首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
White and Seymour examined the scaling of central arterial blood pressure against body mass in mammals ranging in size from a 30 g mouse to a 4080 kg elephant. Exponents in power functions fitted to each of three datasets (systolic, diastolic, and mean arterial pressure) were reported to be significantly greater than zero and indistinguishable from 0.33. The first of these outcomes would indicate that blood pressure increases with body size, whereas the second is consistent with the heart working against gravity to move blood to the head. Taken together, these results seemingly refute the notion that the cephalic circulation functions as an energy‐neutral siphon. However, the main findings by White and Seymour were presented in the form of graphs that distorted the relationships between the variables of interest. I use simple graphics to show that the data were unsuited from the outset for use in allometric analyses and that conclusions of the investigation are not well supported.  相似文献   

2.
Pretzsch H 《Oecologia》2006,146(4):572-583
Experimental plots covering a 120 years' observation period in unthinned, even-aged pure stands of common beech (Fagus sylvatica), Norway spruce (Picea abies), Scots pine (Pinus sylvestris), and common oak (Quercus Petraea) are used to scrutinize Reineke's (1933) empirically derived stand density rule [see text], N=tree number per unit area, [see text]=mean stem diameter), Yoda's (1963) self-thinning law based on Euclidian geometry ([see text] [see text]=mean biomass per tree), and basic assumptions of West, Brown and Enquist's (1997, 1999) fractal scaling rules ([see text] [see text] w=biomass per tree, d=stem diameter). RMA and OLS regression provides observed allometric exponents, which are tested against the exponents, expected by the considered rules. Hope for a consistent scaling law fades away, as observed exponents significantly correspond with the considered rules only in a minority of cases: (1) exponent r of [see text] varies around Reineke's constant -1.605, but is significantly different from r=-2, supposed by Euclidian or fractal scaling, (2) Exponent c of the self-thinning line [see text] roams roughly about the Euclidian scaling constant -3/2, (3) Exponent a of [see text] tends to follow fractal scaling 8/3. The unique dataset's evaluation displays that (4) scaling exponents and their oscillation are species-specific, (5) Euclidian scaling of one relation and fractal scaling of another are coupled, depending on species. Ecological implications of the results in respect to self-tolerance (common oak>Norway spruce>Scots pine>common beech) and efficiency of space occupation (common beech>Scots pine>Norway spruce>common oak) are stressed and severe consequences for assessing, regulating and scheduling stand density are discussed.  相似文献   

3.
Morphological scaling relationships between organ and body size—also known as allometries—describe the shape of a species, and the evolution of such scaling relationships is central to the generation of morphological diversity. Despite extensive modeling and empirical tests, however, the modes of selection that generate changes in scaling remain largely unknown. Here, we mathematically model the evolution of the group‐level scaling as an emergent property of individual‐level variation in the developmental mechanisms that regulate trait and body size. We show that these mechanisms generate a “cryptic individual scaling relationship” unique to each genotype in a population, which determines body and trait size expressed by each individual, depending on developmental nutrition. We find that populations may have identical population‐level allometries but very different underlying patterns of cryptic individual scaling relationships. Consequently, two populations with apparently the same morphological scaling relationship may respond very differently to the same form of selection. By focusing on the developmental mechanisms that regulate trait size and the patterns of cryptic individual scaling relationships they produce, our approach reveals the forms of selection that should be most effective in altering morphological scaling, and directs researcher attention on the actual, hitherto overlooked, targets of selection.  相似文献   

4.
To estimate whole-tree water use when employing sap flow measurements, integration of the sap flux density (F d) over the sapwood area is needed. Accordingly, it is necessary to obtain information on the characteristics of stem water transportation such as spatial variations in F d and the active xylem area in the stem cross-section. Although evergreen oak trees with radial-porous wood represent a major component of secondary forests in western Japan, detailed information on their stem water transportation characteristics remains unclear. In the present study, we used the heat dissipation method (Granier method) to conduct measurements of azimuthal and radial variations in the F d of Quercus glauca Thunb. ex Murray, a representative evergreen broad-leaved tree in western Japan. Further, by analyzing the anatomy of the xylem structure, we examined why F d varies spatially in the stem cross-section. By using a dye solution injected into a radial hole bored into the tree trunk, we confirmed that the entire stem is hydroactive. We also compared the spatial variations in F d and water conductivity per xylem area (K s) which were estimated by using the observed vessel diameters and their density over the stem cross-section and Hagen–Poiseuille’s law. Azimuthal and radial variations in F d reached about 60 and 50% of the maximum values, respectively, and could be explained by spatial variation in K s. As a result, we obtained statistical parameters describing the spatial variation in F d in Q. glauca and determined that whole-tree water use estimated from measurements in one direction had at most ±20% potential errors for studied trees.  相似文献   

