首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of trace metal nutrition on the functioning of the patulin biosynthetic pathway in submerged cultures of Penicillium urticae (NRRL 2159A) was examined by both chromatographic and enzymological means. Comprehensive metal ion analysis showed generally low levels of contaminating metal ions in media components. Of eight metal ions examined, only manganese strongly influenced secondary metabolite production. In control cultures or cultures deficient in calcium, iron, cobalt, copper, zinc, or molybdenum, pathway metabolites appeared in the medium at about 25 h after inoculation. The first pathway-specific metabolite, 6-methylsalicylic acid, accumulated only transiently before being converted to patulin whose concentration steadily increased. In manganese-deficient cultures, however, 6-methylsalicylic acid continued to accumulate, with only minor amounts of patulin being produced. Additionally, a marker enzyme for the pathway showed only 0-20% of control activity. Clear dose responses (patulin versus manganese) were found in different media, with no effect on growth yield. Addition of manganese to depleted cultures at 18, 26, or 36 h resulted in increasing marker enzyme activity and patulin concentrations. It is concluded that manganese exerts a specific, positive effect on patulin biosynthesis and may in some way control the section of the patulin pathway occurring after 6-methylsalicylic acid.  相似文献   

2.
Summary A comparison of citric acid fermentations in manganese-deficient and manganese-containing media showed that manganese strongly influences idiophase metabolism. In the presence of manganese, cell growth increases, sugar consumption is diminished and acidogenesis decreases drastically. An investigation of the key enzymes of glycolysis, the pentosephosphate pathway, TCA-cycle, nitrogen metabolism, and gluconeogenesis indicated that manganese deficiency was accompanied by a repression of anabolic and TCA-cycle-enzymes with the exception of citrate synthase. The activity of this enzyme and the enzymes of glycolysis paralleled the sugar consumption rate. In the presence of manganese, no repression of enzyme synthesis was observed. Activities of 2-oxoglutarate dehydrogenase and isocitrate lyase could not be detected in either case. The results support the hypothesis that manganese deficiency mainly affects the operation of biosynthetic reactions inAspergillus niger, thus leading to an overflow of citric acid as an end product of glycolysis.  相似文献   

3.
In this study the addition of ammonium ions (5–30 mM) toPenicillium urticae shake-flask cultures before, during and after the onset of polyketide biosynthesis was examined in a time-dependent manner for its repressive effect on metabolites and a marker enzyme of the patulin pathway and on the intracellular proteinases that also appear during the non-growth or idiophase. A study of the effect of ammonium ion addition, showed that both secondary enzyme and proteinase appearance were maximally delayed if the addition was made before the normal 7 h period of derepression/induction. If added during this period the effect of ammonium ions was progressively less. A reduction in the extracellular ammonium ion concentration from 30 to 4mM appeared to be required to initiate the derepression/induction process. Adding ammonium ions during the appearance of secondary enzymes caused a rapid decrease in specific activity, about 67% for the patulin pathway enzyme and 12% for proteinase. Nitrogen repression exerts a much stronger effect on the expression of polyketide genes as opposed to proteinase genes. Both patulin pathway enzymes and proteinases are subjected to proteolysis, but the proteinases retain much of their activity, whereas the polyketide biosynthetic enzymes do not.  相似文献   

4.
The radionuclide 54MnCl2 was used to examine the cellular manganese content of submerged cultures of Penicillium urticae NRRL 2159A. Liquid-scintillation spectroscopy allowed sensitive detection of isotopic manganese in both normally supplemented and manganese-deficient cultures. The cellular manganese content in supplemented cultures showed three distinct phases, including a period of uptake that coincided with the time of transition to antibiotic biosynthesis. Such an uptake was not seen for manganese-deficient cultures, but addition of normal quantities of unlabelled manganese to the media appeared to stimulate uptake. Preliminary characterization shows this manganese uptake is not inhibited by other metal ions, does not require metabolic energy or a protein component, but is disrupted by changes in incubation temperature. The significance of these observations is discussed in the light of recent work on the requirement for manganese for antibiotic biosynthesis in this organism.  相似文献   

