首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The steady state absorption and fluorescence spectroscopic properties of the xanthophylls, violaxanthin, zeaxanthin, and lutein, and the efficiencies of singlet energy transfer from the individual xanthophylls to chlorophyll have been investigated in recombinant CP26 protein overexpressed in Escherichia coli and then refolded in vitro with purified pigments. Also, the effect of the different xanthophylls on the extents of static and dynamic quenching of chlorophyll fluorescence has been investigated. Absorption, fluorescence, and fluorescence excitation demonstrate that the efficiency of light harvesting from the xanthophylls to chlorophyll a is relatively high and insensitive to the particular xanthophyll that is present. A small effect of the different xanthophylls is observed on the extent of quenching of Chl fluorescence. The data provide the precise wavelengths of the absorption and fluorescence features of the bound pigments in the highly congested spectral profiles from these light-harvesting complexes. This information is important in assessing the mechanisms by which higher plants dissipate excess energy in light-harvesting proteins.  相似文献   

2.
Reconstitution of the 16 kDa N-terminal domain of the peridinin-chlorophyll-protein, N-PCP, with mixtures of chlorophyll a (Chl a) and Chl b, resulted in 32 kDa complexes containing two pigment clusters, each bound to one N-PCP. Besides homo-chlorophyllous complexes, hetero-chlorophyllous ones were obtained that contain Chl a in one pigment cluster, and Chl b in the other. Binding of Chl b is stronger than that of the native pigment, Chl a. Energy transfer from Chl b to Chl a is efficient, but there are only weak interactions between the two pigments. Individual homo- and hetero-chlorophyllous complexes were investigated by single molecule spectroscopy using excitation into the peridinin absorption band and scanning of the Chl fluorescence, the latter show frequently well resolved emissions of the two pigments.  相似文献   

3.
The main-form (MFPCP) and high-salt (HSPCP) peridinin-chlorophyll a proteins from the dinoflagellate Amphidinium carterae were investigated using absorption, fluorescence, fluorescence excitation, two-photon, and fast-transient optical spectroscopy. Pigment analysis has demonstrated previously that MFPCP contains eight peridinins and two chlorophyll (Chl) a molecules, whereas HSPCP has six peridinins and two Chl a molecules [Sharples, F. P., et al. (1996) Biochim. Biophys. Acta 1276, 117-123]. Absorption spectra of the complexes were recorded at 10 K and analyzed in the 400-600 nm region by summing the individual 10 K spectra of Chl a and peridinin recorded in 2-MTHF. The absorption spectral profiles of the complexes in the Q(y) region between 650 and 700 nm were fit using Gaussian functions. The absorption and fluorescence spectra from both complexes exhibit several distinguishing features that become evident only at cryogenic temperatures. In particular, at low temperatures the Q(y) transitions of the Chls bound in the HSPCP complex are split into two well-resolved bands. Fluorescence excitation spectroscopy has revealed that the peridinin-to-Chl a energy transfer efficiency is high (>95%). Transient absorption spectroscopy has been used to measure the rate of energy transfer between the two bound Chls which is a factor of 2.9 slower in HSPCP than in MFPCP. The kinetic data are interpreted in terms of the F?rster mechanism describing energy transfer between weakly coupled, spatially fixed, donor-acceptor Chl a molecules. The study provides insight into the molecular factors that control energy transfer in this class of light-harvesting pigment-protein complexes.  相似文献   

