C, do not potentiate arachidonate release. Release of arachidonic acid occurs without activation of phospholipase C and is therefore mediated by phospholipase A2. Synergism between PMA and A23187 is not affected by inactivation of the Na+/H+ exchanger with dimethylamiloride. The time course and dose-response for the effect of PMA at 23 degrees C closely correlate with the phosphorylation of a set of relatively "slowly" phosphorylated proteins (P20, P35, P41, P60), but not the rapidly phosphorylated P47 protein. P20 is myosin light chain, and P41 is probably Gi alpha, but the other proteins have not been positively identified. Depletion of metabolic ATP stores by antimycin A plus 2-deoxyglucose abolishes both protein phorphorylation and the potentiation of arachidonate release by PMA, but does not prevent fatty acid release by the ionophores. Similarly, the kinase C inhibitors H-7 and staurosporine produce, respectively, partial and complete inhibition of PMA-potentiated arachidonic acid release and protein phosphorylation, without affecting the direct response to ionophores. These results indicate that protein phosphorylation, mediated by kinase C, promotes the phospholipase A2 dependent release of arachidonic acid in platelets when intracellular Ca2+ is elevated by Ca2+ ionophores.  相似文献   

13.
The GTP-binding proteins involved in signal transduction now constitute a large family of so called 'G proteins'. Among them, Gs and Gi mediate the stimulation and inhibition of adenyl cyclase, respectively. Recently, another G protein (Go) abundant in brain was purified, but its function is still unknown. Like other G proteins, Go is a heterotrimer (alpha, beta, gamma) and the beta-gamma subunits seem to be identical to those of Gs and Gi. The alpha subunit of Go (Go-alpha) has a molecular weight of 39 kDa lower than those of Gi (41 kDa) or Gs (45-52 kDa). A positive immunoreativity with antibodies against Go-alpha was found in peripheral nervous tissues, adrenal medulla, heart, adenohypophysis and adipocytes. Go ressembles Gi in its ability to be ADP-ribosylated by pertussis toxin, and sequence analysis reveals a 68% homology between their alpha subunits. The GTPase activity of Go is several times higher than that of Gi. The affinity of the beta-gamma entity is about 3 times higher for Gi than for Go. In reconstitution studies, Go does not mimic the inhibitory effect of Gi on adenyl cyclase-stimulated by Gs. On the contrary, Go is as efficient as Gi in reconstituting the functional coupling with the muscarinic, alpha 2-adrenergic and chemotactic agent f-Met-Leu-Phe (fMLP), receptors. Recent studies seem to rule out Go as the coupling G protein of phospholipase C, the enzyme involved in phosphatidyl inositol trisphosphate hydrolysis. However, Go remains a putative candidate for transduction mechanisms coupled to a potassium channel or to a voltage-dependent calcium channel.  相似文献   

14.
The cGMP-dependent protein kinases (PKG) are emerging as important components of mainstream signal transduction pathways. Nitric oxide-induced cGMP formation by stimulation of soluble guanylate cyclase is generally accepted as being the most widespread mechanism underlying PKG activation. In the present study, PKG was found to be a target for phorbol 12-myristate 13-acetate (PMA)-responsive protein kinase C (PKC). PKG1alpha became phosphorylated in HEK-293 cells stimulated with PMA and also in vitro using purified components. PKC-dependent phosphorylation was found to activate PKG as measured by phosphorylation of vasodilator-stimulated phosphoprotein, and by in vitro kinase assays. Although there are 11 potential PKC substrate recognition sites in PKG1alpha, threonine 58 was examined due to its proximity to the pseudosubstrate domain. Antibodies generated against the phosphorylated form of this region were used to demonstrate phosphorylation in response to PMA treatment of the cells with kinetics similar to vasodilator-stimulated phosphoprotein phosphorylation. A phospho-mimetic mutation at this site (T58E) generated a partially activated PKG that was more sensitive to cGMP levels. A phospho-null mutation (T58A) revealed that this residue is important but not sufficient for PKG activation by PKC. Taken together, these findings outline a novel signal transduction pathway that links PKC stimulation with cyclic nucleotide-independent activation of PKG.  相似文献   