5.
The glycosaminoglycan content of cartilage is decreased in manganese deficiency in the chick (perosis). The activity of xylosyltransferase, the first enzyme in the biosynthetic pathway of sulphated glycosaminoglycans, was studied in the epiphysial cartilage of 4-week-old chicks which had been maintained since hatching on a manganese-deficient diet. Enzymic activity was measured by the incorporation of [14C]xylose from UDP-[14C]xylose into trichloroacetic acid precipitates. Optimal conditions for the xylosyltransferase assay were established and shown to be the same for both control and manganese-deficient cartilage. Assay of the enzyme by using an exogenous xylose acceptor showed no difference in xylosyltransferase activity between control and manganese-deficient tissue. Further, the extent of xylose incorporation was greater in manganese-deficient than in control cartilage preparations, suggesting an increase in xylose-acceptor sites on the endogenous acceptor protein in the deficient cartilage. 35S turnover in the manganese-deficient cartilage was also increased. The data suggest that the decreased glycosaminoglycan content in manganese-deficient cartilage is due to decreased xylosylation of the acceptor protein plus increased degradation of glycosaminoglycan.  相似文献   

6.
Manganese is one of the essential microelements for plant growth, and cerium is a beneficial element for plant growth. However, whether manganese deficiency affects nitrogen metabolism of plants and cerium improves the nitrogen metabolism of plants by exposure to manganese-deficient media are still unclear. The main aim of the study was to determine the effects of manganese deficiency in nitrogen metabolism and the roles of cerium in the improvement of manganese-deficient effects in maize seedlings. Maize seedlings were cultivated in manganese present Meider's nutrient solution. They were subjected to manganese deficiency and to cerium chloride administered in the manganese-present and manganese-deficient media. Maize seedlings grown in the various media were measured for key enzyme activities involved in nitrogen metabolism, such as nitrate reductase, glutamate dehydrogenase, glutamine synthetase, and glutamic-oxaloace transaminase. We found that manganese deficiency restricted uptake and transport of NO(3)(-), inhibited activities of nitrogen-metabolism-related enzymes, such as nitrate reductase, glutamine synthetase, and glutamic-oxaloace transaminase, thus decreasing the synthesis of chlorophyll and soluble protein, and inhibited the growth of maize seedlings. Manganese deficiency promoted the activity of glutamate dehydrogenase and reduced the toxicity of excess ammonia to the plant, while added cerium relieved the damage to nitrogen metabolism caused by manganese deficiency in maize seedlings. However, cerium addition exerted positively to relieve the damage of nitrogen metabolism process in maize seedlings caused by exposure to manganese-deficient media.  相似文献   

7.
The initiation of patulin biosynthesis in submerged batch cultures of Penicillium urticae NRRL 2159A was investigated at the enzyme level. In contrast to earlier studies, this study achieved a clear temporal separation of growing cells devoid of secondary metabolism-specific enzymes from nongrowing cells, which rapidly produce these enzymes. A spore inoculum, silicone-treated flasks, and two new media which supported a rapid, pellet-free, filamentous type of growth were used. In yeast extract-glucose-buffer medium, a marked drop in the specific growth rate (approximately equal to 0.26 h-1) coincided with the appearance of the first pathway-specific enzyme, 6-methylsalicylic acid synthetase, at about 19 h after inoculation. About 3 h later, when replicatory growth had ceased entirely, the sparsely branched mycelia (length, approximately equal to 550 microns) began the rapid synthesis of a later pathway enzyme, m-hydroxybenzyl alcohol dehydrogenase. A similar sequence of events occurred in a defined nitrate-glucose-buffer medium; 12 other strains or isolates of P. urticae, as well as some patulin-producing aspergilli, behaved in a similar manner. The age at which a culture produced m-hydroxybenzyl alcohol dehydrogenase was increased by increasing the nutrient nitrogen content of the medium or by decreasing the size of the spore inoculum. In each instance the appearance of enzyme was determined by the nutritional status of the culture and not by its age. A similar appearance of patulin pathway enzymes occurred when a growing culture was resuspended in a nitrogen-free 4% glucose solution with or without 0.1 M phosphate (pH 6.5). The appearance of both the synthetase and the dehydrogenase was arrested by the addition of cycloheximide (0.4 to 5 micrograms/ml) or actinomycin D (20 to 80 micrograms/ml). This requirement for de novo protein and ribonucleic acid syntheses was confirmed by the incorporation of labeled leucine into the dehydrogenase, and the possibility that latent or preformed proteins were being activated was eliminated.  相似文献   

8.
The toxic nature of the secondary metabolite has been studied in rats. Changes in the concentration of a few key enzymes in carbohydrate metabolism have also been studied. In this, liver aldolase concentration was found to be significantly lowered. Since aldolase is one of the important bifunctional enzymes of glycolysis, it has been isolated and purified and studied on its kinetic properties were made. The kinetic studies did not show any significant variations in the properties of liver aldolase of normal and patulin treated animals. These results suggest that most probably, patulin toxicosis inhibits the biosynthesis of liver aldolase.  相似文献   

