首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The activity of p34cdc2 kinase is regulated in the phases of vertebrate cell cycle by mechanisms of phosphorylation and dephosphorylation. In this paper, we demonstrate that casein kinase II (CKII) phosphorylates p34cdc2 in vivo and in vitro at Ser39 during the G1 phase of HeLa cell division cycle. Human p34cdc2 shows a typical phosphorylation sequence motif site for CKII at Ser39 (ES39EEE). In our experiments, either p34cdc2 expressed and purified from bacteria or p34cdc2 immunoprecipitated from HeLa cells enriched in G1 by elutriation were substrates for in vitro phosphorylation by CKII. Phosphoamino acid analysis, N-chlorosuccinimide mapping, and two-dimensional tryptic mapping of p34cdc2 phosphorylated in vitro were performed to determine the phosphorylation site. A synthetic peptide spanning residues 33-50 of human p34cdc2, including the CKII site, was used to map the site. In addition, phosphorylation at Ser39 also occurs in vivo, since p34cdc2 is phosphorylated during G1 on serine, and its two-dimensional tryptic map shows two phosphopeptides that comigrate exactly with the synthetic peptides used as standard.  相似文献   

2.
A Palmer  A C Gavin    A R Nebreda 《The EMBO journal》1998,17(17):5037-5047
M-phase entry in eukaryotic cells is driven by activation of MPF, a regulatory factor composed of cyclin B and the protein kinase p34(cdc2). In G2-arrested Xenopus oocytes, there is a stock of p34(cdc2)/cyclin B complexes (pre-MPF) which is maintained in an inactive state by p34(cdc2) phosphorylation on Thr14 and Tyr15. This suggests an important role for the p34(cdc2) inhibitory kinase(s) such as Wee1 and Myt1 in regulating the G2-->M transition during oocyte maturation. MAP kinase (MAPK) activation is required for M-phase entry in Xenopus oocytes, but its precise contribution to the activation of pre-MPF is unknown. Here we show that the C-terminal regulatory domain of Myt1 specifically binds to p90(rsk), a protein kinase that can be phosphorylated and activated by MAPK. p90(rsk) in turn phosphorylates the C-terminus of Myt1 and down-regulates its inhibitory activity on p34(cdc2)/cyclin B in vitro. Consistent with these results, Myt1 becomes phosphorylated during oocyte maturation, and activation of the MAPK-p90(rsk) cascade can trigger some Myt1 phosphorylation prior to pre-MPF activation. We found that Myt1 preferentially associates with hyperphosphorylated p90(rsk), and complexes can be detected in immunoprecipitates from mature oocytes. Our results suggest that during oocyte maturation MAPK activates p90(rsk) and that p90(rsk) in turn down-regulates Myt1, leading to the activation of p34(cdc2)/cyclin B.  相似文献   

3.
The carboxyl-terminal regions of neurofilament high (NF-H) and middle (NF-M) molecular weight proteins have been suggested to be phosphorylated in vivo by a p34cdc2-like protein kinase, on the basis of the in vivo phosphorylation site motif and in vitro phosphorylation of the proteins by p34cdc2 kinase (Hisanaga, S.I., Kusubata, M., Okumura, E. and Kishimoto, T. (1991) J. Biol. Chem. 266, 21798-21803). A novel proline-directed protein kinase previously identified and purified from bovine brain has been found in this study to phosphorylate NF-H and NF-M at sites identical to those phosphorylated by HeLa cell p34cdc2 kinase. The proline-directed kinase is composed of a 33-kDa and a 25-kDa subunit. The 33-kDa kinase subunit was partially sequenced, and degenerate oligonucleotide primers corresponding to the amino acid sequence information were used to clone the subunit by polymerase chain reaction (PCR). Two overlapping PCR products comprised a complete open reading frame of 292 amino acids. The sequence contains all features of a protein kinase, suggesting that the 33-kDa peptide represents the catalytic subunit of the kinase. The 33-kDa subunit shows high and approximately equal homology to human p34cdc2 and human cdk2, with about 58 and 59% amino acid identity, respectively. These results suggest that the brain kinase represents a new category of the cdc2 family, and that some members of the cdc2 kinase family may have major functions unrelated to cell cycle control.  相似文献   

