首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Hexokinase II (HK-II) is an enzyme that catalyzes the first step in glycolysis and localizes not only in the cytosol but also at mitochondria. Akt, activated by insulin-like growth factor 1 (IGF-1) treatment in neonatal rat ventricular myocytes, translocates to mitochondria and increases mitochondrial HK-II binding. Expression of an HK-II-dissociating peptide diminished IGF-1-induced increases in mitochondrial HK-II as well as protection against hydrogen peroxide treatment, suggesting an important role of mitochondrial HK-II in IGF-1/Akt-mediated protection. We hypothesized, on the basis of an Akt phosphorylation consensus sequence present in HK-II, that Thr-473 is the target of Akt kinase activity. Indeed, recombinant kinase-active Akt robustly phosphorylates WT HK-II, but not Thr-473 mutants. Phosphomimetic (T473D)HK-II, but not non-phosphorylatable (T473A)HK-II, constitutively increased mitochondrial binding compared with WT HK-II and concomitantly confers greater protection against hydrogen peroxide. Glucose 6-phosphate (G-6P), a product of the catalytic activity of HK-II, is well known to dissociate HK-II from mitochondria. Addition of G-6P to isolated mitochondria dose-dependently dissociates WT HK-II, and this response is inhibited significantly in mitochondria isolated from cardiomyocytes expressing T473D HK-II. Pretreatment with IGF-1 also inhibits G-6P-induced overexpressed or endogenous HK-II dissociation, and this response was blocked by Akt inhibition. These results show that Akt phosphorylation of HK-II at Thr-473 is responsible for the Akt-mediated increase in HK-II binding to mitochondria. This increase is, at least in part, due to the decreased sensitivity to G-6P-induced dissociation. Thus, phosphorylation-mediated regulation of mitochondrial HK-II would be a critical component of the protective effect of Akt.  相似文献   

2.
3.
We previously reported that constitutively activated Galpha(q) (Q209L) expression in cardiomyocytes induces apoptosis through opening of the mitochondrial permeability transition pore. We assessed the hypothesis that disturbances in Ca(2+) handling linked Galpha(q) activity to apoptosis because resting Ca(2+) levels were significantly increased prior to development of apoptosis. Treating cells with EGTA lowered Ca(2+) and blocked both loss of mitochondrial membrane potential (an indicator of permeability transition pore opening) and apoptosis (assessed by DNA fragmentation). When cytosolic Ca(2+) and mitochondrial membrane potential were simultaneously measured by confocal microscopy, sarcoplasmic reticulum (SR)-driven slow Ca(2+) oscillations (time-to-peak approximately 4 s) were observed in Q209L-expressing cells. These oscillations were seen to transition into sustained increases in cytosolic Ca(2+), directly paralleled by loss of mitochondrial membrane potential. Ca(2+) transients generated by caffeine-induced release of SR Ca(2+) were greatly prolonged in Q209L-expressing cells, suggesting a decreased ability to extrude Ca(2+). Indeed, the Na(+)/Ca(2+) exchanger (NCX), which removes Ca(2+) from the cell, was markedly down-regulated at the mRNA and protein levels. Adenoviral NCX expression normalized cytosolic Ca(2+) levels and prevented DNA fragmentation in cells expressing Q209L. Interestingly, constitutively activated Akt, which rescues cells from Q209L-induced apoptosis, prevented the decrease in NCX expression, normalized cytosolic Ca(2+) levels and spontaneous Ca(2+) oscillations, shortened caffeine-induced Ca(2+) transients, and prevented loss of the mitochondrial membrane potential. Our findings demonstrate that NCX down-regulation and consequent increases in cytosolic and SR Ca(2+) can lead to Ca(2+) overloading-induced loss of mitochondrial membrane potential and suggest that recovery of Ca(2+) dysregulation is a target of Akt-mediated protection.  相似文献   

