首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is widely assumed that chronic stress and corresponding chronic elevations of glucocorticoid levels have deleterious effects on animals' brain functions such as learning and memory. Some animals, however, appear to maintain moderately elevated levels of glucocorticoids over long periods of time under natural energetically demanding conditions, and it is not clear whether such chronic but moderate elevations may be adaptive. I implanted wild-caught food-caching mountain chickadees (Poecile gambeli), which rely at least in part on spatial memory to find their caches, with 90-day continuous time-release corticosterone pellets designed to approximately double the baseline corticosterone levels. Corticosterone-implanted birds cached and consumed significantly more food and showed more efficient cache recovery and superior spatial memory performance compared with placebo-implanted birds. Thus, contrary to prevailing assumptions, long-term moderate elevations of corticosterone appear to enhance spatial memory in food-caching mountain chickadees. These results suggest that moderate chronic elevation of corticosterone may serve as an adaptation to unpredictable environments by facilitating feeding and food-caching behaviour and by improving cache-retrieval efficiency in food-caching birds.  相似文献   

2.
Birds respond to deterioration in environmental conditions by elevating their corticosterone levels, which can enhance their survival. It is less clear if animals constantly living in energetically challenging environment show similar increases in adrenocortical function. Previous work has demonstrated that under controlled conditions black-capped chickadees (Poecile atricapilla) from northern latitudes cache more food and perform better on spatial memory tasks than their southern conspecifics. As elevated levels of corticosterone have been shown previously to correlate with spatial memory performance in chickadees, this study aimed to investigate whether black-capped chickadees from northern latitudes have elevated baseline levels of corticosterone and/or a stronger adrenocortical stress response than their southern conspecifics, irrespective of their immediate environment. We found no differences between Alaskan and Colorado chickadees maintained under identical conditions for 3 months in either baseline levels of corticosterone or maximum levels of corticosterone achieved during the stress response. Baseline corticosterone levels were negatively correlated with relative body mass across both groups of birds. Our results suggest that the population differences in food catching behavior and spatial memory were not related to differences in corticosterone levels. We conclude that many reported population differences in baseline levels and in strength of adrenocortical stress response may often reflect differences in local environmental conditions rather than population-specific physiological traits.  相似文献   

3.
It is well established that spatial memory is dependent on the hippocampus in both mammals and birds. As memory capacity can fluctuate on a temporal basis, it is important to understand the mechanisms mediating such changes. It is known that early memory‐dependent experiences in young animals result in hippocampal enlargement and in increased neurogenesis, including cell proliferation and neuron survival. It is less clear, however, whether temporal changes in spatial memory are also associated with changes in hippocampal anatomy and cell proliferation in fully grown and experienced adult animals. In a previous study, we experimentally demonstrated that socially subordinate mountain chickadees (Poecile gambeli) showed inferior spatial memory performance compared to their dominant group mates, in the absence of significant differences in baseline corticosterone levels. Here we investigated whether these differences in memory between dominant and subordinate birds were associated with changes in the hippocampus. Following memory tests, chickadees were injected with 5‐bromo‐2′‐deoxyuridine to label dividing cells and sacrificed 2 days after the injections. We found no significant differences in volume or the total number of neurons in the hippocampal formation between dominant and subordinate chickadees, but subordinate birds had significantly lower cell proliferation rates in the ventricular zone adjacent to both the hippocampus and mesopallium compared to the dominants. Individuals, which performed better on spatial memory tests tended to have higher levels of cell proliferation. These results suggest that social status can affect cell proliferation rates in the ventricular zone and support the hypothesis that neurogenesis might be involved in memory function in adult animals. © 2004 Wiley Periodicals, Inc. J Neurobiol, 2005  相似文献   