4.
Summary Immunofluorescence microscopy with a monoclonal antibody raised against the PSTAIR sequence, which corresponds to a peptide conserved in the p 34cdc2 protein kinase throughout the phylogenetic scale including higher plants, was used to study the intracellular localization of p 34cdc2 during the cell cycle in onion root tip cells. Although p 34cdc2 was evenly distributed in the cytoplasm throughout the cell cycle, a more intense staining was observed in the cortical region, where the preprophase band of microtubules (MTs) was located. Double staining with the PSTAIR and plant tubulin antibodies showed that the width of p 34cdc2 band was narrower than that of MT band. These data raise the interesting question regarding the possible role of p 34cdc2 protein kinase in determining the division site in plant cells.  相似文献   

5.
Regulatory phosphorylation of the p34cdc2 protein kinase in vertebrates.   总被引:50,自引:19,他引:50       下载免费PDF全文
C Norbury  J Blow    P Nurse 《The EMBO journal》1991,10(11):3321-3329
The p34cdc2 protein kinase is a conserved regulator of the eukaryotic cell cycle. Here we show that residues Thr14 and Tyr15 of mouse p34cdc2 become phosphorylated as mouse fibroblasts proceed through the cell cycle. We have mutated these residues and measured protein kinase activity of the p34cdc2 variants in a Xenopus egg extract. Phosphorylation of residues 14 and 15, which lie within the presumptive ATP-binding region of p34cdc2, normally restrains the protein kinase until it is specifically dephosphorylated and activated at the G2/M transition. Regulation by dephosphorylation of Tyr15 is conserved from fission yeast to mammals, while an extra level of regulation of mammalian p34cdc2 involves Thr14 dephosphorylation. In the absence of phosphorylation on these two residues, the kinase still requires cyclin B protein for its activation. Inhibition of DNA synthesis inhibits activation of wild-type p34cdc2 in the Xenopus system, but a mutant which cannot be phosphorylated at residues 14 and 15 escapes this inhibition, suggesting that these phosphorylation events form part of the pathway linking completion of DNA replication to initiation of mitosis.  相似文献   

6.
The Arabidopsis functional homolog of the p34cdc2 protein kinase.   总被引:28,自引:9,他引:19       下载免费PDF全文
The p34cdc2 protein kinase is a key component of the eukaryotic cell cycle, which is required for G1 to S-phase transition and for entry into mitosis. Using a 380-base pair DNA fragment obtained by polymerase chain reaction amplification from an Arabidopsis thaliana flower cDNA library as a probe, we isolated and sequenced a cdc2-homologous cDNA from Arabidopsis. The encoded polypeptide has extensive homology with cdc2-like kinases. Furthermore, when expressed in a CDC28ts Saccharomyces strain, it partially restores the capacity to grow at 36 degrees C, indicating that the plant cDNA is a functional homolog of the p34cdc2 kinase. Genomic hybridization demonstrated that there is one copy of the cdc2 gene per Arabidopsis haploid genome. Using RNA gel blot analysis, we found that cdc2 mRNA is present in all plant organs.  相似文献   

7.
8.
Regulation of p34cdc2 protein kinase during mitosis   总被引:91,自引:0,他引:91  
S Moreno  J Hayles  P Nurse 《Cell》1989,58(2):361-372
The cell-cycle timing of mitosis in fission yeast is determined by the cdc25+ gene product activating the p34cdc2 protein kinase leading to mitotic initiation. Protein kinase activity remains high in metaphase and then declines during anaphase. Activation of the protein kinase also requires the cyclin homolog p56cdc13, which also functions post activation at a later stage of mitosis. The continuing function of p56cdc13 during mitosis is consistent with its high level until the metaphase/anaphase transition. At anaphase the p56cdc13 level falls dramatically just before the decline in p34cdc2 protein kinase activity. The behavior of p56cdc13 is similar to that observed for cyclins in oocytes. p13suc1 interacts closely with p34cdc2; it is required during the process of mitosis and may play a role in the inactivation of the p34cdc2 protein kinase. Therefore, the cdc25+, cdc13+, and suc1+ gene products are important for regulating p34cdc2 protein kinase activity during entry into, progress through, and exit from mitosis.  相似文献   

