首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of adrenalectomy, metyrapone and dexamethasone treatments on gonadotropin response to chronic stress were studied. Adult male rats were submitted to chronic restraint (6 h daily over 4 days). At the end of the last stress period animals were decapitated and trunk blood was collected. Chronic restraint evoked a decrease in plasma LH and to a lesser degree in plasma FSH in the intact rat. Adrenalectomy did not prevent the LH reduction induced by stress and magnified the inhibitory effect of restraint on FSH secretion. Administration of the corticosterone synthesis blocker metyrapone increased the inhibitory effect of restraint on plasma LH and to a lesser degree on plasma FSH. Dexamethasone treatment did not significantly modify plasma gonadotropin levels in adrenalectomized unstressed rats, but this treatment totally blocked plasma LH and FSH reduction after chronic restraint. These results indicate that plasma LH and FSH reduction during chronic restraint is not due to the increase in glucocorticoid secretion, but seems to be mediated by the increase of the hypothalamic-pituitary components of the adrenal axis.  相似文献   

2.
We have examined the effects of cysteamine on the hypothalamic-pituitary-gonadal axis of the adult male rat. A single subcutaneous injection of cysteamine (300 mg/kg) reduces significantly (p less than or equal to 0.05 serum concentrations of LH, FSH and T. Cysteamine blocked LH secretion induced by castration and administration of naloxone and LHRH. Neither acute nor chronic treatment (7 days) altered the hypothalamic LHRH content. These results suggest that cysteamine acts to reduce pituitary responsiveness to LHRH, resulting in lower mean serum gonadotropin and testosterone concentrations. It is possible, however, that cysteamine acts also at the hypothalamus to reduce LHRH secretion and/or at the testes to reduce testosterone release.  相似文献   

3.
An experimental model of chronic alcohol abuse is developed, in order to study the hypothalamic-pituitary testicular axis in the rat. For this purpose basal plasma prolactin, gonadotropins, testosterone and estradiol have been measured. Also these hormones were studied after LHRH or hCG stimulation. This experimental model allows us to study the role of alcohol in hypogonadism induction. Chronic alcohol administration resulted in an inconstant decrease in plasma testosterone levels and very diminished response of it to hCG. Along with these modifications, there was an increase in basal plasma estrogen levels, as has been shown in the human. The decrease in plasma LH levels in alcoholic rats together with a normal response to LHRH suggest a toxic role of alcohol at higher levels than the pituitary. The existence of a hyperprolactinemic state under chronic alcohol ingestion is confirmed. The decrease in plasma prolactin levels after LHRH administration suggests that prolactin and gonadotropin secretion are very closely related.  相似文献   

4.
The effect of T3 upon gonadotropin secretion was examined in ovariectomized (Ovarx), Ovarx thyro-parathyroidectomized (Ovarx-TxPx), or proestrus rats. T3 (50 microgram/-100 gBW), administered late diestrus-2, abolished the LH surge during the critical period of proestrus in 7 out of 9 rats; the rise in sera FSH was not inhibited, although a distinct peak was absent. Administration of 5 or 50 microgram T3/100gBW 2.5h before the critical period resulted in either a suppression or an alteration of the timing of LH release. In the 5 microgram T3/100gBW treated animals the sera FSH peak was delayed in timing, whereas in the 50 microgram T3/100gBW treated rats sera FSH demonstrated two separate peaks during the critical period. Treatment with various dosages of T3 of Ovarx-TxPx rats resulted in significant suppressions (p less than 0.05) of sera LH and FSH. Despite depressed concentrations of sera LH and FSH in T3-treated rats pituitary sensitivity to a challenge of 3LHRH was enhanced. Hence, the pituitary was not the site of T3 inhibition of gonadotropin secretion. Additionally, T3 did not modify pituitary LH content or hypothalamic LH3 releasing activity (LHRH). Since T3 did not inhibit gonadotropin secretion at the pituitary level, a neural site of T3 action is suggested.  相似文献   

