首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The actions of insulin, hydrocortisone, prolactin and growth hormone on the synthesis of macromolecules in MCF-7 cells was determined in a serum-free defined medium. The inclusion of the polyamine spermidine in the medium was shown to enhance the insulin stimulation of the rate of [3H]uridine incorporation into RNA in a manner similar to that demonstrated for hydrocortisone. Spermidine, in addition to insulin and hydrocortisone, was also essential for prolactin to manifest a stimulation of the rate of [3H]uridine incorporation; this effect of spermidine was optimal with spermidine concentrations between 1 and 5 mM. Prolactin also stimulated the rate of [3H]leucine incorporation into total cellular protein and into an isoelectrically precipitable (pH 4.6) phosphoprotein fraction. The actions of prolactin on total protein and phosphoprotein synthesis were only expressed if spermidine, in addition to insulin and hydrocortisone, was contained in the culture medium. All of the prolactin responses were observed employing physiological concentrations of prolactin. Specificity of the prolactin responses was established by demonstrating that porcine growth hormone had no effects on RNA or phosphoprotein synthesis in the MCF-7 cells.  相似文献   

2.
Parameters are described for reproducible S phase synchrony of Chinese hamster ovary cells growing in monolayer, adapting a method described by Tobey & Crissman [1] for CHO cells growing in suspension culture. Cells are collected at the G1/S boundary in hydroxyurea after reversal of an early G1 block induced by isoleucine deprivation. The entire population enters the S period within 60 min after removal of hydroxyurea and proceeds through the S period with minimal decay of synchrony, as evidenced by autoradiographic and rate studies on [3H]TdR uptake. In addition, a method is described for obtaining cells synchronized during two successive S periods. The presence of hydroxyurea during G1 does not measurably affect the rate of uptake of [3H]uridine or [3H]leucine into TCA-insoluble material; however, cultures released from the hydroxyurea block at 10 h incorporate slightly more [3H]uridine (but not [3H]leucine) in the next 6 h than cultures maintained in hydroxyurea over this interval. Delaying entry into S with hydroxyurea for as long as 15 h does not significantly change the initial rate or duration of DNA synthesis upon removal of hydroxyurea, arguing against the build-up of substances responsible for initiation of replicons. Furthermore, if DNA synthesis is delayed with hydroxyurea in one cell cycle, a constant minimal interval of 15 h elapses before the population enters into the next S phase, suggesting that the timing of the S period is coupled to the timing of the previous S.  相似文献   

3.
Prolactin and phorbol myristate acetate (TPA) stimulate the rate of [3H]uridine incorporation in cultured mouse mammary gland explants in a similar fashion. Both the time-courses and magnitude of responses were the same; in addition, maximum stimulatory concentrations of TPA and prolactin elicited a nonadditive response when tested together. Nordihydroguaiaretic acid (NDGA), a lipoxygenase inhibitor, abolished both the TPA and prolactin effects on [3H]uridine incorporation. TPA also effected an enhanced rate of [3H]leucine incorporation into a casein-rich phosphoprotein fraction, but only if the explants were also cultured with spermidine.  相似文献   

4.
Mitochondrial protein synthesis was measured in line CHO cells after phases of the cell cycle were synchronized by isoleucine deprivation or mitotic selection. Maximum incorporation of [3H] leucine into mitochondrial polypeptides occurred within 2 hours after isoleucine was added to initiate G1 traverse. In cells synchronized in G1 by mitotic selection, the rate of mitochondrial protein synthesis was fairly constant throughout the cell cycle. SDS-polyacrylamide gel electrophoretic profiles of labeled mitochondrial polypeptides were similar in cells synchronized by either isoleucine deprivation or mitotic selection. Obvious changes in the distribution of polypeptides were not detected during various phases of the cell cycle. The increased rate of incorporation of [3H] leucine into mitochondrial polypeptides after reversal of G1-arrest may indicate that mitochondrial protein synthesis and possibly mitochondrial biogenesis are synchronized in CHO cells deprived of isoleucine.  相似文献   