4.
It is well established that spatial memory is dependent on the hippocampus in both mammals and birds. As memory capacity can fluctuate on a temporal basis, it is important to understand the mechanisms mediating such changes. It is known that early memory-dependent experiences in young animals result in hippocampal enlargement and in increased neurogenesis, including cell proliferation and neuron survival. It is less clear, however, whether temporal changes in spatial memory are also associated with changes in hippocampal anatomy and cell proliferation in fully grown and experienced adult animals. In a previous study, we experimentally demonstrated that socially subordinate mountain chickadees (Poecile gambeli) showed inferior spatial memory performance compared to their dominant group mates, in the absence of significant differences in baseline corticosterone levels. Here we investigated whether these differences in memory between dominant and subordinate birds were associated with changes in the hippocampus. Following memory tests, chickadees were injected with 5-bromo-2'-deoxyuridine to label dividing cells and sacrificed 2 days after the injections. We found no significant differences in volume or the total number of neurons in the hippocampal formation between dominant and subordinate chickadees, but subordinate birds had significantly lower cell proliferation rates in the ventricular zone adjacent to both the hippocampus and mesopallium compared to the dominants. Individuals, which performed better on spatial memory tests tended to have higher levels of cell proliferation. These results suggest that social status can affect cell proliferation rates in the ventricular zone and support the hypothesis that neurogenesis might be involved in memory function in adult animals.  相似文献   

5.
Earlier reports suggested that seasonal variation in food-caching behavior (caching intensity and cache retrieval accuracy) might correlate with morphological changes in the hippocampal formation, a brain structure thought to play a role in remembering cache locations. We demonstrated that changes in cache retrieval accuracy can also be triggered by experimental variation in food supply: captive mountain chickadees (Poecile gambeli) maintained on limited and unpredictable food supply were more accurate at recovering their caches and performed better on spatial memory tests than birds maintained on ad libitum food. In this study, we investigated whether these two treatment groups also differed in the volume and neuron number of the hippocampal formation. If variation in memory for food caches correlates with hippocampal size, then our birds with enhanced cache recovery and spatial memory performance should have larger hippocampal volumes and total neuron numbers. Contrary to this prediction we found no significant differences in volume or total neuron number of the hippocampal formation between the two treatment groups. Our results therefore indicate that changes in food-caching behavior and spatial memory performance, as mediated by experimental variations in food supply, are not necessarily accompanied by morphological changes in volume or neuron number of the hippocampal formation in fully developed, experienced food-caching birds.  相似文献   

6.
Environmental perturbations increase adrenal activity in several vertebrates. Increases in corticosterone may serve as a proximate trigger whereby organisms can rapidly adapt their behavior to survive environmental fluctuations. In food-caching songbirds, inclement weather may present the need to alter caching and/or retrieval behaviors to ensure food supplies. We hypothesized that corticosterone may increase the rate of caching and/or retrieval behaviors in the mountain chickadee, a food-storing songbird, and tested if these potential effects were mediated by alterations in appetite, activity, or memory for cache sites. Corticosterone or vehicle was administered to subjects 5 min prior to either caching or recovery in a naturalistic laboratory paradigm during which we recorded the number of caching events, sites visited, and seeds eaten (caching) or caches recovered, total sites visited, cache-related visits, and non-cache-related visits (recovery). Data were analyzed using nested ANOVA for treatment within sequential trial. There was no effect on any caching behaviors following treatment. However, birds treated with corticosterone during retrieval recovered more seeds and tended to visit more cache-related sites than did controls. Since groups did not differ in the number of seeds eaten or the total number of sites visited, it seems unlikely that corticosterone affected appetite or activity. Rapid surges in corticosterone may increase the efficacy of an underlying memory process for cache sites which is reflected in higher cache recovery in corticosterone-treated birds than in controls. Thus, rapid alterations in plasma corticosterone following environmental change may alter memory-reliant behaviors which promote survival in the food-caching mountain chickadee.  相似文献   

7.
Subordinates often have to wait for dominants to obtain food. As a result, their foraging success should be less predictable and they should therefore maintain a higher level of energy reserves compared with dominants. A corollary of this prediction is that subordinates should gain mass earlier in the day and maintain higher mass than dominants. We tested these predictions with captive Carolina chickadees. In two different experiments (one where birds were given ad libitum access to food and the other with food access limited to 60 min/day), we formed social flocks of two previously unfamiliar birds and compared their energy management (body fat and food caches) while they were in the flock with energy management when housed alone. Results from both experiments failed to support the predictions. Of all the parameters of body mass and food caching we measured only the following results were significant: (1) On the ad libitum food schedule, both subordinates and dominants accumulated more mass over the day when in a flock compared with when they were solitary, and there were no differences in mass gain between dominants and subordinates. (2) When analysed separately, dominants showed a higher evening mass in the flock compared with the solitary condition, a trend that runs opposite to the prediction. Our results suggest that when in favourable foraging conditions, social interactions might cause dominant and subordinate birds to accumulate more energy reserves as a result of competition. On the other hand, if food supply is limited, both dominants and subordinates may be forced to maintain similar fat reserves as an insurance against increased risk of starvation. Copyright 2000 The Association for the Study of Animal Behaviour.  相似文献   