5.
Neonatally androgenized and intact adult male Wistar rats received daily, during 1 week, either testosterone propionate or sesame oil injections in periodic or constant light. Serum and pituitary gonadotropins and hypothalamic LHRH were measured. In periodic light, neonatal androgenization did not change the serum concentration or pituitary contents of gonadotropins, or the hypothalamic content of LHRH. Testosterone injections decreased serum concentration and pituitary content of gonadotropin of intact rats but failed to decrease the pituitary gonadotropin content of neonatally androgenized rats. In constant light, serum FSH was decreased in neonatally androgenized rats. Testosterone injections decreased both serum LH and FSH concentrations of intact rats but only serum LH of androgenized rats. Pituitary gonadotropin and hypothalamic LHRH contents remained unchanged. We conclude that neonatal androgenization renders the male rat hypothalamo-pituitary axis more resistant to changes of testosterone concentration in adulthood. Constant light did not sensitize the neonatally androgenized rats to testosterone, but on the contrary, testosterone injections were less effective in constant than in periodical light.  相似文献   

6.
The effect of 5 alpha-dihydroprogesterone (5 alpha-DHP) on gonadotropin release was examined in the immature acutely ovariectomized (OVX) rat primed with a low dose of estradiol (E2). Treatment with various doses of 5 alpha-DHP given in combination with E2 increased levels of follicle-stimulating hormone (FSH) but had no effect on serum luteinizing hormone (LH). A single injection of a maximally stimulating dose of 5 alpha-DHP (0.4 mg/kg) stimulated increases in serum FSH at 1200 h and, 6 h later, at 1800 h. Pituitary LH and FSH content was dramatically enhanced by 1600 h and levels remained elevated at 1800 h. The administration of pentobarbital at 1200 h, versus 1400 h or 1600 h, prevented the increase in basal serum FSH levels at 1800 h, implying that the release of hypothalamic LH releasing hormone (LHRH) is modulated by 5 alpha-DHP. In addition, changes in pituitary sensitivity to LHRH as a result of 5 alpha-DHP were measured and a significant increase in the magnitude of FSH release was observed at 1200 h and 1800 h. Although the LH response to LHRH in 5 alpha-DHP-treated rats was not different from controls, the duration of LH release was lengthened. These results suggest that 5 alpha-DHP may stimulate FSH release by a direct action at the pituitary level. Together, these observations support the theory that 5 alpha-DHP mediates the facilitative effect of progesterone on FSH secretion and further suggests an action of 5 alpha-DHP in this phenomenon at both pituitary and hypothalamic sites.  相似文献   

7.
In an attempt to elucidate the mechanism of suppressive action of glucocorticoids on the hypothalamo-pituitary-ovarian axis, we studied the effects of short-term high dose dexamethasone administration of the LH and FSH responses to LHRH and to clomiphene in healthy women with normal menstrual cycles. Seven women, 21--35 years of age, received 100 micrograms of LHRH i.v. on day 6 of two consecutive menstrual cycles, once with and once without pre-treatment with dexamethasone 2 mg orally every 6 hrs. on days 2 through 5 of the menstrual cycle. Seven other women (ages 21--35 years) received clomiphene citrate 100 mg on days 2 through 5 of their menstrual cycle, once with and once without simultaneous administration of dexamethasone 2 mg orally every 6 h. The administration of dexamethasone suppressed baseline serum levels of LH and FSH and blunted LH and FSH response to both LHRH and clomiphene. The results indicate that short-term administration of pharmacological doses of glucocorticoids suppress the secretion of LH and FSH by a direct effect on the anterior pituitary and possibly by an effect at the hypothalamic level with inhibition of the release of LHRH.  相似文献   