5.
The synthesis of phospholipids and glycolipids during the cell mitotic cycle of an established hamster line, NIL, has been studied. Cells were synchronized with excess thymidine and mitotically harvested by shaking. Cells were radioactively labeled for 4 h with palmitate, glucosamine, or galactose. Lipids were analyzed by thin-layer chromatography. As cells progressed through the mitotic cycle, incorporation into phospholipids increased but the fraction represented by each remained constant. Similarly, ceramide monohexoside, dihexoside, and hematoside were labeled equally in all phases. Ceramide trihexoside and tetrahexoside were labeled only during G1 and S. Ceramide pentahexoside (the Forssman antigen) shows density-dependent synthesis, accumulation, and reactivity. Ceramide pentahexoside was labeled during all phases of the mitotic cycle but the rate of incorporation decreased in S and G2. The total amount of lipid assayed immunologically in cell extracts gradually increased. Exposure of the Forssman antigen in untreated or trypsin-treated cells was studied using binding of chemically labeled antiForssman antiserum. The amount of antigen detected in trypsinized cells increased during G1 and early S but then remained constant. Mitotic cells exposed all detectable antigen. As cells progressed through the mitotic cycle, a large fraction of the Forssman antigen became cryptic.  相似文献   

6.
The variation of DNA repair activity during the cell cycle was studied by analysing the UV-stimulated DNA synthesis in cells synchronized in mitosis. This activity was detected both by autoradiography and by directly measuring the incorporation of tritiated thymidine in cells irradiated and incubated in the presence of hydroxyurea. Cells in all phases were found to be able to perform repair. However the activity appeared to be considerably lower in mitotic cells than in cell in other phases. Increasing values of repair capacity were observed in G1 cells, in mixed G2, S and M cells and in asynchronous cells. The relationship between these findings and data on survival rates in the same synchronized cells is discussed.  相似文献   

7.
Gossypol, a drug which has been shown to be an inhibitor of kinase C activity in mouse mammary tissues, is shown to abolish several of the actions of prolactin in cultured mouse mammary gland explants. The prolactin effects that are abolished include its stimulatory effects on ornithine decarboxylase activity, the rate of [3H]uridine incorporation into RNA, the rate of [3H]leucine incorporation into a casein-rich phosphoprotein fraction, and the rate of [14C]acetate incorporation into lipids. Since the inhibitory concentrations of gossypol employed in these studies correspond well with the gossypol concentrations required to inhibit kinase C activity, we conclude that ongoing kinase C activity is essential for prolactin to express its differentiative actions in mammary tissues.  相似文献   

8.
Selected cell synchrony techniques, as applied to asynchronous populations of Chinese hamster ovary (CHO) cells, have been compared. Aliquots from the same culture of exponentially growing cells were synchronized using mitotic selection, mitotic selection and hydroxyurea block, centrifugal elutriation, or an EPICS V cell sorter. Sorting of cells was achieved after staining cells with Hoechst 33258. After synchronization by the various methods the relative distribution of cells in G1, S, or G2 + M phases of the cell cycle was determined by flow cytometry. Fractions of synchronized cells obtained from each method were replated and allowed to progress through a second cell cycle. Mitotic selection gave rise to relatively pure and unperturbed early G1 phase cells. While cell synchrony rapidly dispersed with time, cells progressed through the cell cycle in 12 hr. Sorting with the EPICS V on the modal G1 peak yielded a relatively pure but heterogeneous G1 population (i.e. early to late G1). Again, synchrony dispersed with time, but cell-cycle progression required 14 hr. With centrifugal elutriation, several different cell populations synchronized throughout the cell cycle could be rapidly obtained with a purity comparable to mitotic selection and cell sorting. It was concluded that, either alone or in combination with blocking agents such as hydroxyurea, elutriation and mitotic selection were both excellent methods for synchronizing CHO cells. Cell sorting exhibited limitations in sample size and time required for synchronizing CHO cells. Its major advantage would be its ability to isolate cell populations unique with respect to selected cellular parameters.  相似文献   

9.
Cell Synchrony Techniques. I. A Comparison of Methods   总被引:3,自引:0,他引:3  
Abstract Selected cell synchrony techniques, as applied to asynchronous populations of Chinese hamster ovary (CHO) cells, have been compared. Aliquots from the same culture of exponentially growing cells were synchronized using mitotic selection, mitotic selection and hydroxyurea block, centrifugal elutriation, or an EPICS V cell sorter. Sorting of cells was achieved after staining cells with Hoechst 33258. After synchronization by the various methods the relative distribution of cells in G1 S, or G2+ M phases of the cell cycle was determined by flow cytometry. Fractions of synchronized cells obtained from each method were replated and allowed to progress through a second cell cycle. Mitotic selection gave rise to relatively pure and unperturbed early G1 phase cells. While cell synchrony rapidly dispersed with time, cells progressed through the cell cycle in 12 hr. Sorting with the EPICS V on the modal G1 peak yielded a relatively pure but heterogeneous G1 population (i.e. early to late G1). Again, synchrony dispersed with time, but cell-cycle progression required 14 hr. With centrifugal elutriation, several different cell populations synchronized throughout the cell cycle could be rapidly obtained with a purity comparable to mitotic selection and cell sorting. It was concluded that, either alone or in combination with blocking agents such as hydroxyurea, elutriation and mitotic selection were both excellent methods for synchronizing CHO cells. Cell sorting exhibited limitations in sample size and time required for synchronizing CHO cells. Its major advantage would be its ability to isolate cell populations unique with respect to selected cellular parameters.  相似文献   