8.
Chronic stress and corresponding chronic elevations of glucocorticoid hormones have been widely assumed to have deleterious effects on brain anatomy and functions such as learning and memory. In particular, it has been suggested that chronic elevations of glucocorticoid hormones result in death of hippocampal neurons and in reduced rates of hippocampal neurogenesis. It is not clear, however, if any increase in glucocorticoid levels has negative effects on hippocampal anatomy as many animals regularly maintain moderately elevated levels of glucocrticoids over long periods of time under natural energetically demanding conditions. We used unbiased stereological methods to investigate whether mountain chickadees (Poecile gambeli) implanted for 49 days with continuous time-release corticosterone pellets, designed to approximately double the baseline corticosterone levels, differed from placebo-implanted chickadees in their hippocampal anatomy and cell proliferation rates. We found no significant differences between corticosterone and placebo-implanted birds in either telencephalon volume, volume of the hippocampal formation, or the total number of hippocampal neurons. Cell proliferation rates, measured as the total number of BrdU-labeled cells in the ventricular zone adjacent either to the hippocampus or to the mesopallium, were also not significantly different between corticosterone and placebo-implanted chickadees. Our results suggest that prolonged moderate elevation of corticosterone might not provide the suggested deleterious effects on hippocampal anatomy and neurogenesis in food-caching birds and, as we have shown previously, it actually enhances spatial memory.  相似文献   

9.
Social influences on food caching in willow tits: a field experiment   总被引:5,自引:1,他引:4  
We studied the food hoarding behavior of willow tits (Parusmontanus), a scatter-hoarding passerine wintering in dominance-structuredflocks. We examined social influences on microhabitat selectionand spatial cache distribution at temporary feeders. Dominantadult males stored food closer to die feeder and at a greaterrate than did subordinates. When alone, the birds stored foodcloser to the feeder than when accompanied by conspecifics.Conifers were preferred over deciduous trees as cache trees.The subordinates cached more in die outer parts of branchesthan dominants. There were no significant differences in dierelative or absolute heights of die caches, nor in the verticalor horizontal hoarding niche breadths between dominants andsubordinates. We experimentally removed die dominants from dieflock for 90 min and recorded the behavior of die remainingsubordinates immediately after die removal. The removal resultedin a decrease in die hoarding distance of die remaining birds,indicating that die presence of dominants directly affecteddie behavior of subordinates and suggesting that kleptopar-asitismby dominants may be prevented by rarhing farther away. Withdie dominants removed, die subordinates cached at a greaterrate than before die removal. The decrease in die hoarding distanceand increase in die hoarding rate were die only significanteffects of die experiment, perhaps suggesting that, during ashort absence of dominants, die subordinates do not benefitfrom changing dieir caching microhabitat They might be excludedfrom those new, possibly safer, microhabitats after die dominantbird rejoins die flock.  相似文献   

10.
Birds rely, at least in part, on spatial memory for recovering previously hidden caches but accurate cache recovery may be more critical for birds that forage in harsh conditions where the food supply is limited and unpredictable. Failure to find caches in these conditions may potentially result in death from starvation. In order to test this hypothesis we compared the cache recovery behaviour of 24 wild-caught mountain chickadees (Poecile gambeli), half of which were maintained on a limited and unpredictable food supply while the rest were maintained on an ad libitum food supply for 60 days. We then tested their cache retrieval accuracy by allowing birds from both groups to cache seeds in the experimental room and recover them 5 hours later. Our results showed that birds maintained on a limited and unpredictable food supply made significantly fewer visits to non-cache sites when recovering their caches compared to birds maintained on ad libitum food. We found the same difference in performance in two versions of a one-trial associative learning task in which the birds had to rely on memory to find previously encountered hidden food. In a non-spatial memory version of the task, in which the baited feeder was clearly marked, there were no significant differences between the two groups. We therefore concluded that the two groups differed in their efficiency at cache retrieval. We suggest that this difference is more likely to be attributable to a difference in memory (encoding or recall) than to a difference in their motivation to search for hidden food, although the possibility of some motivational differences still exists. Overall, our results suggest that demanding foraging conditions favour more accurate cache retrieval in food-caching birds.  相似文献   