8.
The change in serum gonadotrophin concentration in response to synthetic Luteinizing Hormone Releasing Hormone (LHRH - 400 ng i.v.) was investigated under barbiturate anaesthesia in adult male rats either chronically castrated, rendered aspermatogenic by the administration of α-chlorohydrin 12–16 weeks previously (to remove inhibin), or treated with vehicle. A single injection of LHRH increased serum LH and FSH concentrations similarly in both intact and aspermatogenic rats. In castrated rats the amount of LH released was much greater and the FSH secretion sustained. A second injection produced a similar increase although a second peak of FSH could not be detected in castrated rats as the FSH level was still elevated. The increase in LH levels was two to three times larger in response to the second injection of LHRH than to the first in all groups. The results do not support the hypothesis that the enhanced gonadotropin response to castration in the aspermatogenic rat is due to increased pituitary sensitivity to LHRH.  相似文献   

9.
Most current evidence indicates that opiates act via the hypothalamus to influence pituitary function. There are no detailed studies concerning pituitary site of action. Direct action of opioids on gonadotropin secretion was studied using enzymatically dispersed rat pituitary cells maintained in a monolayer culture. A time course study demonstrated that pretreatment with beta h-endorphin (beta h-End) (10(-7) M) initiated an inhibitory effect on LH release at 24 h, and was more evident at 48 h. A dose dependent decrease in LH release by beta h-End in concentrations of 10(-9) M to 10(-7) M was shown, whereas FSH was unchanged. Equimolar concentrations (10(-7)M ) of methionine enkephaline (Met-Enk) and D-ala2-met-enkephalinamide (DALA) produced a significant decrease in LH. Naloxone (NAL) (10(-5)) enhanced the release of both LH and FSH, and also blocked the inhibitory effect of beta h-End on LH release. These results indicated that opioid peptides act directly on anterior pituitary cells, decreasing the release of LH, but not of FSH. NAL also had a direct effect increasing the release of LH and FSH, and blocking the inhibitory action of beta h-End.  相似文献   

10.
R L Matteri  G P Moberg 《Peptides》1985,6(5):957-963
Although a hypothalamic site of action has been firmly established for opiate-mediated gonadotropin regulation, there have been several reports which indicate the possibility of a direct influence on the pituitary gland. The objective of this study was to further investigate this possibility in an in vitro pituitary perifusion system utilizing ovine tissue. Treatment with gamma-endorphin (GE) or human beta-endorphin (hBE) resulted in elevated basal LH release (p less than 0.05), followed by an inhibition in the response to a subsequent GnRH challenge (p less than 0.05). The stimulatory effect of hBE was found to be dose-responsive (p less than 0.01). PRL secretion was not similarly stimulated. Ovine beta-endorphin (oBE) had no effect on LH secretion, even though it differs from hBE by only 2 amino acids and contains the active GE sequence. Met-enkephalin also did not influence gonadotropin secretion. Naloxone pretreatment did not reverse the effects of hBE on gonadotropin release. It was found, however, that [D-pGlu1, D-Phe2, D-Trp3,6]-GnRH, a specific GnRH receptor antagonist, did reduce hBE-induced LH and FSH release (p less than 0.05). Naloxone pretreatment alone suppressed the response to GnRH (p less than 0.05). These data indicate that certain opioid peptides can influence ovine gonadotropin secretion in vitro by activating the GnRH receptor. Furthermore, a facilitory role is suggested for endogenous opiates in the local regulation of pituitary gonadotropin secretion.  相似文献   

11.
In vivo, Enkephalins, stimulate PRL, inhibit LH and are inactive on FSH. However, in monolayer pituitary cell cultures, PRL, LH and FSH secretions and synthesis are not modified by Met-Enk. (5 microgram/ml) or Leu-Enk. (5 and 10 microgram/ml). But the simultaneous presence of LHRH and Enk. induces an increase in LH secretion and synthesis without modifying FSH and PRL. In conclusion 1) Enk do not act by themself at the pituitary level but 2) they are able to modify the responses induced by hypothalamic hormones.  相似文献   