9.
Enzymes of glucose metabolism in Frankia sp.   总被引:5,自引:1,他引:4       下载免费PDF全文
Enzymes of glucose metabolism were assayed in crude cell extracts of Frankia strains HFPArI3 and HFPCcI2 as well as in isolated vesicle clusters from Alnus rubra root nodules. Activities of the Embden-Meyerhof-Parnas pathway enzymes glucokinase, phosphofructokinase, and pyruvate kinase were found in Frankia strain HFPArI3 and glucokinase and pyruvate kinase were found in Frankia strain HFPCcI2 and in the vesicle clusters. An NADP+-linked glucose 6-phosphate dehydrogenase and an NAD-linked 6-phosphogluconate dehydrogenase were found in all of the extracts, although the role of these enzymes is unclear. No NADP+-linked 6-phosphogluconate dehydrogenase was found. Both dehydrogenases were inhibited by adenosine 5-triphosphate, and the apparent Km's for glucose 6-phosphate and 6-phosphogluconate were 6.86 X 10(-4) and 7.0 X 10(-5) M, respectively. In addition to the enzymes mentioned above, an NADP+-linked malic enzyme was detected in the pure cultures but not in the vesicle clusters. In contrast, however, the vesicle clusters had activity of an NAD-linked malic enzyme. The possibility that this enzyme resulted from contamination from plant mitochondria trapped in the vesicle clusters could not be discounted. None of the extracts showed activities of the Entner-Doudoroff enzymes or the gluconate metabolism enzymes gluconate dehydrogenase or gluconokinase. Propionate- versus trehalose-grown cultures of strain HFPArI3 showed similar activities of most enzymes except malic enzyme, which was higher in the cultures grown on the organic acid. Nitrogen-fixing cultures of strain HFPArI3 showed higher specific activities of glucose 6-phosphate and 6-phosphogluconate dehydrogenases and phosphofructokinase than ammonia-grown cultures.  相似文献   

10.
Polyacrylamide-disc gel electrophoresis and quantitative enzyme assays showed that the pathways of glucose catabolism and secondary metabolism in Penicillium expansum were dependent on the degree of aeration of the cultures. The isoenzyme patterns and specific activities of aldolase and succinate dehydrogenase indicated that glycolysis and the tricarboxylic acid cycle operated under conditions of both limited and efficient aeration (i.e. in cultures grown statically or on an orbital shaker). At high levels of aeration the growth rate was faster and synthesis of extracellular pectolytic enzymes was enhanced, whilst the activities of glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase showed that the pentose-phosphate shunt was important in glucose catabolism during the trophophase of growth. In contrast, under conditions of low aeration this latter pathway was virtually undetectable, growth was slower, pectolytic enzyme production low and large concentrations of secondary metabolites (6-methylsalicylic acid, patulin and citrinin) accumulated.  相似文献   

11.
In continuing studies of patulin biosynthesis, the first enzyme of the pathway, 6-methylsalicylic acid synthetase, was found to be far more labile than were the later enzymes of the pathway. Attempts were made to stabilize 6-methylsalicylic acid synthetase in vitro. The combined addition of the cofactor NADPH, the substrates acetyl-CoA and malonyl-CoA, the reducing agent dithiothreitol, and the proteinase inhibitor phenylmethylsulfonyl fluoride to cell-free extracts was found to prolong the half-life of the enzyme as much as 12-fold. This suggested that proteolysis and the conformational integrity of the enzyme may play an important role in controlling the duration of antibiotic biosynthesis in vivo. This was in agreement with the finding that the intracellular proteinase content of antibiotic-producing cells of Penicillium urticae rapidly increased just before the loss of 6-methylsalicylic acid synthetase content. These in vitro stabilization studies have provided some insight into the metabolic conditions that may stabilize these enzymes in vivo, and into possible ways of extending the life of these catalysts.  相似文献   