11.
Food-storing birds lose a great deal of their stored food toother animals. We examined whether blackcapped chickadees (Parusairicapillus) modify their choice of cache sites using informationthat predicts cache loss. In experiment 1, birds learned toavoid caching at spatial locations where cache loss had previouslyoccurred, but they did not avoid caching near local color cuesthat predicted cache loss. Birds did not modify their generaluse of space in the aviary. Birds also learned to reduce searchingfor caches where spatial location predicted cache loss. Experiment2 confirmed the birds’ ability to discriminate among thespatial locations and the local color cues used in experiment1. In experiment 3, learning a food-rewarded approach to potentialcache sites occurred without any change in the choice of sitesfor caching. We discuss how chickadees selectively associatethe choice of cache site with its consequences, even over delaysof several hours between caching and cache recovery.  相似文献   

12.
Adult males of the small arboreal iguanid lizard, Anolis carolinensis, form social dominance hierarchies when placed in habitats with limited resources. Skin color changes occur during hierarchy formation, most conspicuously in subordinates, who appear darker (more brown) than dominants (more green). Because skin color in this species is under the control of hormones frequently associated with physiological stress, radioimmunoassay of plasma levels of the principal reptilian adrenal steroid, corticosterone, was performed. To examine the influence of gonadal androgen, known to influence the aggression that attends hierarchy formation, lizard pairs were constituted in which one or both members were castrated. Corticosterone levels of intact subordinates were significantly elevated, whereas those of castrated subordinates or dominants showed levels comparable to those of isolates. No significant differences in spermatogenic stage could be detected between intact dominants or subordinates.  相似文献   

13.
Florida Scrub-Jays (Aphelocoma coerulescens) are cooperative breeders endemic to Florida’s oak scrub. In autumn, Florida Scrub-Jays cache thousands of acorns and exhibit behaviors that appear to balance cache site selection against food degradation or cache robbery. However, both experience and position within a social dominance hierarchy could affect individual cache preferences. We examined the cache site preferences of birds with differing levels of caching experience and at different strata within a complex social dominance hierarchy. Our objective was to determine how experience, social position, and social context when caching influenced microhabitat preferences, and if these change as jays age, gain experience, and their social position changes. Naïve first-year birds preferred to cache in well-hidden, densely vegetated sites with relatively high soil moisture content. Naïve birds also cached farther from provisioning points if observed by a socially dominant bird than when they were alone or in the presence of birds of equal social status. Experienced adults preferred to cache in open, dry sandy sites and social context at the time of caching did not influence their preferences. As naïve birds aged, they gained experience and their social position changed. Experienced second-year birds shifted their preference to more open, drier sites, and did so more often when they remained subordinate within their group rather than becoming dominant breeders. Second-year birds that remained subordinate did not alter their caching behavior if observed by dominant birds. These patterns suggest that after gaining experience, jays learned which sites were more appropriate for caching and shifted their preference, regardless of their changing social status. We suggest that the risk of cache loss to food degradation might be greater than the risk of pilfering for Florida Scrub-Jays, especially for birds in any social strata except the most subordinate, but this requires additional study.  相似文献   

14.
Both food-storing behaviour and the hippocampus change annually in food-storing birds. Food storing increases substantially in autumn and winter in chickadees and tits, jays and nutcrackers and nuthatches. The total size of the chickadee hippocampus increases in autumn and winter as does the rate of hippocampal neurogenesis. The hippocampus is necessary for accurate cache retrieval in food-storing birds and is much larger in food-storing birds than in non-storing passerines. It therefore seems probable that seasonal change in caching and seasonal change in the hippocampus are causally related. The peak in recruitment of new neurons into the hippocampus occurs before birds have completed food storing and cache retrieval for the year and may therefore be associated with spacing caches, encoding the spatial locations of caches, or creating a neuronal architecture involved in the recollection of cache sites. The factors controlling hippocampal plasticity in food-storing birds are not well understood. Photoperiodic manipulations that produce change in food-storing behaviour have no effect on either hippocampal size or neuronal recruitment. Available evidence suggests that changes in hippocampal size and neurogenesis may be a consequence of the behavioural and cognitive involvement of the hippocampus in storing and retrieving food.  相似文献   