15.
Two GTP-binding proteins which can be ADP-ribosylated by islet-activating protein, pertussis toxin, were purified from the cholate extract of bovine lung membranes. Both proteins had the same heterotrimeric structure (alpha beta gamma), but the alpha subunits were dissociated from the beta gamma when they were purified in the presence of AlCl3, MgCl2 and NaF. The molecular mass of the alpha subunit of the major protein (designated GLu, with beta gamma) was 40 kDa and that of the minor one was 41 kDa. The results of peptide mapping analysis of alpha subunits with a limited proteolysis indicated that GLu alpha was entirely different from the alpha of brain Gi or Go, while the 41-kDa polypeptide was identical with the alpha of bovine brain Gi. The kinetics of guanosine 5'-[3-O-thio]triphosphate (GTP[gamma S]) binding to GLu was similar to that to lung Gi but quite different from that to brain Go. On the other hand, incubation of GLu alpha at 30 degrees C caused a rapid decrease of GTP[gamma S] binding, the inactivation curve being similar to that of Go alpha but different from that of Gi alpha. The alpha subunits of lung Gi and GLu did not react with the antibodies against the alpha subunit of bovine brain Go. The antibodies were raised in rabbits against GLu alpha and were purified with a GLu alpha-Sepharose column. The purified antibodies reacted not only with GLu alpha but also with the 41-kDa protein and purified brain Gi alpha. However, the antibodies adsorbed with brain Gi alpha reacted only with GLu alpha, indicating antisera raised with GLu alpha contained antibodies that recognize both Gi alpha and GLu alpha, and those specific to GLu alpha. These results further indicate that GLu is different from Gi or Go. Anti-GLu alpha antibodies reacted with the 40-kDa proteins in the membranes of bovine brain and human leukemic (HL-60) cells. The beta gamma subunits were also purified from bovine lung. The beta subunit was the doublet of 36-kDa and 35-kDa polypeptides. The lung beta gamma could elicit the ADP-ribosylation of GLu alpha by islet-activating protein, increase the GTP[gamma S] binding to GLu and protect the thermal denaturation of GLu alpha. The antibodies raised against brain beta gamma cross-reacted with lung beta but not with lung gamma.  相似文献   

16.
Antisera were raised in rabbits against purified alpha subunit of G protein Gi1 (Gi1 alpha) and also against a synthetic decapeptide corresponding to a sequence of Gi1 alpha. Antibodies in both antisera were purified with a Gi1-coupled Sepharose column, but purified anti-Gi1 alpha protein antibodies still reacted equally with both Gi1 alpha and Gi3 alpha, while anti-Gi1 alpha peptide antibodies reacted principally with Gi1 alpha. Using these antibodies, an enzyme immunoassay method for the quantification of Gi1 alpha was developed. The assay system consisted of polystyrene balls with immobilized anti-Gi1 alpha protein antibody F(ab')2 fragments and the anti-Gi1 alpha peptide antibody Fab' fragments labeled with beta-D-galactosidase from Escherichia coli. The minimum detection limit of the assay was 25 fmol of Gi1 alpha, and it did not cross-react with Gi2 alpha, Go alpha, or beta gamma. Samples from various regions of the rat central nervous system were homogenized in a 2% sodium cholate solution, and the concentration of Gi1 alpha in each extract was determined. Gi1 alpha was detected in all the regions, and the highest concentration was found in the olfactory bulb. Immunohistochemical study showed that Gi1 was mainly localized in the neuropil.  相似文献   

17.
R Y Li  F Gaits  A Ragab  J M Ragab-Thomas    H Chap 《The EMBO journal》1995,14(11):2519-2526
SH-PTP1 is a protein tyrosine phosphatase (PTP) predominantly expressed in haematopoietic cells and containing two src homology-2 (SH2) domains. Here we report that SH-PTP1 is phosphorylated on both serine and tyrosine residues in response to thrombin or phorbol myristate acetate (PMA), which increased by 60 and 40%, respectively, SH-PTP1 activity. Thrombin-induced phosphorylation of SH-PTP1 is an early signalling event (maximal within 10 s) involving neither integrin signalling, nor calcium, nor release of ADP or thromboxane A2. Moreover, in contrast with PMA, the effect of thrombin on the tyrosine phosphorylation of SH-PTP1 was hardly affected by GF109203X, a specific protein kinase C (PKC) inhibitor. Finally, phosphorylation of SH-PTP1 could be provoked in permeabilized platelets by thrombin or GTP gamma S. This was abolished by pertussis toxin, the specificity of this effect being verified with the megakaryocytic cell line Dami cell. Our data thus identify SH-PTP1 as an in vivo substrate of a putative protein tyrosine kinase linked to the thrombin receptor by a Gi protein. This might offer some clue to unravel the mechanism of thrombin not only in platelets but also in nucleated cells, where its mitogenic effect is known to involve pertussis toxin-sensitive G-proteins, tyrosine phosphorylation and the ras pathway.  相似文献   