5.
Allometric biomass allocation theory predicts that leaf biomass (ML) scaled isometrically with stem (MS) and root (MR) biomass, and thus above‐ground biomass (leaf and stem) (MA) and root (MR) scaled nearly isometrically with below‐ground biomass (root) for tree seedlings across a wide diversity of taxa. Furthermore, prior studies also imply that scaling constant should vary with species. However, litter is known about whether such invariant isometric scaling exponents hold for intraspecific biomass allocation, and how variation in scaling constants influences the interspecific scaling relationship between above‐ and below‐ground biomass. Biomass data of seedlings from five evergreen species were examined to test scaling relationships among biomass components across and within species. Model Type II regression was used to compare the numerical values of scaling exponents and constants among leaf, stem, root, and above‐ to below‐ground biomass. The results indicated that ML and MS scaled in an isometric or a nearly isometric manner with MR, as well as MA to MR for five woody species. Significant variation was observed in the Y‐intercepts of the biomass scaling curves, resulting in the divergence for intraspecific scaling and interspecific scaling relationships for ML versus MS and ML versus MR, but not for MS versus MR and MA versus MR. We conclude, therefore, that a nearly isometric scaling relationship of MA versus MR holds true within each of the studied woody species and across them irrespective the negative scaling relationship between leaf and stem.  相似文献   

6.
In this paper we give a derivation for the allometric scaling relation between the metabolic rate and the mass of animals and plants. We show that the characteristic scaling exponent of 3/4 occurring in this relation is a result of the distribution of sources and sinks within the living organism. We further introduce a principle of least mass and discuss the kind of flows that arise from it.  相似文献   

7.
Several theories predict whole‐tree function on the basis of allometric scaling relationships assumed to emerge from traits of branching networks. To test this key assumption, and more generally, to explore patterns of external architecture within and across trees, we measure branch traits (radii/lengths) and calculate scaling exponents from five functionally divergent species. Consistent with leading theories, including metabolic scaling theory, branching is area preserving and statistically self‐similar within trees. However, differences among scaling exponents calculated at node‐ and whole‐tree levels challenge the assumption of an optimised, symmetrically branching tree. Furthermore, scaling exponents estimated for branch length change across branching orders, and exponents for scaling metabolic rate with plant size (or number of terminal tips) significantly differ from theoretical predictions. These findings, along with variability in the scaling of branch radii being less than for branch lengths, suggest extending current scaling theories to include asymmetrical branching and differential selective pressures in plant architectures.  相似文献   

8.
A primary goal of macroecology is to identify principles that apply across varied ecosystems and taxonomic groups. Here we show that the allometric relationship observed between maximum abundance and body size for terrestrial plants can be extended to predict maximum population densities of marine phytoplankton. These results imply that the abundance of primary producers is similarly constrained in terrestrial and marine systems by rates of energy supply as dictated by a common allometric scaling law. They also highlight the existence of general mechanisms linking rates of individual metabolism to emergent properties of ecosystems.  相似文献   

9.
Ecosystem properties result in part from the characteristics of individual organisms. How these individual traits scale to impact ecosystem‐level processes is currently unclear. Because metabolism is a fundamental process underlying many individual‐ and population‐level variables, it provides a mechanism for linking individual characteristics with large‐scale processes. Here we use metabolism and ecosystem thermodynamics to scale from physiology to individual biomass production and population‐level energy use. Temperature‐corrected rates of individual‐level biomass production show the same body‐size dependence across a wide range of aerobic eukaryotes, from unicellular organisms to mammals and vascular plants. Population‐level energy use for both mammals and plants are strongly influenced by both metabolism and thermodynamic constraints on energy exchange between trophic levels. Our results show that because metabolism is a fundamental trait of organisms, it not only provides a link between individual‐ and ecosystem‐level processes, but can also highlight other important factors constraining ecological structure and dynamics.  相似文献   