4.
The effects of high temperature (30-52.5 degrees C) on excitation energy transfer from phycobilisomes (PBS) to photosystem I (PSI) and photosystem II (PSII) in a cyanobacterium Spirulina platensis grown at 30 degrees C were studied by measuring 77 K chlorophyll (Chl) fluorescence emission spectra. Heat stress had a significant effect on 77 K Chl fluorescence emission spectra excited either at 436 or 580 nm. In order to reveal what parts of the photosynthetic apparatus were responsible for the changes in the related Chl fluorescence emission peaks, we fitted the emission spectra by Gaussian components according to the assignments of emission bands to different components of the photosynthetic apparatus. The 643 and 664 nm emissions originate from C-phycocyanin (CPC) and allophycocyanin (APC), respectively. The 685 and 695 nm emissions originate mainly from the core antenna complexes of PSII, CP43 and CP47, respectively. The 725 and 751 nm band is most effectively produced by PSI. There was no significant change in F725 and F751 during heat stress, suggesting that heat stress had no effects on excitation energy transfer from PBS to PSI. On the other hand, heat stress induced an increase in the ratio of Chl fluorescence yield of PBS to PSII, indicating that heat stress inhibits excitation energy transfer from PBS to PSII. However, this inhibition was not associated with an inhibition of excitation energy transfer from CPC to APC since no significant changes in F643 occurred at high temperatures. A dramatic enhancement of F664 occurring at 52.5 degrees C indicates that excitation energy transfer from APC to the PSII core complexes is suppressed at this temperature, possibly due to the structural changes within the PBS core but not to a detachment of PBS from PSII, resulting in an inhibition of excitation energy transfer from APC to PSII core complexes (CP47 + CP43). A decrease in F685 and F695 in heat-stressed cells with excitation at 436 nm seems to suggest that heat stress did not inhibit excitation energy transfer from the Chl a binding proteins CP47 and CP43 to the PSII reaction center and the decreased Chl fluorescence yields from CP43 and CP47 could be explained by the inhibition of the energy transfer from APC to PSII core complexes (CP47 + CP43).  相似文献   

5.
Excitation energy transfer and trapping processes in an iron stress-induced supercomplex of photosystem I from the cyanobacterium Synechocystis sp. PCC6803 were studied by time-resolved absorption and fluorescence spectroscopy on femtosecond and picosecond time scales. The data provide evidence that the energy transfer dynamics of the CP43'-PSI supercomplex are consistent with energy transfer processes that occur in the Chl a network of the PSI trimer antenna. The most significant absorbance changes in the CP43'-PSI supercomplex are observed within the first several picoseconds after the excitation into the spectral region of CP43' absorption (665 nm). The difference time-resolved spectra (DeltaDeltaA) resulting from subtraction of the PSI trimer kinetic data from the CP43'-PSI supercomplex data indicate three energy transfer processes with time constants of 0.2, 1.7, and 10 ps. The 0.2 ps kinetic phase is tentatively interpreted as arising from energy transfer processes originating within or between the CP43' complexes. The 1.7 ps phase is interpreted as possibly arising from energy transfer from the CP43' ring to the PSI trimer via closely located clusters of Chl a in CP43' and the PSI core, while the slower 10 ps process might reflect the overall excitation transfer from the CP43' ring to the PSI trimer. These three fast kinetic phases are followed by a 40 ps overall excitation decay in the supercomplex, in contrast to a 25 ps overall decay observed in the trimer complex without CP43'. Excitation of Chl a in both the CP43'-PSI antenna supercomplex and the PSI trimer completely decays within 100 ps, resulting in the formation of P700(+). The data indicate that there is a rapid and efficient energy transfer between the outer antenna ring and the PSI reaction center complex.  相似文献   