12.
Conidiogenesis and secondary metabolism in Penicillium urticae.   总被引:10,自引:2,他引:8       下载免费PDF全文
Submerged cultures of Penicillium urticae (NRRL 2159A) produced the antibiotics patulin and griseofulvin when grown in a glucose-nitrate medium. A high concentration of calcium (i.e., 68 mM) inhibited the production of both antibiotics while stimulating conidiogenesis. Conidial mutants that were defective in an early stage of conidiogenesis produced markedly less patulin, even under growth conditions that favored secondary metabolism. A mutant which lacked the ability to produce the patulin pathway metabolites m-cresol, toluquinol, m-hydroxybenzyl-alcohol, m-hydroxybenzaldehyde, gentisaldehyde, gentisyl alcohol, gentisic acid and patulin, as well as the pathway enzyme m-hydroxybenzyl-alcohol dehydrogenase, still produced yields of conidia that were equivalent to or greater than those of the parent strain. Other mutants which were blocked at later steps of the patulin pathway also produced conidia. These results indicate that patulin and the other related secondary metabolites noted above are not a prerequisite to conidiogenesis in P. urticae. Environmental and developmental factors such as calcium levels and conidiogenesis do, however, indirectly affect the production of patulin pathway metabolites.  相似文献   

13.
The patulin biosynthesis is one of model pathways in an understanding of secondary metabolite biology and network novelties in fungi. However, molecular regulation mechanism of patulin biosynthesis and contribution of each gene related to the different catalytic enzymes in the biochemical steps of the pathway remain largely unknown in fungi. In this study, the genetic components of patulin biosynthetic pathway were systematically dissected in Penicillium expansum, which is an important fungal pathogen and patulin producer in harvested fruits and vegetables. Our results revealed that all the 15 genes in the cluster are involved in patulin biosynthesis. Proteins encoded by those genes are compartmentalized in various subcellular locations, including cytosol, nucleus, vacuole, endoplasmic reticulum, plasma membrane and cell wall. The subcellular localizations of some proteins, such as PatE and PatH, are required for the patulin production. Further, the functions of eight enzymes in the 10-step patulin biosynthetic pathway were verified in P. expansum. Moreover, velvet family proteins, VeA, VelB and VelC, were proved to be involved in the regulation of patulin biosynthesis, but not VosA. These findings provide a thorough understanding of the biosynthesis pathway, spatial control and regulation mechanism of patulin in fungi.  相似文献   

14.
The objectives of this study were to determine whether dietary manganese deficiency alters total glycosaminoglycan (GAG) concentration and composition and glycosyltransferase activity in rat aortas. Sprague-Dawley rats were fed either a manganese-deficient or a manganese-sufficient diet. Arterial GAGs were isolated and quantified by measuring uronic acid content. The individual GAGs were separated and quantified with cellulose acetate electrophoresis. The activity of the enzyme galactosyltransferase I was measured using a 100,000g particulate fraction and 4-methylumbelliferylxyloside (Xyl-MU) as an acceptor. There was a significant decrease (p <- 0.05) in uronic acid content in the manganese-deficient (1.18 ± 0.08 mg/g) rat aortas as compared with the manganese-sufficient (1.59 ± 0.10 mg/g) ones. Chondroitin sulfate and heparan sulfate concentrations were decreased by 38% (p < 0.01) and 36% (p < 0.05), respectively, in the manganese-deficient rat aortas. The incorporation of UDP-galactose to acceptors by the manganese-deficient rat aorta preparations was increased by 28% as compared to the manganese-sufficient preparations. These results indicate that manganese is involved in arterial GAG metabolism by affecting the enzyme galactosyltransferase and that changes in GAG concentration and composition with manganese deficiency may ultimately affect arterial wall integrity and subsequently cardiovascular health. This is the first work to demonstrate that manganese nutrition is important in arterial GAG metabolism.  相似文献   

15.
The influence of zinc, iron, cobalt, and manganese on submerged cultures of Fusarium moniliforme NRRL 13616 was assessed by measuring dry weight accumulation, fusarin C biosynthesis, and ammonia assimilation. Shake flask cultures were grown in a nitrogen-limited defined medium supplemented with various combinations of metal ions according to partial-factorial experimental designs. Zinc (26 to 3,200 ppb [26 to 3,200 ng/ml]) inhibited fusarin C biosynthesis, increased dry weight accumulation, and increased ammonia assimilation. Carbohydrate was found to be the principal component of the increased dry weight in zinc-supplemented cultures. Zinc-deficient cultures synthesized more lipid and lipidlike compounds, such as fusarin C, than did zinc-supplemented cultures. Microscopic examination showed that zinc-deficient hyphae contained numerous lipid globules which were not present in zinc-supplemented cultures. Addition of zinc (3,200 ppb) to 2- and 4-day-old cultures inhibited further fusarin C biosynthesis but did not stimulate additional dry weight accumulation. Iron (10.0 ppm) and cobalt (9.0 ppm) did not affect fusarin C biosynthesis or dry weight accumulation. Manganese (5.1 ppm) did not affect dry weight accumulation but did increase fusarin C biosynthesis in the absence of zinc. Maximum fusarin C levels, 32.3 micrograms/mg (dry weight), were produced when cultures were supplied manganese, whereas minimum fusarin C levels, 0.07 micrograms/mg (dry weight), were produced when zinc, iron, cobalt, and manganese were supplied. These results suggest a multifunctional role for zinc in affecting F. moniliforme metabolism.  相似文献   