12.
It is well established that testosterone (T) feeds back on the brain and the anterior pituitary to inhibit gonadotropin secretion. However, the precise mechanism by which T exerts its central inhibitory action is poorly understood. We hypothesized that central noradrenergic activity decreases hypothalamic sensitivity to T negative feedback. To test this hypothesis, we compared the dose-response relationships between T and luteinizing hormone (LH) and between T and follicle-stimulating hormone (FSH) in adult male rats chronically depleted of hypothalamic norepinephrine (NE) to the dose-response curves exhibited by control animals. Depletion of hypothalamic NE was achieved by two independent methods: 1) by bilateral transection of the ascending noradrenergic system at the level of the mesencephalon, and 2) by intracerebroventricular infusion of the neurotoxin, 6-hydroxydopamine. After allowing 2-3 weeks for recovery from this initial surgery, all animals were castrated, and 3 weeks later were outfitted with subcutaneous T-containing or empty (sham) implants for a period of 48 hours. We observed that despite a profound chronic reduction in hypothalamic noradrenergic activity, the dose-response relationship between plasma T and the gonadotropins remained unaltered. These data demonstrate that normal amounts of hypothalamic noradrenergic activity are not essential for T to exert its negative feedback effect on gonadotropin secretion. Furthermore, they suggest that chronic removal of hypothalamic NE does not alter gonadotropin sensitivity to T negative feedback.  相似文献   

13.
Pituitary response to exogenous LHRH in superovulated women   总被引:8,自引:0,他引:8  
The response of the pituitary to exogenous LHRH was investigated in 9 normally ovulating women during the late follicular phase of a spontaneous (control) cycle, a cycle during treatment with clomiphene and a cycle during treatment with 'pure' FSH. During clomiphene treatment, basal FSH concentrations increased significantly up to Day 6 of the cycle and then decreased progressively while basal LH values showed a continuous rise. During treatment with FSH, basal LH concentrations decreased significantly. The response of both FSH and LH to LHRH showed a significant and quantitatively similar decrease during clomiphene or FSH administration as compared to the spontaneous cycles. It is suggested that basal secretion of FSH and LH is regulated by two separate mechanisms, and that an ovarian inhibitory factor(s) attenuates the response of both FSH and LH to exogenous LHRH and possibly the endogenous LH surge in superovulated cycles.  相似文献   

14.
We report that the two classes of regulatory neuropeptides, neuropeptide Y (NPY) and endogenous opioid peptides (EOP), modulate luteinizing hormone (LH) release in diverse fashion in gonad-intact rats. Each neuropeptide acts at two loci, the hypothalamus and pituitary, to excite (NPY) or inhibit (EOP) LH release. At the hypothalamic level, NPY stimulates luteinizing hormone releasing hormone (LHRH) release, a response mediated by alpha 2-adrenoreceptors and amplified in the presence of adrenergic agonists. At the pituitary level, NPY acts in concert with LHRH to amplify the LH response. In contrast, EOP inhibit LHRH release by decreasing the supply of excitatory adrenergic signals in the vicinity of LHRH neurons in the preoptic-tuberal pathway, and at the pituitary level, they decrease LH release in response to LHRH. Further, the gonadal steroidal milieu facilitates NPY neurosecretion and postsynaptic expression of NPY in concert with adrenergic system; a similar clear-cut facilitatory effect of gonadal steroids on EOP secretion is not yet obvious. Our additional studies imply that the EOP system has the potential to increase sensitivity towards gonadal steroids and that to induce the preovulatory LH surge the neural clock may decrease the inhibitory EOP tone prior to the critical period on proestrus. This antecedent neural event allows the excitatory adrenergic and NPY signals to evoke LHRH secretion at a higher frequency approximating that seen in ovariectomized rats. Further studies are under way to delineate the steroid-induced subcellular events that integrate the action of these regulatory peptides in the control of the episodic LHRH secretion pattern which sustains basal and cyclic gonadotropin release in the rat.  相似文献   