6.
Chlorophyll fluorescence has been often used as an intrinsic optical molecular probe to study photosynthesis. In this study, the origin of bands at 437 and 475.5 nm in the chlorophyll fluorescence excitation spectrum for emission at 685 nm in Arabidopsis chloroplasts was investigated using various optical analysis methods. The results revealed that this fluorescence excitation spectrum was related to the absorption characteristics of pigment molecules in PSII complexes. Moreover, the excitation band centred at 475.5 nm had a blue shift, but the excitation band at 437 nm changed relatively less due to induction of non‐photochemical quenching (NPQ). Furthermore, fluorescence emission spectra showed that this blue shift occurred when excitation energy transfer from both chlorophyll b (Chl b) and carotenoids (Cars) to chlorophyll a (Chl a) was blocked. These results demonstrate that the excitation band at 437 nm was mainly contributed by Chl a, while the excitation band at 475.5 nm was mainly contributed by Chl b and Cars. The chlorophyll fluorescence excitation spectrum, therefore, could serve as a useful tool to describe specific characteristics of light absorption and energy transfer between light‐harvesting pigments. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
Monomeric and trimeric Photosystem I core complexes from the cyanobacterium Synechocystis PCC 6803 and LHC-I containing Photosystem I (PS I-200) complexes from spinach have been characterized by steady-state, polarized light spectroscopy at 77 K. The absorption spectra of the monomeric and trimeric core complexes from Synechocystis were remarkably similar, except for the amplitude of a spectral component at long wavelength, which was about twice as large in the trimeric complexes. This spectral component did not contribute significantly to the CD-spectrum. The (77 K) steady-state emission spectra showed prominent peaks at 724 nm (for the Synechocystis core complexes) and at 735 nm (for PS I-200). A comparison of the excitation spectra of the main emission band and the absorption spectra suggested that a significant part of the excitations do not pass the red pigments before being trapped by P-700. Polarized fluorescence excitation spectra of the monomeric and trimeric core complexes revealed a remarkably high anisotropy (0.3) above 705 nm. This suggested one or more of the following possibilities: 1) there is one red-most pigment to which all excitations are directed, 2) there are more red-most pigments but with (almost) parallel orientations, 3) there are more red-most pigments, but they are not connected by energy transfer. The high anisotropy above 705 nm of the trimeric complexes indicated that the long-wavelength pigments on different monomers are not connected by energy transfer. In contrary to the Synechocystis core complexes, the anisotropy spectrum of the LHC I containing complexes from spinach was not constant in the region of the long-wavelength pigments, and decreased significantly below 720 nm, the wavelength where the long-wavelength pigments on the core complexes start to absorb. These results suggested that in spinach the long-wavelength pigments on core and LHC-I are connected by energy transfer and have a non-parallel average Qy(0-0) transitions.Abbreviations PS Photosystem - P Primary donor - Chl chlorophyll - LHC light-harvesting complex - CD circular dichroism - LD linear dichroism - BisTris 2-[bis(2-hydroxyethyl)amino]-2-hydroxy-methylpropane-1,3-diol - RC reaction center  相似文献   

8.
《BBA》2023,1864(3):148982
Photosystem II in oxygenic organisms is a large membrane bound rapidly turning over pigment protein complex. During its biogenesis, multiple assembly intermediates are formed, including the CP43-preassembly complex (pCP43). To understand the energy transfer dynamics in pCP43, we first engineered a His-tagged version of the CP43 in a CP47-less strain of the cyanobacterium Synechocystis 6803. Isolated pCP43 from this engineered strain was subjected to advanced spectroscopic analysis to evaluate its excitation energy dissipation characteristics. These included measurements of steady-state absorption and fluorescence emission spectra for which correlation was tested with Stepanov relation. Comparison of fluorescence excitation and absorptance spectra determined that efficiency of energy transfer from β-carotene to chlorophyll a is 39 %. Time-resolved fluorescence images of pCP43-bound Chl a were recorded on streak camera, and fluorescence decay dynamics were evaluated with global fitting. These demonstrated that the decay kinetics strongly depends on temperature and buffer used to disperse the protein sample and fluorescence decay lifetime was estimated in 3.2–5.7 ns time range, depending on conditions. The pCP43 complex was also investigated with femtosecond and nanosecond time-resolved absorption spectroscopy upon excitation of Chl a and β-carotene to reveal pathways of singlet excitation relaxation/decay, Chl a triplet dynamics and Chl a → β-carotene triplet state sensitization process. The latter demonstrated that Chl a triplet in the pCP43 complex is not efficiently quenched by carotenoids. Finally, detailed kinetic analysis of the rise of the population of β-carotene triplets determined that the time constant of the carotenoid triplet sensitization is 40 ns.  相似文献   