16.
Cell-free extracts of tomato leaves from plants grown on media individually deficient in each of the micronutrient elements showed marked changes in enzymatic constitution. Each deficiency caused an alteration in the over-all enzyme pattern which was characteristic of the micronutrient element in question. The metallo-enzymes such as polyphenol oxidase, ascorbic acid oxidase, and peroxidase lost approximately half their activity in plants deficient in the specific metal concerned. In the cases of all other metal deficiencies, however, polyphenol oxidase and peroxidase were elevated in concentration at least two to six times that of the control. Ascorbic acid oxidase was doubled in zinc- and manganese-deficient material. Glycolic acid dehydrogenase and lactic acid dehydrogenase showed smaller parallel rises averaging a one and a half fold increase in content in zinc- and manganese-deficient plants. Reduced diphosphopyridine nucleotide diaphorase was doubled by copper and manganese deficiencies and was increased to almost one and a half fold by zinc deficiency. Endogenous oxygen uptake in boron-deficient, copper-deficient, and manganese-deficient leaf homogenates was increased, and almost lacking in molybdenum-deficient material.  相似文献   

17.
18.
The influence of zinc, iron, cobalt, and manganese on submerged cultures of Fusarium moniliforme NRRL 13616 was assessed by measuring dry weight accumulation, fusarin C biosynthesis, and ammonia assimilation. Shake flask cultures were grown in a nitrogen-limited defined medium supplemented with various combinations of metal ions according to partial-factorial experimental designs. Zinc (26 to 3,200 ppb [26 to 3,200 ng/ml]) inhibited fusarin C biosynthesis, increased dry weight accumulation, and increased ammonia assimilation. Carbohydrate was found to be the principal component of the increased dry weight in zinc-supplemented cultures. Zinc-deficient cultures synthesized more lipid and lipidlike compounds, such as fusarin C, than did zinc-supplemented cultures. Microscopic examination showed that zinc-deficient hyphae contained numerous lipid globules which were not present in zinc-supplemented cultures. Addition of zinc (3,200 ppb) to 2- and 4-day-old cultures inhibited further fusarin C biosynthesis but did not stimulate additional dry weight accumulation. Iron (10.0 ppm) and cobalt (9.0 ppm) did not affect fusarin C biosynthesis or dry weight accumulation. Manganese (5.1 ppm) did not affect dry weight accumulation but did increase fusarin C biosynthesis in the absence of zinc. Maximum fusarin C levels, 32.3 micrograms/mg (dry weight), were produced when cultures were supplied manganese, whereas minimum fusarin C levels, 0.07 micrograms/mg (dry weight), were produced when zinc, iron, cobalt, and manganese were supplied. These results suggest a multifunctional role for zinc in affecting F. moniliforme metabolism.  相似文献   

19.
Antibiotic production by submerged cultures of Penicillium urticae required manganese supplementation of the media. Thus, manganese supplementation (152 M) allowed accumulation of patulin to high concentrations (2 mol/mL), whereas manganese deficiency (1.53 M) resulted in the accumulation to similar levels of the first committed pathway intermediate, methyl-salicylic acid, without significant patulin accumulation. Preliminary studies suggest that a similar manganese effect may occur in other fungal species.  相似文献   

20.
Aspergillus nidulans was completely devoid of fruit bodies when grown on manganese deficient cultures. This result was shown earlier to be due to a lack of alpha-1,3 glucan in the cell wall. Several enzymes of carbon and nitrogen metabolism were investigated in an attempt to explain the absence of this reserve material. Synthesis of glucose-6-phosphate dehydrogenase, phosphoglucoisomerase and aldolase, were not strongly affected by manganese deficiency. However, phosphoglucomutase showed only 60% of the activity of the control cultures and it was argued that this was connected with the low amounts of alpha-1,3 glucan synthesized. Malate dehydrogenase was the enzyme the least affected by manganese deficiency and the two to threefold higher activity measured after glucose depletion might indicate the induction of the glyoxylate cycle. An impaired glutamine synthetase could explain the increase in activity observed for NAD-glutamine dehydrogenase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号