15.
Social ranks were determined in rats with different degrees of activity-passivity in coping style. The dominance status of rats was assessed by their behavior during social interaction and during competition for food and water. Coping styles were determined during initial trials of acquisition of active avoidance in a two-way shuttle box. Animals with passive behavior in a shuttle box had average scores of social ranks. Both dominant and subordinate rats displayed significantly more active behavior than subdominant animals. In additional experiment, the rats were caged as a one male-one female pairs. Two weeks later, the social ranks of males were determined during agonistic interactions. Males were caged in triads, and corticosterone levels were assayed in blood samples taken from the tail veins during the first five days. The corticosterone level was significantly higher in subdominants than in dominants. There was no significant difference between the dominants and subordinates in corticosterone levels. The obtained evidence suggests the passive coping in subdominant rats, whereas the dominant and subordinate animals were more "active" under aversive stimulation.  相似文献   

16.
Evolution of complex cognition in animals has been linked to complex social behaviour. One of the costs of sociality is increased competition for food which may be reduced by food caching, but cache theft may undermine the benefits of caching. In birds, sophisticated food-caching-related cognition has been demonstrated only for corvids and attributed to their highly social behaviour. Many non-corvid food-caching species exhibit similar complex social behaviour and here I provide experimental evidence that mountain chickadees (Poecile gambeli) adjust their caching strategies depending on social context. Chickadees were allowed to cache seeds in the presence of potential cache pilferer, either conspecific or heterospecific (red-breasted nuthatch, Sitta canadensis) and a non-pilferer (dark-eyed junco, Junco hyemalis) positioned at the opposite sides of the experimental arena. Available caching sites were either exposed to these observers or hidden from their view while the cacher could always see both observers. Chickadees chose caching sites that were hidden from direct view of the potential pilferers while caching in direct view of the non-pilferers. When no pilferers were present, chickadees made equal use of all available caching substrates and there were no differences in the amount of caching in the presence or absence of pilferers. These results suggest that (i) chickadees may be able to recognize potential cache thieves, both conspecific and heterospecific, and adjust their caching strategies to minimize potential cache pilferage and (ii) chickadees appear to discriminate between caching sites that can or cannot be seen by observers, which may allow them to control visual information available to potential pilferers.  相似文献   

17.
Testing whether and how subordinate individuals differ from dominants in the utilization of enriched CO2 atmospheres is important for understanding future stand and community structure. We hypothesized that subordinate and dominant Ambrosia artemisiifolia L. (Asteraceae) (common ragweed) plants growing in dense stands would not equally acquire or utilize carbon gains from CO2-enrichment, and that the resulting disproportionate growth gains to subordinates would reduce size inequalities in competing stands. We grew experimental stands of A. artemisiifolia in either ambient (360 μL L−1) or twice ambient (720 μL L−1) levels of atmospheric CO2. We compared the relative growth, photosynthetic capacity, and architecture of subordinate and dominant plants in each treatment, and assessed size inequalities using the stand-level coefficient of variation (CV). In elevated CO2, plants grew larger, but subordinate plants shifted more mass to upper stem allocation than dominants. Dominant plants demonstrated reduced leaf-level photosynthetic gains in elevated CO2 compared with subordinate plants. Reduced CVs in plant size reflected smaller proportional growth gains by dominants over subordinates in elevated vs. ambient stands. We conclude that differences in the architectural and physiological responses of subordinate and dominant ragweed plants reduce competition and allow subordinate plants to catch up to dominants in elevated CO2 conditions.  相似文献   