9.
10.
We review our recent low-temperature absorption, circular dichroism (CD), magnetic CD (MCD), fluorescence and laser-selective measurements of oxygen-evolving Photosystem II (PSII) core complexes and their constituent CP 4 3, CP 47 and D1/D2/cytb(559) sub-assemblies. Quantitative comparisons reveal that neither absorption nor fluorescence spectra of core complexes are simple additive combinations of the spectra of the sub-assemblies. The absorption spectrum of the D1/D2/cytb(559) component embedded within the core complex appears significantly better structured and red-shifted compared to that of the isolated sub-assembly. A characteristic MCD reduction or 'deficit' is a useful signature for the central chlorins in the reaction centre. We note a congruence of the MCD deficit spectra of the isolated D1/D2/cytb(559) sub-assemblies to their laser-induced transient bleaches associated with P 680. A comparison of spectra of core complexes prepared from different organisms helps distinguish features due to inner light-harvesting assemblies and the central reaction-centre chlorins. Electrochromic spectral shifts in core complexes that occur following low-temperature illumination of active core complexes arise from efficient charge separation and subsequent plastoquinone anion (Q(A)(-)) formation. Such measurements allow determinations of both charge-separation efficiencies and spectral characteristics of the primary acceptor, Pheo(D1). Efficient charge separation occurs with excitation wavelengths as long as 700 nm despite the illuminations being performed at 1.7 K and with an extremely low level of incident power density. A weak, homogeneously broadened, charge-separating state of PSII lies obscured beneath the CP 47 state centered at 690 nm. We present new data in the 690-760 nm region, clearly identifying a band extending to 730 nm. Active core complexes show remarkably strong persistent spectral hole-burning activity in spectral regions attributable to CP 43 and CP 47. Measurements of homogeneous hole-widths have established that, at low temperatures, excitation transfer from these inner light-harvesting assemblies to the reaction centre occurs with approximately 70-270 ps(-1) rates, when the quinone acceptor is reduced. The rate is slower for lower-energy sub-populations of an inhomogeneously broadened antenna (trap) pigment. The complex low-temperature fluorescence behaviour seen in PSII is explicable in terms of slow excitation transfer from traps to the weak low-energy charge-separating state and transfer to the more intense reaction-centre excitations near 685 nm. The nature and origin of the charge-separating state in oxygen-evolving PSII preparations is briefly discussed.  相似文献   

11.
Ganago IB  Khristin MS 《Biofizika》2003,48(5):860-864
It was found that chlorophyll fluorescence spectra and spectra of fluorescence excitation of pigment-protein complexes of photosystem II are affected by treatment with DNase. Pigment-protein complexes were isolated from pea thylakoid membranes. Spectra were measured at room temperature. It was shown that the treatment with DNase leads to a 30% increase in fluorescence yield at excitation in chlorophyll absorption bands in the fraction containing CP47, CP43, and CP29, and also in the fraction containing reaction center complexes with minor contaminations of light-harvesting complexes. Upon excitation at 260-300 nm and in the region of 500 nm, a diminishing of fluorescence yield takes place. These results suggest that pigments and/or pigment-protein complexes are bound to nucleic acids. This association, by influencing the pigment properties, can participate in the photoregulation of biochemical reactions through changes in the thermal dissipation of excited chlorophyll molecules.  相似文献   

12.
The steady-state fluorescence properties and uphill energy transfer were analyzed on intact cells of a chlorophyll (Chl) d-dominating photosynthetic prokaryote, Acaryochloris marina. Observed spectra revealed clear differences, depending on the cell pigments that had been sensitized; using these properties, it was possible to assign fluorescence components to specific Chl pigments. At 22 degrees C, the main emission at 724 nm came from photosystem (PS) II Chl d, which was also the source of one additional band at 704 nm. Chl a emissions were observed at 681 nm and 671 nm. This emission pattern essentially matched that observed at -196 degrees C, as the main emission of Chl d was located at 735 nm, and three minor bands were observed at 704 nm, 683 nm, and 667 nm, originating from Chl d, Chl a, and Chl a, respectively. These three minor bands, however, had not been sensitized by carotenoids, suggesting specific localization in PS II. At 22 degrees C, excitation of the red edge of the absorption band (which, at 736 nm, was 20 nm longer than the absorption maximum), resulted in fluorescence bands of Chl d at 724 nm and of Chl a at 682 nm, directly demonstrating an uphill energy transfer in this alga. This transfer is a critical factor for in vivo activity, due to an inversion of energy levels between antenna Chl d and the primary electron donor of Chl a in PS II.  相似文献   