15.
We have reported that iv administration of conjugated estrogens results in no significant change in the plasma LH-RH level during the negative feedback phase of LH, suggesting that estrogen does not suppress LH by decreasing hypothalamic LH-RH. To determine the site of estrogen action during the negative feedback phase, we studied the pituitary response to a small amount of LH-RH after estrogen administration in normal cyclic women in the mid-follicular phase. The pituitary responses to an iv bolus of 2.5 micrograms of synthetic LH-RH were evaluated by measuring serum LH and FSH 2 h before and 8 h after administration of 20 mg of conjugated estrogens (Premarin). The mean levels of serum LH and FSH were significantly (p less than 0.05) decreased 8 h after the injection. The peak responses of LH and FSH to LH-RH were also significantly (p less than 0.05) reduced after Premarin administration. These findings suggest that the negative feedback effect of estrogen on gonadotropin secretion is caused by its direct suppression on the pituitary response to LH-RH.  相似文献   

16.
Several members of the secretin family of hormones have been demonstrated to alter anterior pituitary hormone secretion. Here we report the action of gastric inhibitory polypeptide (GIP) on gonadotropin and somatotropin release. Intraventricular injection of 1 microgram (0.2 nmole) GIP (2.5 microliters) produced a significant decrease in plasma FSH at 30 (p less than 0.02) and 60 min after its injection (p less than 0.01). The FSH-lowering effect of a higher dose of 5 micrograms (1 nmole) of GIP was already developed at 15 min (p less than 0.01) and was prolonged until the end of the experiment (60 min, p less than 0.05). No change in plasma LH was detected at any time during the experimental period. If 5 micrograms of estradiol-benzoate were given SC 48 hr prior to experiment, the initial values of FSH and LH were markedly decreased. In these animals GIP failed to influence plasma FSH and LH. When dispersed anterior pituitary cells from OVX rats were cultured overnight and incubated in vitro with GIP, the peptide was found to induce both FSH and LH release. Highly significant release occurred with the lowest dose tested of 10(-7) M and there was a dose-response effect for both hormones. The slope of the dose-response curve was similar for both FSH and LH release. GIP was less potent than LHRH which produced a greater stimulation of both FSH and LH release at a dose of 10(-9) M than did 10(-7) M GIP. The two peptides had an additive effect on the release of both FSH and LH.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
To study the role of androgens in the control of gonadotropin and prolactin secretion in ther ewe, we have characterized androgen receptors in pituitary cytosol, and investigated the effect of androgens on pituitary hormone release in vivo and in vitro. High affinity, low capacity receptors, with an affinity for methyltrienolone (R1881) greater than 5 alpha-dihydrotestosterone (5 alpha-DHT) greater than testosterone (T) much greater than androstenedione (A4), estradiol-17 beta (E2) and progesterone (P), were identified in pituitary cytosol. Addition of 1 nM 5 alpha-DHT, but not A4, inhibited luteinizing hormone (LH) release from pituitary cells in vitro, induced by 10(10) to 10(-7) M luteinizing hormone releasing hormone (LHRH). The release of follicle-stimulating hormone (FSH) with 10(-9) M LHRH was inhibited when cells were incubated with 1 nM 5 alpha-DHT. 5 alpha-DHT had no effect when higher or lower doses of LHRH were used. In ovariectomized ewes, neither an i.v. injection of 1 mg, nor intracarotid injections of up to 1 mg, 5 alpha-DHT affected plasma LH, FSH or prolactin levels, despite dose-related increases in plasma 5 alpha-DHT levels. Daily or twice daily i.m. injections of 5 mg 5 alpha-DHT in oil did not affect LH or FSH levels, but daily injections of 20 mg significantly reduced plasma LH levels within 4 days and plasma FSH levels within 6 days. Thus, despite the presence of androgen receptors in the ewe pituitary, we conclude that androgens per se are of minimal importance in the regulation of pituitary LH, FSH and prolactin secretion in the ewe. The low binding affinity of A4 and the lack of its effect on hormone secretion in vitro suggests that A4 may act as an estrogen precursor rather than an androgenic hormone. The function of the pituitary androgen receptor remains to be established.  相似文献   