4.
Opening of permeability transition (PT) pores in the mitochondrial inner membrane causes the mitochondrial permeability transition (MPT) and leads to mitochondrial swelling, membrane depolarization, and release of intramitochondrial solutes. Here, our aim was to develop high-throughput assays using a fluorescence plate reader to screen potential inducers and blockers of the MPT. Isolated rat liver mitochondria (0.5 mg/ml) were incubated in multiwell plates with tetramethylrhodamine methyl ester (TMRM, 1 microM), a potential-indicating fluorophore, and Fluo-5N (1 microM), a low-affinity Ca(2+) indicator. Incubation led to mitochondrial polarization, as indicated by uncoupler-sensitive quenching of the red TMRM fluorescence. CaCl(2) (100 microM) addition led to ruthenium red-sensitive mitochondrial Ca(2+) uptake, as indicated by green Fluo-5N fluorescence. After Ca(2+) accumulation, mitochondria depolarized, released Ca(2+) into the medium, and began to swell. This swelling was monitored as a decrease in light absorbance at 620 nm. Swelling, depolarization, and Ca(2+) release were prevented by cyclosporin A (1 microM), confirming that these events represented the MPT. Measurements of Ca(2+), mitochondrial membrane potential, and swelling could be made independently from the same wells without cross interference, and all three signals could be read from every well of a 48-well plate in about 1 min. In other experiments, mitochondria were ester-loaded with carboxydichlorofluorescein (carboxy-DCF) during the isolation procedure. Release of carboxy-DCF after PT pore opening led to an unquenching of green carboxy-DCF fluorescence occurring simultaneously with swelling. By combining measurements of carboxy-DCF release, Ca(2+) uptake, membrane potential, and swelling, MPT inducers and blockers can be distinguished from uncouplers, respiratory inhibitors, and blockers of Ca(2+) uptake. This high-throughput multiwell assay is amenable for screening panels of compounds for their ability to promote or block the MPT.  相似文献   

5.
We have studied the effects of rotenone in myoblasts from healthy donors and from patients with Ullrich congenital muscular dystrophy (UCMD), a severe muscle disease due to mutations in the genes encoding the extracellular matrix protein collagen VI. Addition of rotenone to normal myoblasts caused a very limited mitochondrial depolarization because the membrane potential was maintained by the F1FO synthase, as indicated by full depolarization following the subsequent addition of oligomycin. In UCMD myoblasts rotenone instead caused complete mitochondrial depolarization, which was followed by faster ATP depletion than in healthy myoblasts. Mitochondrial depolarization could be prevented by treatment with cyclosporin A and intracellular Ca(2+) chelators, while it was worsened by depleting Ca(2+) stores with thapsigargin. Thus, in UCMD myoblasts rotenone-induced depolarization is due to opening of the permeability transition pore rather than to inhibition of electron flux as such. These findings indicate that in UCMD myoblasts the threshold for pore opening is very close to the resting membrane potential, so that even a small depolarization causes permeability transition pore opening and precipitates ATP depletion.  相似文献   

6.
The present study was designed to characterize the mitochondrial dysfunction induced by catecholamines and to investigate whether curcumin, a natural antioxidant, induces cardioprotective effects against catecholamine-induced cardiotoxicity by preserving mitochondrial function. Because mitochondria play a central role in ischemia and oxidative stress, we hypothesized that mitochondrial dysfunction is involved in catecholamine toxicity and in the potential protective effects of curcumin. Male Wistar rats received subcutaneous injection of 150 mg·kg(-1)·day(-1) isoprenaline (ISO) for two consecutive days with or without pretreatment with 60 mg·kg(-1)·day(-1) curcumin. Twenty four hours after, cardiac tissues were examined for apoptosis and oxidative stress. Expression of proteins involved in mitochondrial biogenesis and function were measured by real-time RT-PCR. Isolated mitochondria and permeabilized cardiac fibers were used for swelling and mitochondrial function experiments, respectively. Mitochondrial morphology and permeability transition pore (mPTP) opening were assessed by fluorescence in isolated cardiomyocytes. ISO treatment induced cell damage, oxidative stress, and apoptosis that were prevented by curcumin. Moreover, mitochondria seem to play an important role in these effects as respiration and mitochondrial swelling were increased following ISO treatment, these effects being again prevented by curcumin. Importantly, curcumin completely prevented the ISO-induced increase in mPTP calcium susceptibility in isolated cardiomyocytes without affecting mitochondrial biogenesis and mitochondrial network dynamic. The results unravel the importance of mitochondrial dysfunction in isoprenaline-induced cardiotoxicity as well as a new cardioprotective effect of curcumin through prevention of mitochondrial damage and mPTP opening.  相似文献   