13.
Energy transfer of aromatic amino acids in photosystem 2 (PS2) core antenna complexes CP43 and CP47 was studied using absorption spectroscopy, fluorescence spectroscopy, and the 0.35 nm crystal structure of PS2 core complex. The energy of tyrosines (Tyrs) was not effectively transferred to tryptophans (Trps) in CP43 and CP47. The fluorescence emission spectrum of CP43 and CP47 by excitation at 280 nm should be a superposition of the Tyr and Trp fluorescence emission spectra. The aromatic amino acids in CP43 and CP47 could transfer their energy to chlorophyll (Chl) a molecules by the Dexter mechanism and the Föster mechanism, and the energy transfer efficiency in CP47 was much higher than that in CP43. In CP47 the Föster mechanism must be the dominant energy transfer mechanism between aromatic amino acids and Chl a molecules, whereas in CP43 the Dexter mechanism must be the dominant one. Hence solar ultraviolet radiation brings not only damages but also benefits to plants.  相似文献   

14.
The polarized photoacoustic, absorption and fluorescence spectra of chloroplasts and thylakoids in unstretched and stretched polyvinyl alcohol films were measured. The intensity ratios of fluorescence bands at 674 nm, 700 nm, 730 nm and 750 nm, and the polarized fluorescence excitation spectra are strongly dependent on light polarization and film stretching. In stretched films, thylakoids exhibit predominantly 674 nm emission. The ratio of photoacoustic signal to absorption is different for light polarized parallel and perpendicular to film stretching. This difference is large in the region of chlorophyll a and carotenoids absorption in which the fluorescence excitation spectra are also strongly dependent on light polarization and film stretching. The observed spectral changes are explained by reorientation of pigment molecules influencing the yield of excitation transfer between different pigments.  相似文献   

15.
16.
Low-temperature absorption and fluorescence spectra of fully active cores and membrane-bound PS II preparations are compared. Detailed temperature dependence of fluorescence spectra between 5 and 70 K are presented as well as 1.7-K fluorescence line-narrowed (FLN) spectra of cores, confirming that PS II emission is composite. Spectra are compared to those reported for LHCII, CP43, CP47 and D1/D2/cytit b559 subunits of PS II. A combination of subunit spectra cannot account for emission of active PS II. The complex temperature dependence of PS II fluorescence is interpretable by noting that excitation transfer from CP43 and CP47 to the reaction centre is slow, and strongly dependent on the precise energy at which a ‘slow-transfer’ pigment in CP43 or CP47 is located within its inhomogeneous distribution. PS II fluorescence arises from CP43 and CP47 ‘slow-transfer’ states, convolved by this dependence. At higher temperatures, thermally activated excitation transfer to the PS II charge-separating system bypasses such bottlenecks. As the charge-separating state of active PS II absorbs at >700 nm, PS II emission in the 680–700 nm region is unlikely to arise from reaction centre pigments. PS II emission at physiological temperatures is discussed in terms of these results.  相似文献   

17.
The pigment-protein complexes CP43 and CP47 transfer excitation energy from the peripheral antenna of photosystem II toward the photochemical reaction center. We measured the excitation dynamics of the chlorophylls in isolated CP43 and CP47 complexes at 77 K by time-resolved absorbance-difference and fluorescence spectroscopy. The spectral relaxation appeared to occur with rates of 0.2-0.4 ps and 2-3 ps in both complexes, whereas an additional relaxation of 17 ps was observed only in CP47. Using the 3.8-A crystal structure of the photosystem II core complex from Synechococcus elongatus (A. Zouni, H.-T. Witt, J. Kern, P. Fromme, N. Krauss, W. Saenger, and P. Orth, 2001, Nature, 409:739-743), excitation energy transfer kinetics were calculated and a Monte Carlo simulation of the absorption spectra was performed. In both complexes, the rate of 0.2-0.4 ps can be ascribed to excitation energy transfer within a layer of chlorophylls near the stromal side of the membrane, and the slower 2-3-ps process to excitation energy transfer to the calculated lowest excitonic state. We conclude that excitation energy transfer within CP43 and CP47 is fast and does not contribute significantly to the well-known slow trapping of excitation energy in photosystem II.  相似文献   