9.
Activation of p34cdc2 kinase by cyclin A   总被引:17,自引:5,他引:17       下载免费PDF全文
Functional clam cyclin A and B proteins have been produced using a baculovirus expression system. Both cyclin A and B can induce meiosis I and meiosis II in Xenopus in the absence of protein synthesis. Half-maximal induction occurs at 50 nM for cyclin A and 250 nM for cyclin B. Addition of 25 nM cyclin A to activated Xenopus egg extracts arrested in the cell cycle by treatment with RNase or emetine activates cdc2 kinase to the normal metaphase level and stimulates one oscillatory cell cycle. High levels of cyclin A cause marked hyperactivation of cdc2 kinase and a stable arrest at the metaphase point in the cell cycle. Kinetic studies demonstrate the concentration of cyclin A added does not affect the 10 min lag period required for kinase activation or the timing of maximal activity, but does control the rate of deactivation of cdc2 kinase during exit from mitosis. In addition, exogenous clam cyclin A inhibits the degradation of both A- and B-type endogenous Xenopus cyclins. These results define a system for investigating the biochemistry and regulation of cdc2 kinase activation by cyclin A.  相似文献   

10.
We previously demonstrated that nontransformed cells arrest in the G1 phase of the cell cycle when treated with low concentrations (21 nM) of staurosporine (1). Both normal and transformed cells are blocked in the G2 phase of the cell cycle when treated with higher concentrations (160 nM) of staurosporine (1,2). In the present study, we show that staurosporine inhibits the activity of fractionated p34cdc2 and p34cdc2-like kinases with IC50 values of 4-5 nM. We propose that the G2 phase arrest in the cell cycle caused by staurosporine is due, at least in part, to the inhibition of the p34cdc2 kinases.  相似文献   

11.
The mammalian homologue of the yeast cdc2 gene encodes a 34-kilodalton serine/threonine kinase that is a subunit of M phase-promoting factor. Recent studies have shown that p34cdc2 is also a major tyrosine-phosphorylated protein in HeLa cells and that its phosphotyrosine content is cell cycle regulated and related to its kinase activity. Here, we show that cdc2 is physically associated with and phosphorylated in vitro by a highly specific tyrosine kinase. Tyrosine phosphorylation of cdc2 in vitro occurs at tyrosine 15, the same site that is phosphorylated in vivo. The association between the two kinases takes place in the cytosolic compartment and involves cyclin B-associated cdc2. Evidence is presented that a substantial fraction of cytosolic cdc2 is hypophosphorylated, whereas nuclear cdc2 is hyperphosphorylated. Finally, we show that the tyrosine kinase associated with cdc2 may be a 67-kilodalton protein and is distinct from src, abl, fms, and other previously reported tyrosine kinases.  相似文献   

12.
Mechanisms of p34cdc2 regulation.   总被引:14,自引:6,他引:8       下载免费PDF全文
The kinase activity of human p34cdc2 is negatively regulated by phosphorylation at Thr-14 and Tyr-15. These residues lie within the putative nucleotide binding domain of p34cdc2. It has been proposed that phosphorylation within this motif ablates the binding of ATP to the active site of p34cdc2, thereby inhibiting p34cdc2 kinase activity (K. Gould and P. Nurse, Nature [London] 342:39-44, 1989). To understand the mechanism of this inactivation, various forms of p34cdc2 were tested for the ability to bind nucleotide. The active site of p34cdc2 was specifically modified by the MgATP analog 5'-p-fluorosulfonylbenzoyladenosine (FSBA). The apparent Km for modification of wild-type, monomeric p34cdc2 was 148 microM FSBA and was not significantly affected by association with cyclin B. Tyrosine-phosphorylated p34cdc2 was modified by FSBA with a slightly higher Km (241 microM FSBA). FSBA modification of both tyrosine-phosphorylated and unphosphorylated p34cdc2 was competitively inhibited by ATP, and half-maximal inhibition in each case occurred at approximately 250 microM ATP. In addition to being negatively regulated by phosphorylation, the kinase activity of p34cdc2 was positively regulated by the cyclin-dependent phosphorylation of Thr-161. Mutation of p34cdc2 at Thr-161 resulted in the formation of an enzymatically inactive p34cdc2/cyclin B complex both in vivo and in vitro. However, mutation of Thr-161 did not significantly affect the ability of p34cdc2 to bind nucleotide (FSBA). Taken together, these results indicate that inhibition of p34cdc2 kinase activity by phosphorylation of Tyr-15 (within the putative ATP binding domain) or by mutation of Thr-161 involves a mechanism other than inhibition of nucleotide binding. We propose instead that the defect resides at the level of catalysis.  相似文献   