7.
Ca(2+)-induced mitochondrial depolarization was studied in single isolated rat brain and liver mitochondria. Digital imaging techniques and rhodamine 123 were used for mitochondrial membrane potential measurements. Low Ca(2+) concentrations (about 30--100 nM) initiated oscillations of the membrane potential followed by complete depolarization in brain mitochondria. In contrast, liver mitochondria were less sensitive to Ca(2+); 20 microm Ca(2+) was required to depolarize liver mitochondria. Ca(2+) did not initiate oscillatory depolarizations in liver mitochondria, where each individual mitochondrion depolarized abruptly and irreversibly. Adenine nucleotides dramatically reduced the oscillatory depolarization in brain mitochondria and delayed the onset of the depolarization in liver mitochondria. In both type of mitochondria, the stabilizing effect of adenine nucleotides completely abolished by an inhibition of adenine nucleotide translocator function with carboxyatractyloside, but was not sensitive to bongkrekic acid. Inhibitors of mitochondrial permeability transition cyclosporine A and bongkrekic acid also delayed Ca(2+)-depolarization. We hypothesize that the oscillatory depolarization in brain mitochondria is associated with the transient conformational change of the adenine nucleotide translocator from a specific transporter to a non-specific pore, whereas the non-oscillatory depolarization in liver mitochondria is caused by the irreversible opening of the pore.  相似文献   

8.
Propagation of the apoptotic signal by mitochondrial waves   总被引:16,自引:0,他引:16  
Pacher P  Hajnóczky G 《The EMBO journal》2001,20(15):4107-4121
Generation of mitochondrial signals is believed to be important in the commitment to apoptosis, but the mechanisms coordinating the output of individual mitochondria remain elusive. We show that in cardiac myotubes exposed to apoptotic agents, Ca2+ spikes initiate depolarization of mitochondria in discrete subcellular regions, and these mitochondria initiate slow waves of depolarization and Ca2+ release propagating through the cell. Traveling mitochondrial waves are prevented by Bcl-x(L), involve permeability transition pore (PTP) opening, and yield cytochrome c release, caspase activation and nuclear apoptosis. Mitochondrial Ca2+ uptake is critical for wave propagation, and mitochondria at the origin of waves take up Ca2+ particularly effectively, providing a mechanism that may underlie selection of the initiation sites. Thus, apoptotic agents transform the mitochondria into an excitable state by sensitizing PTP to Ca2+. Expansion of the local excitation by mitochondrial waves propagating through the whole cell can be especially important in activation of the apoptotic machinery in large cells.  相似文献   

9.
BMAP-28, a bovine antimicrobial peptide of the cathelicidin family, induces membrane permeabilization and death in human tumor cell lines and in activated, but not resting, human lymphocytes. In addition, we found that BMAP-28 causes depolarization of the inner mitochondrial membrane in single cells and in isolated mitochondria. The effect of the peptide was synergistic with that of Ca(2+) and inhibited by cyclosporine, suggesting that depolarization depends on opening of the mitochondrial permeability transition pore. The occurrence of a permeability transition was investigated on the basis of mitochondrial permeabilization to calcein and cytochrome c release. We show that BMAP-28 permeabilizes mitochondria to entrapped calcein in a cyclosporine-sensitive manner and that it releases cytochrome c in situ. Our results demonstrate that BMAP-28 is an inducer of the mitochondrial permeability transition pore and that its cytotoxic potential depends on its effects on mitochondrial permeability.  相似文献   