18.
Ultrafast time-resolved fluorescence experiments have been performed with core antennas CP43 and CP47 of PS Ⅱ. Their dynamic fluorescence spectra were obtained with excitation wavelength 514.5 nm. For CP43, the emission spectrum was found to be from 640 to 780 nm with a peak at ~680 nm and the lifetime of fluorescence was 3.54 ns. For CP47, the emission spectrum was from 630 to 775 nm with a peak at ~691 nm and the fluorescence lifetime was 3.22 ns. The fluorescence emission efficiencies of Chl a in CP43 and CP47 were calculated to be approximately 38.3% and 40.6%, respectively. The energy transfer from β-Car to Chl a in CP43 and CP47 was discussed. The rates of energy transfer from β-Car to Chl a were measured to be about 9.6×1011 s-1 and 1.3×1012 s-1 and energy transfer efficiencies 47.5% and 66.5% respectively. The edge-edge distances between β-Car and Chl a in CP43 and CP47 were estimated to be ~0.110 nm and ~0.085nm respectively.  相似文献   

19.
In photosynthetic membranes of cyanobacteria, algae, and higher plants, photosystem I (PSI) mediates light-driven transmembrane electron transfer from plastocyanin or cytochrome c6 to the ferredoxin-NADP complex. The oxidoreductase function of PSI is sensitized by a reversible photooxidation of primary electron donor P700, which launches a multistep electron transfer via a series of redox cofactors of the reaction center (RC). The excitation energy for the functioning of the primary electron donor in the RC is delivered via the chlorophyll core antenna in the complex with peripheral light-harvesting antennas. Supermolecular complexes of the PSI acquire remarkably different structural forms of the peripheral light-harvesting antenna complexes, including distinct pigment types and organizational principles. The PSI core antenna, being the main functional unit of the supercomplexes, provides an increased functional connectivity in the chlorophyll antenna network due to dense pigment packing resulting in a fast spread of the excitation among the neighbors. Functional connectivity within the network as well as the spectral overlap of antenna pigments allows equilibration of the excitation energy in the depth of the whole membrane within picoseconds and loss-free delivery of the excitation to primary donor P700 within 20-40 ps. Low-light-adapted cyanobacteria under iron-deficiency conditions extend this capacity via assembly of efficiently energy coupled rings of CP43-like complexes around the PSI trimers. In green algae and higher plants, less efficient energy coupling in the eukaryotic PSI-LHCI supercomplexes is probably a result of the structural adaptation of the Chl a/b binding LHCI peripheral antenna that not only extends the absorption cross section of the PSI core but participates in regulation of excitation flows between the two photosystems as well as in photoprotection.  相似文献   

20.
硒胁迫对小球藻光合色素含量和生长的影响   总被引:1,自引:0,他引:1  
50 mg/L的硒胁迫下,小球藻中β-胡萝卜素、类叶黄素、叶绿素(叶绿素a、叶绿素b)的含量先明显增加,之后逐渐下降;而在800 mg/L硒胁迫下,各种光合色素含量均明显下降;小球藻活体细胞在693 nm处出现叶绿素a的吸收峰,其吸收值在硒胁迫后明显减弱;在室温荧光发射光谱中,700 nm处的发射峰随着硒浓度的增加而显著下降;荧光激发光谱表明:硒胁迫使小球藻的能量传递受阻,传递效率降低;藻体中水溶性蛋白含量随着硒胁迫的增强而下降.等离子体原子发射光谱(ICP-AES)研究结果表明:随着硒浓度增加,藻体中Mg2 、Ca2 、K 和Na 含量呈明显降低趋势,而培养液中这些离子的浓度则不断增加.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号