10.
The effects of insulin, cortisol, prolactin, 3,3',5-triiodo-L-thyronine (L-T3) and progesterone on the synthesis of total protein and casein in mammary explants from pregnant goats were studied. In the absence of hormones and in the presence of insulin plus cortisol the rate of incorporation of 14C-leucine into proteins that were precipitated with the anti-casein antibody decreased during culture. The addition of prolactin to hormonal combination of insulin and cortisol caused large stimulation of rates of casein synthesis. Maximum incorporation of leucine was attained between 3 and 5 days of culture in the presence of 0.5 microgram ml-1 of prolactin. Prolactin stimulated-casein and total protein synthesis were not consistently affected by the addition of L-T3 or progesterone. The inhibition of DNA synthesis by hydroxyurea or cytosine-arabinofuranoside had no effect on casein synthesis in mammary explants from pregnant goats.  相似文献   

11.
Centrifugal elutriation was used to separate 9L rat brain tumour cells into fractions enriched in the G1, S, or G2/M phases of the cell cycle. Cells enriched in early G1, phase were recultured, grown in synchrony, and harvested periodically for analysis of their DNA distribution and polyamine content. Mathematical analysis of the DNA distributions indicated that excellent synchrony was obtained with low dissersion throughout the cell cycle. Polyamine accumulation began at the time of seeding, and intracellular levels of putrescine, spermidine, and spermine increased continuously during the cell cycle. In cells in the G2/M phase of the cell cycle, putrescine and spermidine levels were twice as high as in cells in the G1, phase. DNA distribution and polyamine levels were also analysed in cells taken directly from the various elutriation fractions enriched in G1, S, or G2/M. Because we did not obtain pure S or G2/M populations by elutriation or by harvesting synchronized cells, a mathematical procedure—which assumed that the measured polyamine levels for any population were linearly related to the fraction of cells in the G1, S, and G2/M phases times the polyamine levels in these phases and that polyamine levels did not vary within these phases—was used to estimate ‘true’ phase-specific polyamine levels (levels to be expected if perfect synchrony were achieved). Estimated ‘true’ phase-specific polyamine levels calculated from the data obtained from cells either sorted by elutriation or obtained from synchronously growing cultures were very similar.  相似文献   

12.
Chloramphenicol sensitive [3H]leucine incorporation into protein (due to mitochondrial protein synthesis) in synchronized HeLa cells has been found to continue throughout interphase, its rate per cell approximately doubling from the G1 to the G2 phase. This increase in the rate of [3H]leucine incorporation during the cycle does not seem to parallel closely the increase in cell mass. In fact, the observations made on cultures incubated at 34.5 °C, where the G1 and S phases are better resolved than at 37 °C, indicate that the rate remains constant during the G1 phase, and starts to accelerate with the onset of nuclear DNA synthesis. Correspondingly, on a per unit mass basis, there appears to be a slight decline in the rate of [3H]leucine incorporation into protein during the G1 phase, which is compensated by an increase in the early S phase. No significant variations were observed in the mitochondrial leucine pool labeling during the cell cycle; therefore, the observed pattern of [3H]leucine incorporation into protein should reflect fairly accurately the behavior of mitochondrial protein synthesis. Evidence has been obtained indicating a depression in the rate of incorporation of [3H]leucine into protein in mitochondria of mitotic cells. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of the products of mitochondrial protein synthesis has not revealed any differences in the size distribution of the proteins synthesized in the various portions of the cell cycle.  相似文献   