10.
Mitochondrial calcium plays a crucial role in mitochondrial metabolism, cell calcium handling, and cell death. However, some mechanisms concerning mitochondrial calcium regulation are still unknown, especially how mitochondrial calcium couples with cytosolic calcium. In this work, we constructed a novel mitochondrial calcium fluorescent indicator (mito-GCaMP2) by genetic manipulation. Mito-GCaMP2 was imported into mitochondria with high efficiency and the fluorescent signals co-localized with that of tetramethyl rhodamine methyl ester, a mitochondrial membrane potential indicator. The mitochondrial inhibitors specifically decreased the signals of mito-GCaMP2. The apparent K(d) of mito-GCaMP2 was 195.0 nmol/L at pH 8.0 in adult rat cardiomyocytes. Furthermore, we observed that mito-GCaMP2 preferred the alkaline pH surrounding of mitochondria. In HeLa cells, we found that mitochondrial calcium ([Ca(2+)](mito)) responded to the changes of cytosolic calcium ([Ca(2+)](cyto)) induced by histamine or thapasigargin. Moreover, external Ca(2+) (100 μmol/L) directly induced an increase of [Ca(2+)](mito) in permeabilized HeLa cells. However, in rat cardiomyocytes [Ca(2+)](mito) did not respond to cytosolic calcium transients stimulated by electric pacing or caffeine. In permeabilized cardiomyocytes, 600 nmol/L free Ca(2+) repeatedly increased the fluorescent signals of mito-GCaMP2, which excluded the possibility that mito-GCaMP2 lost its function in cardiomyocytes mitochondria. These results showed that the response of mitochondrial calcium is diverse in different cell lineages and suggested that mitochondria in cardiomyocytes may have a special defense mechanism to control calcium flux.  相似文献   

11.
Li JY  Wang JK  Zeng YM 《生理学报》2007,59(1):13-18
线粒体通透性转换(mitochondrial permeability transition,MPT)导致线粒体氧化应激性损伤。近年研究认为,位于线粒体外膜的外周苯二氮节受体(peripheral benzodiazepine receptor,PBR)参与了线粒体的重要生理功能。本研究在心肌细胞线粒体水平探讨激动PBR能否抑制Ca^2+诱发的MPT。分离Sprague—Dawley大鼠心肌细胞线粒体,将PBR激动剂Ro5-4864(50、100、200μmol/L)和线粒体孵育,利用150μmol/L Ca^2+诱发MPT,部分线粒体在与100μmol/L Ro5-4864孵育前5min加入MPT孔道开放剂苍术苷(atractyloside,ATR)。采用分光光度法观察线粒体膨胀情况:Westernblot检测线粒体细胞色素C(cytochrome C,CytoC)释放;利用荧光探针JC-1在激光共聚集显微镜下观察线粒体膜电位的变化。50、100、200μmol/L Ro5-4864均显著抑制Ca^2+诱发的520nm处线粒体吸光度的下降,而且抑制Ca^2+引起的线粒体CytoC释放和线粒体膜电位下降,但ATR可阻断R05—4864的上述作用。结果提示,PBR激动剂可抑制大鼠心肌MPT,保持线粒体CytoC含量和稳定线粒体膜电位,减轻线粒体损伤。PBR的激活可能成为减轻心肌细胞应激性损伤及心肌保护的新方法。  相似文献   

12.
We recently reported translocation and activation of Akt in cardiac mitochondria. This study was to determine whether activation of Akt in mitochondria could inhibit apoptosis of cardiac muscle cells. Insulin stimulation induced translocation of phosphorylated Akt to the mitochondria in primary cardiomyocytes. A mitochondria-targeted constitutively active Akt was overexpressed via adenoviral vector and inhibited efflux of cytochrome c and apoptosis-inducing factor from mitochondria to cytosol and partially prevented loss of mitochondria cross-membrane electrochemical gradient. Activation of caspase 3 was suppressed in the cardiomyocytes transduced with mitochondria-targeted active Akt, whereas a mitochondria-targeted dominant negative Akt enhanced activation of caspase 3. Terminal deoxynucleotidyl transferase dUTP-mediated nick-end labeling assay showed that mitochondrial activation of Akt significantly reduced the number of apoptotic cells. When the endogenous Akt was abolished by LY294002, the antiapoptotic actions of mitochondrial Akt remained effective. These experiments suggested that mitochondrial Akt suppressed apoptosis signaling independent of cytosolic Akt in cardiac muscle cells.  相似文献   