18.
The feedback effects of dihydrotestosterone (DHT) on gonadotropin secretion in rams were investigated using DHT-implanted castrate rams (wethers) infused with intermittent pulsatile luteinizing hormone-releasing hormone (LHRH) for 14 days. Castration, as anticipated, reduced both serum testosterone and DHT but elevated serum LH and follicle-stimulating hormone (FSH). Dihydrotestosterone implants raised serum DHT in wethers to intact ram levels and blocked the LH and FSH response to castration. The secretory profile of these individuals failed to show an endogenous LH pulse during any of the scheduled blood sampling periods, but a small LH pulse was observed following a 5-ng/kg LHRH challenge injection. Dihydrotestosterone-implanted wethers given repeated LHRH injections beginning at the time of castration increased serum FSH and yielded LH pulses that were temporally coupled to exogenous LHRH administration. While the frequency of these secretory episodes was comparable to that observed for castrates, amplitudes of the induced LH pulses were blunted relative to those observed for similarly infused, testosterone-implanted castrates. Dihydrotestosterone was also shown to inhibit LH and FSH secretion and serum testosterone concentrations in intact rams. In summary, it appears that DHT may normally participate in feedback regulation of LH and FSH secretion in rams. These data suggest androgen feedback is regulated by deceleration of the hypothalamic LHRH pulse generator and direct actions at the level of the adenohypophysis.  相似文献   

19.
K Kato  M R Sairam 《Life sciences》1983,32(3):263-270
The effect of luteinizing hormone releasing hormone (LHRH) and its analogs on the release of FSH and LH by 20 day old whole mouse pituitary incubated in vitro for 3-4 hrs was investigated. Three agonistic analogs (AY 25650, 25205 and Buserelin) all of which are reported to be superactive in vivo showed approximately the same potency in this in vitro test system. Preincubation of the pituitaries for 1 h with the antagonistic analogs [Ac Dp Cl Phe1,2, D Trp3, D Phe6, D Ala10] LHRH and [Ac Dp Cl Phe1,2, D Trp3, D Arg6, D Ala10] LHRH inhibited the secretion of LH and FSH induced by 2.5 x 10(-9)M LHRH. The inhibitory response was dose dependent. The continued presence of the antagonists was not required for effective suppression of the LHRH effect. Experiments designed to find out the minimum time required for eliciting suppression of LHRH revealed that preincubation of the pituitary with the second antagonist for 5 mins followed by removal was adequate to produce effective inhibition of gonadotropin release. At lower doses of the antagonist, LH release was more effectively inhibited than FSH release. The results suggest that antagonistic analogs can effectively bind to LHRH receptors in the whole pituitary incubation preventing the subsequent action of LHRH. With the present incubation system assessment of bioactive LH and FSH release is possible within 24 hrs.  相似文献   

20.
In order to define both level and severity of defect in patients with idiopathic multiple pituitary hormone deficiencies (MPHD) and to find out which patient might benefit from pulsatile LHRH substitution therapy, the effect of short-term pulsatile LHRH infusion in 6 affected male adolescents was studied. Controls were 9 boys with constitutional delay of puberty (CD). During a spontaneous nocturnal plasma profile LH and FSH levels were prepubertal with little evidence of pulsatile secretory LH activity in all MPHD patients. During short-term pulsatile LHRH stimulation (36 h), however, all showed a significant rise in mean LH and FSH levels (p less than 0.0001). Linear regression analysis revealed significant continuous increases of FSH (p less than 0.001) in all patients and of LH (p less than 0.01) in all but one patient. These changes were not accompanied by an increase of testosterone, androstenedione and DHAS levels. Since all MPHD patients showed steadily increasing gonadotropin levels if stimulated in a pulsatile manner, we conclude that the defect might only in part be located at the pituitary level. Long-term pulsatile substitution therapy with LHRH is likely to be successful in these patients as has been demonstrated in patients with known hypothalamic defect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号