10.
Based on morphometric data, we calculate the structural parameters of the coronary vasculature as an optimal branching bed. We show (i) significant correlations between the diameters of the larger daughter and the parent vessel and between the diameter of the smaller daughter vessel and the asymmetry coefficient; (ii) differences in the structural parameters for two types of artery that deliver and distribute blood in the cardiac muscle; and (iii) the length-diameter relationships for different arteries. The coronary vasculature is characterized by asymmetrical branching and thus should be modeled with self-similar asymmetrical tree-like systems.  相似文献   

11.
Taylor''s law (TL) asserts that the variance of the density (individuals per area or volume) of a set of comparable populations is a power-law function of the mean density of those populations. Despite the empirical confirmation of TL in hundreds of species, there is little consensus about why TL is so widely observed and how its estimated parameters should be interpreted. Here, we report that the Lewontin–Cohen (henceforth LC) model of stochastic population dynamics, which has been widely discussed and applied, leads to a spatial TL in the limit of large time and provides an explicit, exact interpretation of its parameters. The exponent of TL exceeds 2 if and only if the LC model is supercritical (growing on average), equals 2 if and only if the LC model is deterministic, and is less than 2 if and only if the LC model is subcritical (declining on average). TL and the LC model describe the spatial variability and the temporal dynamics of populations of trees on long-term plots censused over 75 years at the Black Rock Forest, Cornwall, NY, USA.  相似文献   

12.
Mitochondria and Neurodegeneration   总被引:2,自引:0,他引:2  
Many lines of evidence suggest that mitochondria have a central role in ageing-related neurodegenerative diseases. However, despite the evidence of morphological, biochemical and molecular abnormalities in mitochondria in various tissues of patients with neurodegenerative disorders, the question “is mitochondrial dysfunction a necessary step in neurodegeneration?” is still unanswered. In this review, we highlight some of the major neurodegenerative disorders (Alzheimer’s disease, Parkinson’s disease, Amyotrophic lateral sclerosis and Huntington’s disease) and discuss the role of the mitochondria in the pathogenetic cascade leading to neurodegeneration.  相似文献   

13.
生物技术与生物学实验技术是两个内涵不同的概念。我们在生物教学以及生物有关教材的编写过程中,应给以区别和注意。  相似文献   

14.
Problems Associated with Biological Markers of Alzheimer’s Disease   总被引:3,自引:0,他引:3  
The etiopathogenesis of Alzheimer’s disease (AD) is still unclear, although clinical diagnostic criteria exist and the neuropathology of AD has been studied in great detail during the last 20 years. The present study addresses certain problems in the search for biological markers for the diagnosis, as well as in the follow-up of the course of AD and its differential diagnosis and reports some of our own observations in comparison with other studies. These include protein, genetic and neuroimaging markers. The definitions of biological markers and search strategies are also discussed. Special issue dedicated to Dr. Simo S. Oja  相似文献   

15.
Neurodegenerative diseases are a heterogeneous group of pathologies which includes complex multifactorial diseases, monogenic disorders and disorders for which inherited, sporadic and transmissible forms are known. Factors associated with predisposition and vulnerability to neurodegenerative disorders may be described usefully within the context of gene–environment interplay. There are many identified genetic determinants for neurodegeneration, and it is possible to duplicate many elements of recognized human neurodegenerative disorders in animal models of the disease. However, there are similarly several identifiable environmental influences on outcomes of the genetic defects; and the course of a progressive neurodegenerative disorder can be greatly modified by environmental elements. In this review we highlight some of the major neurodegenerative disorders (Alzheimer’s disease, Parkinson’s disease, Amyotrophic lateral sclerosis, Huntington’s disease, and prion diseases.) and discuss possible links of gene–environment interplay including, where implicated, mitochondrial genes.  相似文献   