13.
Dehydroleucodine is a sesquiterpene lactone recently isolated from aerial parts of a medicinal herb, Artemisia douglasiana Besser. We have previously shown that 25 and 100 microM dehydroleucodine slowed down onion root growth by 30 and 70%, respectively, affecting neither cell viability nor cell elongation. In the present study we analyze the effect of dehydroleucodine on cell cycle phases in onion (Allium cepa L.) root meristematic cells synchronized with caffeine or caffeine and hydroxyurea. Synchronized root cells treated with 100 and 200 microM dehydroleucodine present an interphase lengthening of 5.2 h and 8.2 h, respectively. The S-phase length, estimated by [3H]thymidine incorporation assay, was 6 h for both control roots and roots that had been immersed in dehydroleucodine. The peak of [3H]leucine incorporation was observed 6 h after release from synchronization in controls and in dehydroleucodine-treated roots, indicating that protein synthesis in G2 was not affected. Thus, these results show that dose-dependently dehydroleucodine selectively induces a transient arrest of meristematic cell in G2 and that dehydroleucodine can be used experimentally as a cell cycle suppressor.  相似文献   

14.
Cellular uptake of [3H]thymidine [( 3H]TdR) and incorporation into DNA of Ehrlich ascites tumour cells were studied in relation to the cell cycle by measuring the activity in the acid-soluble and insoluble parts of the cell material. Cells were synchronized at various stages of the cell cycle using centrifugal elutriation. The degree of synchrony of the various cell fractions was measured by flow-cytofluorometric DNA analysis. From the cellular uptake, the TdR triphosphate (dTTP) concentration of a mean cell in an unseparated cell population was calculated to be 20 X 10(-18) mol/cell. The pool activity of G1 cells was unmeasurable but rose to maximum values at the border of the G1-S phase. It decreased again during G2. The [3H]TdR incorporation into DNA was low during early S phase, reached a maximum value at two-thirds of the S phase and decreased again during late S phase. These changes in DNA synthesis were not due to changes in the dTTP pool being a limiting factor. During maximum DNA synthesis, 10% X min-1 of the dTTP pool was utilized, at which time the pool size also decreased by about 30%. Changes in pool size during the cell cycle have to be taken into account when the results of incorporation of radioactive TdR into DNA are discussed.  相似文献   

15.
Summary The net total uptake of four amino acids (valine, leucine, lysine and methionine) used at concentrations required for growth, and of thymidine at tracer concentrations, has been studied during the first cell cycle of an asparagine-dependent strain of transformed BHK cells synchronized by asparagine starvation. The rate of the total uptake of the amino acids, the free pool of the amino acids taken up, and the rate of their incorporation into protein at the cell cycle. The increase in these parameters during the cell cycle was not linear. The uptake of thymidine started before the onset of DNA synthesis and proceeded linearly beyond the peak of the S phase. The rate of accumulation of thymidine into the acid-soluble fraction also increased during the S phase, apart from a tendency to plateau off at the peak of this phase. It reached a second plateau towards the end of the cell cycle, and then declined slightly. Evidence is presented which suggests that the total quantity of protein synthesized during the cell cycle is more than the newly synthesized protein present in the cells at the end of the cell cycle; this indicates degradation and/or secretion of a substantial proportion of the newly synthesized protein. The total protein synthesized at different time points in the cell cycle appeared to contain different proportions of the amino acids used.  相似文献   

16.
The cytological effects of 2 mM hydroxyurea upon Chinese hamster cells at various phases of the cell cycle were examined. Cells in the G1, G2, or M phases of the generation cycle treated with hydroxyurea showed no chromosomal aberrations. Cell treated in S phase became moribund and eventually lysed. Some of these moribund S cells reached mitosis much later and were found to have chromatid aberrations. Cells in the log phase of growth, surviving exposure to 2 mM hydroxyurea for six hours, also showed no aberrations. Thus, viable (colony-forming) cells, resulting from synchrony procedures with hydroxyurea are free of chromosomal aberrations.  相似文献   