18.
We tested for hormonal and behavioral differences between Carolina chickadees (Poecile carolinensis) taken from a disturbed (recently logged) forest, an undisturbed forest, or a residential site. We measured fecal corticosterone and body mass levels in the field, and fecal corticosterone, body mass, and caching behavior in an aviary experiment. In the field, birds from the disturbed forest exhibited significantly higher fecal corticosterone levels than birds from either the undisturbed forest or from the residential site. Birds from the disturbed forest also exhibited lower body mass than those from the undisturbed forest but higher body mass than those from the residential site. Our aviary results suggest that these physiological differences between field sites are the result of short-term responses to ecological factors: neither body mass nor fecal corticosterone levels varied between birds captured at different sites. Aviary sample sizes were sufficient to detect seasonal variation in fecal corticosterone (lowest in summer), body mass (highest in spring), and rate of gain in body mass (highest in winter). Under "closed-economy" aviary conditions (all food available from a feeder in the aviary), there were no site differences in the percent of seeds taken from the feeder that were cached. However, under "open-economy" conditions (food occasionally available ad libitum), significantly fewer seeds were cached by birds from the disturbed forest compared to the undisturbed or residential sites. On average, there was only a two-fold difference in population levels of fecal corticosterone. This difference is about the same as an increase in fecal corticosterone induced by a 2-h increase in food deprivation and cannot be considered to be an acute stress response to disturbance.  相似文献   

19.
The influence of predation risk on threat display in great tits   总被引:1,自引:1,他引:0  
In wintering birds, conflicts over food are often resolved bythreat displays. For displays to be effective, there oughtto be a cost associated with displaying. We investigated whetherincreased vulnerability to predators due to reduced vigilancecould be such a cost. Conflicts ought then to be resolved usingfewer or less intense displays in conditions of high risk. We also looked for differences between dominants and subordinatesin their reaction to risk. Because there is considerable evidencethat subordinate wintering birds forage in riskier places thandominants, one might expect dominants to be less successfulin conflicts under high predation risk. In our experiment,nine flocks of four or five wintering male great tits were keptin outdoor aviaries. In the predation risk treatment, a stuffedpygmy owl was briefly shown before birds were allowed accessto a feeder. In the control treatment the owl did not appear.The predator presentation caused a reduction in the amountof aggression shown by subordinates, whereas for dominants there was no statistically significant change. Dominants were at leastas successful in subduing subordinates under high risk as underlow risk. A possible interpretation is that our experimentreflected a natural foraging situation for great tits, whereephemeral resources can appear unpredictably. In such situations,dominants may need to be bold to gain priority of access even under increased risk of predation, whereas a subordinate wouldgain little by risking a conflict with small chances of winning.  相似文献   

20.
In the blue-footed booby (Sula nebouxii), the first-hatched chick aggressively dominates its sibling and sometimes kills it when food is in short supply. To investigate the endocrine correlates of dominance-subordinance and hunger-induced agonism, we deprived 15–20-d-old single-chick and two-chick broods of food during 48 h by taping chicks' necks to prevent ingestion of parentally provided food (a protocol used previously and known to elicit escalated sibling fighting). We monitored weight and levels of circulating testosterone, oestradiol and corticosterone in deprived and normally fed broods comprising singletons, seniors (= dominants) and juniors (= subordinates), and observed behaviour to verify that aggression increased in deprived two-chick broods. During the 2 d of fasting, experimental chicks lost on average 6% of their baseline weight. After normal feeding was reinstated, seniors and singletons recovered normal (control) weight, but juniors remained significantly lighter than controls. No testosterone was detected in any nestling, but baseline corticosterone level was 109% higher in juniors than in seniors or singletons, implying that elevated corticosterone in juniors is a consequence of social subordination and may facilitate submissive behaviour. Although there was evidence that aggression of seniors increased under food deprivation, the increase was not accompanied by the rise in levels of testosterone expected under the ‘Challenge hypothesis’ (Wingfield et al. 1990). This result implies that this hypothesis probably does not apply to booby nestlings in the context of starvation-induced aggression. During the 2 d deprivation period, corticosterone levels of experimental chicks increased significantly, then declined to baseline levels a day after tapes were removed. The increase was probably due to the combined effects of starvation and frustration. We suggest that corticosterone could alter responsiveness of nestling blue-footed boobies to external stimuli, resulting in more aggression by dominants and greater readiness of subordinates to submit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号