18.
S J McClue  G Milligan 《FEBS letters》1990,269(2):430-434
In membranes of undifferentiated neuroblastoma x glioma hybrid cell line NG108-15, the apparent specific binding of [3H]yohimbine measured in the presence of 1 microM noradrenaline, was increased substantially by the presence of the poorly hydrolysed analogue of GTP, guanylyl-imidodiphosphate (Gpp[NH]p) or by preincubation of membranes with antibodies against the C-terminal decapeptide of the alpha subunit of the G-protein Gi2. Such an effect was not produced by antibodies against the equivalent region of Go alpha Gi3 alpha or Gs alpha or from non-immune serum. By contrast, total specific binding of [3H]yohimbine was not modified by co-incubation with Gpp[NH]p or by preincubation with the antibodies from any of the anti-G protein antisera. These results demonstrate a direct interaction of the alpha 2B adrenergic receptor of NG108-15 cells with Gi2.  相似文献   

19.
Activation of beta-adrenoreceptors induces cardiomyocyte hypertrophy. In the present study, we examined isoproterenol-evoked intracellular signal transduction pathways leading to activation of extracellular signal-regulated kinases (ERKs) and cardiomyocyte hypertrophy. Inhibitors for cAMP and protein kinase A (PKA) abolished isoproterenol-evoked ERK activation, suggesting that Gs protein is involved in the activation. Inhibition of Gi protein by pertussis toxin, however, also suppressed isoproterenol-induced ERK activation. Overexpression of the Gbetagamma subunit binding domain of the beta-adrenoreceptor kinase 1 and of COOH-terminal Src kinase, which inhibit functions of Gbetagamma and the Src family tyrosine kinases, respectively, also inhibited isoproterenol-induced ERK activation. Overexpression of dominant-negative mutants of Ras and Raf-1 kinase and of the beta-adrenoreceptor mutant that lacks phosphorylation sites by PKA abolished isoproterenol-stimulated ERK activation. The isoproterenol-induced increase in protein synthesis was also suppressed by inhibitors for PKA, Gi, tyrosine kinases, or Ras. These results suggest that isoproterenol induces ERK activation and cardiomyocyte hypertrophy through two different G proteins, Gs and Gi. cAMP-dependent PKA activation through Gs may phosphorylate the beta-adrenoreceptor, leading to coupling of the receptor from Gs to Gi. Activation of Gi activates ERKs through Gbetagamma, Src family tyrosine kinases, Ras, and Raf-1 kinase.  相似文献   

20.
Prostaglandin (PG) E2 binding protein, a putative PGE2 receptor, was purified 26-fold with 0.4% recovery from canine renal outer medullary membranes solubilized with 12% digitonin with the sequential use of a Superose 12, Wheat Germ Agglutinin (WGA) Affigel 10, DEAE-5PW and Ampholine column chromatographies. The final preparation retained the binding activity specific for PGE2, but lost most of the sensitivity to guanosine-5'-(gamma-thio)triphosphate (GTP gamma S). An antibody against alpha subunit of the inhibitory guanine nucleotide-binding protein (alpha Gi)1 and alpha Gi2 or that against common sequences of alpha subunit of guanine nucleotide-binding proteins (alpha G(common)) reacted at 41 kDa protein in the sample of each step of purification, but failed to do so in the final preparation. An antibody against alpha Gi3 or alpha Go had no effect. In fact, peaks of the binding activity and immunoreactivity for alpha Gi1,2 were chromatographically separated by isoelectric focusing. Moreover, antibodies against alpha G(common) or alpha Gi1,2, but not that against alpha Gi3 and alpha Go, precipitated PGE2 binding activity in the active fractions of WGA-Affigel 10 column chromatography. These results suggest that the PGE2 receptor is an acidic glycoprotein and that Gi1 or Gi2 is physically associated with the PGE2 receptor and dissociates from the receptor protein during purification procedures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号