13.
The effect of regucalcin, which is a regulatory protein of Ca(2+) signaling, on Ca(2+)-ATPase activity in isolated rat renal cortex mitochondria was investigated. The presence of regucalcin (50, 100, and 250 nM) in the enzyme reaction mixture led to a significant increase in Ca(2+)-ATPase activity. Regucalcin significantly stimulated ATP-dependent (45)Ca(2+) uptake by the mitochondria. Ruthenium red (10(-6) M) or lanthunum chloride (10(-6) M), an inhibitor of mitochondrial Ca(2+) uptake, markedly inhibited regucalcin (100 nM)-increased mitochondrial Ca(2+)-ATPase activity and (45)Ca(2+) uptake. The effect of regucalcin (100 nM) in elevating Ca(2+)-ATPase activity was completely prevented by the presence of digitonin (10(-2)%), a solubilizing reagent of membranous lipids, vanadate, an inhibitor of phosphorylation of ATPase, or dithiothreitol (50 mM), a protecting reagent of the sulfhydryl (SH) group of the enzyme. The activating effect of regucalcin (100 nM) on Ca(2+)-ATPase activity was not further enhanced by calmodulin (0.30 microM) or dibutyryl cyclic AMP (10(-4) M), which could increase Ca(2+)-ATPase activity. Trifluoperazine (TFP; 50 microM), an antagonist of calmodulin, significantly decreased Ca(2+)-ATPase activity. The activating effect of regucalcin on the enzyme was also seen in the presence of TFP, indicating that regucalcin's effect is not involved in mitochondrial calmodulin. The present study demonstrates that regucalcin can stimulate Ca(2+)-pump activity in rat renal cortex mitochondria, and that the protein may act on an active site (SH group) related to phosphorylation of mitochondrial Ca(2+)-ATPase.  相似文献   

14.
Mitochondria and Ca(2+)in cell physiology and pathophysiology   总被引:9,自引:0,他引:9  
Duchen MR 《Cell calcium》2000,28(5-6):339-348
There is now a consensus that mitochondria take up and accumulate Ca(2+)during physiological [Ca(2+)](c)signalling. This contribution will consider some of the functional consequences of mitochondrial Ca(2+)uptake for cell physiology and pathophysiology. The ability to remove Ca(2+)from local cytosol enables mitochondria to regulate the [Ca(2+)] in microdomains close to IP3-sensitive Ca(2+)-release channels. The [Ca(2+)] sensitivity of these channels means that, by regulating local [Ca(2+)](c), mitochondrial Ca(2+)uptake modulates the rate and extent of propagation of [Ca(2+)](c)waves in a variety of cell types. The coincidence of mitochondrial Ca(2+)uptake with oxidative stress may open the mitochondrial permeability transition pore (mPTP). This is a catastrophic event for the cell that will initiate pathways to cell death either by necrotic or apoptotic pathways. A model is presented in which illumination of an intramitochondrial fluorophore is used to generate oxygen radical species within mitochondria. This causes mitochondrial Ca(2+)loading from SR and triggers mPTP opening. In cardiomyocytes, mPTP opening leads to ATP consumption by the mitochondrial ATPase and so results in ATP depletion, rigor and necrotic cell death. In central mammalian neurons exposed to glutamate, a cellular Ca(2+)overload coincident with NO production also causes loss of mitochondrial potential and cell death, but mPTP involvement has proven more difficult to demonstrate unequivocally.  相似文献   

15.
In the present study, we show that norbormide stimulates the opening of the permeability transition pore (PTP) in mitochondria from various organs of the rat but not of guinea pig and mouse. Norbormide does not affect the basic parameters that modulate the PTP activity since the proton electrochemical gradient, respiration, phosphorylation and Ca(2+) influx processes are only partially affected. On the other hand, norbormide induces rat-specific changes in the fluidity of the lipid interior of mitochondrial membranes, as revealed by fluorescence anisotropy of various reporter molecules. Such changes increase the PTP open probability through the internal Me(2+) regulatory site. The lack of PTP opening by norbormide is matched by a negligible perturbation of internal lipid domains in guinea pig and mouse, suggesting that the drug does not gain access to the matrix in the mitochondria from these species. Consistent with this interpretation, we demonstrate a preferential interaction of norbormide with the mitochondrial surface leading to alterations of the Me(2+) binding affinity for the external PTP regulatory site. Our findings indicate that norbormide affects Me(2+) binding to the regulatory sites of the PTP, and suggest that the drug could be taken up by a mitochondrial transport system unique to the rat. The characterization of the norbormide target may lead to a better understanding of the mechanisms underlying the mitochondrial PTP as well as to the identification of species-specific drugs that affect mitochondrial function.  相似文献   