16.
Biological samples were collected simultaneously with environmental quality investigations. Studies of metal levels in biological (hair and teeth) and environmental (soil and air) samples were performed in Zwardoń during 1991/1992. Zwardoń is a small mountain resort village, situated on the border pass of Zwardoń, in the close proximity of the southwestern border of Poland. Heavy metal levels in soil, air, and chemical metals forms in the soil were examined. Pearson’s product correlation in soil (for total concentration of heavy metals and each chemical form) in hair and in teeth was calculated to investigate bioavailability of heavy metals in human organism. We received essential correlations simultaneously between: Pb vs Mn in exchangeable form of metal in soil, in teeth and in soil (total); Cd vs Zn and Mn vs Co in organically bound form in soil and in teeth and soil (total); and Cu vs Zn in all investigated samples (teeth, hair, soil total, and organically bound form in soil); Mn vs Co and Cr vs Mn in residual form in soil, in teeth, and in soil (total) and between Co vs Ni for hair, soil (total), and residual form in soil.  相似文献   

17.
Recent advances in allometric theory have proposed a novel quantitative framework by which to view the evolution of plant form and function. This general theory has placed strong emphasis on the importance of long‐distance transport in shaping the evolution of many attributes of plant form and function. Specifically, it is hypothesized that with the evolutionary increase in plant size natural selection has also resulted in vascular networks that minimize scaling of total hydrodynamic resistance associated with increasing transport distances. Herein the central features of this theory are reviewed and a broad sampling of supporting but yet preliminary empirical data are analysed. In particular, subtle attributes of the scaling of tracheid and vessel anatomy are hypothesized to be crucial for the evolution of increased plant size. Furthermore, the importance of minimizing hydrodynamic resistance associated with increased transport distances is also hypothesized to be reflected in an isometric scaling relationship between stem mass, MS and root mass, MR(i.e. MSMR). Preliminary data from multiple extant and fossil plant taxa provide tantalizing evidence supporting the predicted relationships. Together, these results suggest that selection for the minimization of the scaling of hydrodynamic resistance within plant vascular networks has in turn allowed for the enormous diversification in vascular plant size.  相似文献   

18.
We investigated the empirical relationship between mean abundance and its variance, known as Taylor’s power law, in fleas parasitic on small mammals. It has been suggested that the exponent of this function, b, represents a true biological character of a species and, dependent on the level of host specificity, varies among species. Other empirical and theoretical studies suggest that exponent b depends on interspecific competition and varies intraspecifically. We tested these hypotheses using data from central and eastern Slovakia. We demonstrate that the slope of Taylor’s relationship (a) is repeatable within a flea species, i.e. the slope represents a true species character; (b) increases with an increase of the degree of flea host specificity; and (c) decreases with an increase in flea community size. We discuss our results with the idea that the host can mediate interactions among and within flea species. Co-ordinating editor: A. Biere  相似文献   

19.
Using museum data of adult specimens whose sex, age, and locality are known, we studied temporal and geographical body size trends among the otter, Lutra lutra, in Norway. We found that body size of the otters increased during the last quarter of the twentieth century, and suggest that this trend is related to increased food availability from fish farming and possibly also to energy saving due to elevated sea temperatures. Birth year and death year explained 38.8 and 43.5%, respectively, of the variation in body size. Body size of otters was positively related to latitude, thus conforming to Bergmann’s rule.  相似文献   

20.
蛋白质在相当一段时间内一直被认为只是 DNA 或 RNA 等遗传物质的表达形式,其单独不具有储存和传递生物信息的功能,而储存和传递生物信息却是遗传物质的两个基本属性 . 随着近年来 prion 生物学的出现和研究的逐步深入,人们已经认识到蛋白质单独就具有储存和传递生物信息的功能,从这个意义上讲,蛋白质也是一类遗传物质 . 所以很有必要站在这个角度对 prion 生物学的相关知识进行重新的梳理和再认识,通过对哺乳动物 prion 生物学和真菌 prion 生物学各自发展历程的简要回顾和最新研究成果的介绍,以及它们之间相同点和不同点的比较,总结出蛋白质储存和传递生物信息的一般规律并指出其表现形式的多样性 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号