13.
C Smythe  J W Newport 《Cell》1992,68(4):787-797
In cell-free extracts derived from Xenopus eggs which oscillate between S phase and mitosis, incompletely replicated DNA blocks the activation of p34cdc2-cyclin by maintaining p34cdc2 in a tyrosine-phosphorylated form. We used a recombinant cyclin fusion protein to generate a substrate to measure the ability of the tyrosine kinase(s) to phosphorylate and inactivate p34cdc2 in the absence of tyrosine phosphatase activity. p34cdc2 tyrosine phosphorylation is highly regulated during the cell cycle, being elevated in S phase and attenuated in mitosis. The elevation in p34cdc2 tyrosine phosphorylation rate occurs in response to the presence of incompletely replicated DNA. Moreover, okadaic acid and caffeine, which uncouple the dependence of mitosis on the completion of S phase, increase unphosphorylated p34cdc2 by attenuating tyrosine kinase function. These data indicate that the control system, which monitors the state of DNA replication, modulates the function of the tyrosine kinase by a phosphorylation/dephosphorylation mechanism, ensuring that mitosis occurs only when S phase is complete.  相似文献   

14.
We have investigated the mechanism by which fission yeast p80cdc25 induces mitosis. The in vivo active domain was localized to the C-terminal 23 kDa of p80cdc25. This domain produced as a bacterial fusion protein (GST-cdc25) caused tyrosyl dephosphorylation and activation of immunoprecipitated p34cdc2. Furthermore, GST-cdc25 dephosphorylated both para-nitrophenyl-phosphate (pNPP) and casein phosphorylated on serine in vitro. Reaction requirements and inhibitor sensitivities were the same as those of phosphotyrosine phosphatases (PTPases). Analysis of cdc25 C-terminal domains from a variety of species revealed a conserved motif having critical residues present at the active site of PTPases. Mutation of the cdc25 Cys480 codon, corresponding to an essential cysteine in the active site of PTPases, abolished the phosphatase activity of GST-cdc25. These data indicate that cdc25 proteins define a novel subclass of eukaryotic PTPases, and strongly argue that cdc25 proteins directly dephosphorylate and activate p34cdc2 kinase to induce M-phase.  相似文献   

15.
A protein tyrosine kinase has been purified from the particulate fraction of bovine spleen to a specific activity of 0.217 mumol/min/mg at 100 microM ATP and 3 mM [Val5] angiotensin II. Both the angiotensin phosphorylation activity and immunoreactivity towards an antibody preparation raised against a synthetic peptide containing the autophosphorylation site of pp60c-src, Cys-src(403-421), were monitored during the purification. The purified sample displayed three closely spaced protein bands with molecular weights of 50-55 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. All bands could be phosphorylated exclusively on tyrosine residues under autophosphorylation conditions. All reacted on immunoblots with an antibody raised against a synthetic peptide corresponding to the consensus autophosphorylation site of members of the pp60c-src family of tyrosine kinases. Tryptic phosphopeptide maps of the three proteins were essentially indistinguishable. The results suggest that the purified enzyme preparation contained mainly three closely related pp60c-src-family protein tyrosine kinases or a pp60src-family protein tyrosine kinase modified posttranslationally to give three closely spaced protein bands on sodium dodecyl sulfate gel. Neither of these proteins appears to be pp60c-src or p56lck. The spleen protein tyrosine kinase was found to phosphorylate a p34cdc2 kinase peptide, Cys-cdc2(8-20), which contained the regulatory tyrosine residue Tyr-15 about 20 times better than [Val5]angiotensin II or Cys-src(403-421) peptide at a peptide substrate concentration of 1 mM. In contrast, epidermal growth factor receptor kinase partially purified from A431 cells did not show preference for Cys-cdc2(8-20) as its substrate. Although Cys-cdc2(8-20) contained two tyrosine residues, only the tyrosine corresponding to Tyr-15 in p34cdc2 was phosphorylated by the spleen tyrosine kinase. The observation suggests that the primary structure surrounding Tyr-15 of p34cdc2 contains substrate structural determinants specific for the spleen tyrosine kinase.  相似文献   