16.
Post-ischemic interventions that activate phosphatidylinositol-3-OH kinase (PI3K)-Akt or ERK1/2 pro-survival kinases (the so-called "reperfusion injury signalling kinase (RISK) pathway") during the first few minutes of reperfusion protect against lethal reperfusion-induced injury. We have previously shown that insulin protects against reperfusion-induced injury via activation of the PI3K-Akt pathway. In addition, opening of the mitochondrial permeability transition pore (mPTP) at the time of reperfusion is a major determinant of lethal reperfusion-induced injury, and pharmacologically inhibiting it is cardioprotective. In this study, we examined the relationship between the pro-survival kinase pathways and mPTP opening. Specifically, we tested the hypothesis that activation of the pro-survival kinase pathway by insulin protects cardiomyocytes by reducing the probability of mPTP opening upon reperfusion. Laser illumination of the fluorophore, tetramethyl rhodamine methyl ester (TMRM), was used to induce oxidative stress in the preparation of adult rat ventricular cardiomyocytes. Maintained illumination ultimately induces mPTP opening, detected as a global mitochondrial depolarization, followed by ATP depletion and rigor contracture. Insulin significantly delayed mPTP opening by a factor of approximately 1.7-fold (P<0.001). The effect of insulin was prevented by Wortmannin and by LY-294002, inhibitors of the PI3K pathway, by SH-6, a selective inhibitor of Akt, and by L-NAME, an inhibitor of nitric oxide production. The expression of a dominant negative construct of Akt eliminated the effect of insulin in delaying mPTP opening in a cardiac cell line. Furthermore, the overexpression of constitutively active Akt was sufficient to maximally delay mPTP opening. These results indicate that activation of the PI3K-Akt pro-survival kinase pathway inhibits opening of the mPTP, and demonstrate an important link between the survival kinases and the mPTP.  相似文献   

17.
Insulin secretion in normal B-cells is pulsatile, a consequence of oscillations in the cell membrane potential (MP) and cytosolic calcium activity ([Ca(2+)](c)). We simultaneously monitored glucose-induced changes in [Ca(2+)](c) and in the mitochondrial membrane potential DeltaPsi, as a measure for ATP generation. Increasing the glucose concentration from 0.5 to 15 mM led to the well-known hyperpolarization of DeltaPsi and ATP-dependent lowering of [Ca(2+)](c). However, as soon as [Ca(2+)](c) rose due to the opening of voltage-dependent Ca(2+) channels, DeltaPsi depolarized and thereafter oscillations in [Ca(2+)](c) were parallel to oscillations in DeltaPsi. A depolarization or oscillations of DeltaPsi cannot be evoked by a substimulatory glucose concentration, but Ca(2+) influx provoked by 30 mM KCl was followed by a depolarization of DeltaPsi. The following feedback loop is suggested: Glucose metabolism via mitochondrial ATP production and closure of K(+)(ATP) channels induces an increase in [Ca(2+)](c). The rise in [Ca(2+)](c) in turn decreases ATP synthesis by depolarizing DeltaPsi, thus transiently terminating Ca(2+) influx.  相似文献   

18.
Mitochondrial permeability transition (MPT), which contributes substantially to the regulation of normal mitochondrial metabolism, also plays a crucial role in the initiation of cell death. It is known that MPT is regulated in a tissue-specific manner. The importance of MPT in the pancreatic beta-cell is heightened by the fact that mitochondrial bioenergetics serve as the main glucose-sensing regulator and energy source for insulin secretion. In the present study, using MIN6 and INS-1 beta-cells, we revealed that both Ca(2+)-phosphate- and oxidant-induced MPT is remarkably different from other tissues. Ca(2+)-phosphate-induced transition is accompanied by a decline in mitochondrial reactive oxygen species production related to a significant potential dependence of reactive oxygen species formation in beta-cell mitochondria. Hydroperoxides, which are indirect MPT co-inducers active in liver and heart mitochondria, are inefficient in beta-cell mitochondria, due to the low mitochondrial ability to metabolize them. Direct cross-linking of mitochondrial thiols in pancreatic beta-cells induces the opening of a low conductance ion permeability of the mitochondrial membrane instead of the full scale MPT opening typical for liver mitochondria. Low conductance MPT is independent of both endogenous and exogenous Ca(2+), suggesting a novel type of nonclassical MPT in beta-cells. It results in the conversion of electrical transmembrane potential into DeltapH instead of a decrease in total protonmotive force, thus mitochondrial respiration remains in a controlled state. Both Ca(2+)- and oxidant-induced MPTs are phosphate-dependent and, through the "phosphate flush" (associated with stimulation of insulin secretion), are expected to participate in the regulation in beta-cell glucose-sensing and secretory activity.  相似文献   

19.
The existence of mitochondrial nitric oxide (NO) synthase (mtNOS) has been controversial since it was first reported in 1995. We have addressed this issue by making direct microsensor measurements of NO production in the mitochondria isolated from mouse hearts. Mitochondrial NO production was stimulated by Ca2+ and inhibited by blocking electrogenic Ca2+ uptake or by using NOS antagonists. Cardiac mtNOS was identified as the neuronal isoform by the absence of NO production in the mitochondria of mice lacking the neuronal but not the endothelial or inducible isoforms. In cardiomyocytes from dystrophin-deficient (mdx) mice, elevated intracellular Ca2+, increased mitochondrial NO production, slower oxidative phosphorylation, and decreased ATP production were detected. Inhibition of mtNOS increased contractility in mdx but not in wild-type cardiomyocytes, indicating that mtNOS may protect the cells from overcontracting. mtNOS was also implicated in radiation-induced cell damage. In irradiated rat/mouse urinary bladders, we have evidence that mitochondrially produced NO damages the urothelial "umbrella" cells that line the bladder lumen. This damage disrupts the permeability barrier thereby creating the potential to develop radiation cystitis. RT-PCR and Southern blot analyses indicate that mtNOS is restricted to the umbrella cells, which scanning electron micrographs show are selectively damaged by radiation. Simultaneous microsensor measurements demonstrate that radiation increases NO and peroxynitrite (ONOO-) production in these cells, which can be prevented by transfection with manganese superoxide dismutase (MnSOD) or instillation of NOS antagonists during irradiation or irradiation of bladders devoid of mtNOS. These studies demonstrate that mtNOS is in the cardiomyocytes and urothelial cells, that it is derived from the neuronal isoform, and that it can be either protective or detrimental.  相似文献   

20.
Uncontrolled release of Ca(2+) from the sarcoplasmic reticulum (SR) contributes to the reperfusion-induced cardiomyocyte injury, e.g. hypercontracture and necrosis. To find out the underlying cellular mechanisms of this phenomenon, we investigated whether the opening of mitochondrial permeability transition pores (MPTP), resulting in ATP depletion and reactive oxygen species (ROS) formation, may be involved. For this purpose, isolated cardiac myocytes from adult rats were subjected to simulated ischemia and reperfusion. MPTP opening was detected by calcein release and by monitoring the ΔΨ(m). Fura-2 was used to monitor cytosolic [Ca(2+)](i) or mitochondrial calcium [Ca(2+)](m), after quenching the cytosolic compartment with MnCl(2). Mitochondrial ROS [ROS](m) production was detected with MitoSOX Red and mag-fura-2 was used to monitor Mg(2+) concentration, which reflects changes in cellular ATP. Necrosis was determined by propidium iodide staining. Reperfusion led to a calcein release from mitochondria, ΔΨ(m) collapse and disturbance of ATP recovery. Simultaneously, Ca(2+) oscillations occurred, [Ca(2+)](m) and [ROS](m) increased, cells developed hypercontracture and underwent necrosis. Inhibition of the SR-driven Ca(2+) cycling with thapsigargine or ryanodine prevented mitochondrial dysfunction, ROS formation and MPTP opening. Suppression of the mitochondrial Ca(2+) uptake (Ru360) or MPTP (cyclosporine A) significantly attenuated Ca(2+) cycling, hypercontracture and necrosis. ROS scavengers (2-mercaptopropionyl glycine or N-acetylcysteine) had no effect on these parameters, but reduced [ROS](m). In conclusion, MPTP opening occurs early during reperfusion and is due to the Ca(2+) oscillations originating primarily from the SR and supported by MPTP. The interplay between Ca(2+) cycling and MPTP promotes the reperfusion-induced cardiomyocyte hypercontracture and necrosis. Mitochondrial ROS formation is a result rather than a cause of MPTP opening.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号