16.
It has recently been shown that caldesmon from non-muscle (Yamashiro, S., Yamakita, Y., Hosoya, H., and Matsumura, F. (1991) Nature 349, 169-172) and smooth muscle cells (Mak, A. S., Watson, M. H., Litwin, C. M. E., and Wang, J. H. (1991) J. Biol. Chem. 266, 6678-6681) can be phosphorylated in vitro by p34cdc2 kinase resulting in the inhibition of caldesmon binding to F-actin and Ca(2+)-calmodulin. In this study, we have identified five phosphorylation sites in smooth muscle caldesmon at Ser582, Ser667, Thr673, Thr696, and Ser702. All the sites bear some resemblance to the S(T)-P-X-X motif recognized by p34cdc2. The preferred site of phosphorylation at Thr673 accounts for about 40% of the total phosphorylation. Four of the sites occur in two pairs of closely spaced sites, Ser667/Thr673 and Thr696/Ser702; phosphorylation of one site in each pair inhibits strongly the phosphorylation of the second site in the same pair, presumably due to the close proximity of the two sites. Similar negative cooperativity in phosphorylation of Ser667 and Thr673 was observed using a 22-residue synthetic peptide containing the two sites. Phosphorylation of Ser667/Thr673 and Thr696/Ser702 account for about 90% of the total level of phosphorylation and these sites are located within the 10-kDa CNBr fragment at the COOH-terminal end of caldesmon known to bind actin and Ca(2+)-calmodulin.  相似文献   

17.
18.
As cells enter mitosis, the protein-tyrosine kinase, p60c-src, is known to be extensively phosphorylated on threonine in its amino-terminal region. In the present work, extracts of mitotic cells were searched for the protein kinase responsible for this phosphorylation. HeLa cells and Xenopus eggs were found to contain a mitosis-specific protein kinase activity capable of phosphorylating highly purified p60c-src in vitro on threonine residues. Tryptic phosphopeptide maps indicate that the mitotic HeLa kinase phosphorylates the same sites in vitro as those used during mitosis in vivo. In addition, this mitotic HeLa kinase comigrates on gel filtration with p34cdc2-associated histone H1 kinase, a well known regulator of mitotic events. Finally, antibodies to the C-terminal peptide of human p34cdc2 specifically deplete p60c-src-phosphorylating activity from mitotic extracts. These results suggest that p60c-src may act as an effector of p34cdc2 in certain mitotic processes.  相似文献   

19.
Characterization of synthetic peptide substrates for p34cdc2 protein kinase   总被引:8,自引:0,他引:8  
Synthetic peptide substrates for the cell division cycle regulated protein kinase, p34cdc2, have been developed and characterized. These peptides are based on the sequences of two known substrates of the enzyme, Simian Virus 40 Large T antigen and the human cellular recessive oncogene product, p53. The peptide sequences are H-A-D-A-Q-H-A-T-P-P-K-K-K-R-K-V-E-D-P-K-D-F-OH (T antigen) and H-K-R-A-L-P-N-N-T-S-S-S-P-Q-P-K-K-K-P-L-D-G-E-Y-NH2 (p53), and they have been employed in a rapid assay of phosphorylation in vitro. Both peptides show linear kinetics and an apparent Km of 74 and 120 microM, respectively, for the purified human enzyme. The T antigen peptide is specifically phosphorylated by p34cdc2 and not by seven other protein serine/threonine kinases, chosen because they represent major classes of such enzymes. The peptides have been used in whole cell lysates to detect protein kinase activity, and the cell cycle variation of this activity is comparable to that measured with specific immune and affinity complexes of p34cdc2. In addition, the peptide phosphorylation detected in mitotic cells is depleted by affinity adsorption of p34cdc2 using either antibodies to p34cdc2 or by immobilized p13, a p34cdc2-binding protein. Purification of peptide kinase activity from mitotic HeLa cells yields an enzyme indistinguishable from p34cdc2. These peptides should be useful in the investigation of p34cdc2 protein kinase and their regulation throughout the cell division cycle.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号