17.
Depletion of histone H1, changes in nucleosome repeat lengths, and extents of DNA elongation were investigated in synchronized Chinese hamster (line CHO) cells using the general conditions of hydroxyurea treatment that appear to increase the frequency of gene amplification, i.e., synchronized cultures of G1 cells were allowed to begin to enter S phase before treatment with hydroxyurea was effected to retard DNA synthesis (Mariani, B.D. and Schimke, R.T. (1984) J. Biol. Chem. 259, 1901-1910). During the time that synchronized G1 cells begin to enter S phase, there occur considerable synchrony decay and accumulation of new DNA that increase with time before treatment with hydroxyurea is initiated. During exposure to hydroxyurea, there occur depletion of histone H1 and shortened repeat lengths for the DNA synthesized in the presence of hydroxyurea. In contrast, DNA synthesized in S phase before exposure to hydroxyurea has essentially the same repeat lengths as bulk chromatin at both the time that hydroxyurea treatment is effected and after 6 h in its presence. Sedimentation measurements indicate that the early replicating DNA undergoes considerable elongation both before and during 6 h of exposure to 0.3 mM hydroxyurea. Thus, nearly all of the early replicating DNA is elongated to greater than average replicon size under those conditions of hydroxyurea treatment that appear to favor gene amplification. Because the extents of DNA synthesis and cell cycle progression vary as functions of drug concentration, treatment times, and unknown factors (from experiment to experiment), it would appear that the parameters must be carefully monitored in each experiment if biochemical results are to be related to the position of cells in the growth cycle.  相似文献   

18.
The in vivo administration of hydroxyurea for 12 h counteracts DNA synthesis and cell cycling stimulated by 72 h of isoproterenol treatment in rat salivary gland, as determined by fluorescence-activated flow cytometry. Hydroxyurea has little effect on [3H]leucine incorporation (protein synthesis) of the nuclear proteins soluble in 0.35 M NaCl, when examined by polyacrylamide gel chromatography and autoradiography from electro-statically sorted nuclei of (G0+G1) and (G2+M) phases of the in vivo cell cycle. Differential incorporation of [3H]leucine into nuclear proteins was observed during various phases of the cell cycle. Proteins ‘X’ and ‘Z’, observed in stained gel chromatographs of the 0.35 M NaCl-soluble nuclear proteins, were identified by biochemical analyses as ubiquitin and protein A24, respectively. Ubiquitin appeared transiently while A24 increased in gel chromatograms concomitant with progressive quiescence of the salivary gland induced by hydroxyurea.  相似文献   

19.
The biosynthesis of the Ca2+- and Mg2+-dependent adenosine triphosphatase of sarcoplasmic reticulum was studied in cell cultures of embryonic chick heart. Rates of synthesis were estimated from the incorporation of tritium-labeled leucine into the ATPase. Newly synthesized ATPase was isolated from cells by immunoprecipitation. Radioactive leucine incorporation into the ATPase was determined by gel electrophoresis of the immunoprecipitates and counting of gel slices containing the ATPase band. Accumulation of the ATPase was estimated from the concentration of Ca2+ and Mg2+-dependent, hydroxylamine-sensitive phosphoprotein in the whole cell membrane fraction of cultured cells. Embryonic heart cells cultured in a medium which permitted cell proliferation showed approximately linearly increasing rates of ATPase synthesis and accumulation/culture plate as the cells proliferated. When cells were cultured in a serum-free medium, cell proliferation was inhibited and there was no sustained increase in the rate of ATPase synthesis or accumulation. Inclusion of isoproterenol or dibutyryl cyclic AMP at concentrations of 10 microM up to 1 mM in serum-free culture medium failed to stimulate significantly ATPase synthesis.  相似文献   

20.
The influence of 5-amino uracil (5-AU) was investigated on the cell cycle of log growth and division-synchronized Tetrahymena pyriformis GL. The division index of log growth phase Tetrahymena was suppressed by 50% after 40 min in 8 mM 5-AU. Cells division-synthronized by one heat shock per generation were also treated with 5-AU. Cells treated either prior to the first synchronous division (80 min EH) or up to 25 min prior to the second synchronous division (after 160 min EH) were not delayed in their progress through the cell cycle. Cells treated during the S phase of the first free running cell cycle, however, were delayed 5-30 min from reaching the second synchronous division. The effect of 5-AU on DNA and RNA synthesis was also examined. Incorporation of [3H]thymidine into acid-precipitable material was reduced in the presence of 5-AU; the rate of DNA synthesis was also reduced. The depression in the rate of DNA synthesis was greater at the beginning of S than at the end of S. The size of the thymidine pool (nucleosides + nucleotides) did not change during 5-AU treatment; however, an accumulation of thymidine tri-phosphate and a decrease in the amount of thymidine nucleoside was observed. A suppression of [14C]uridine incorporation resulting from 5-AU treatment was observed throughout the cell cycle. The rate of RNA synthesis as monitored by [14C]uridine incorporation into acid precipitable material was also reduced during 5-AU treatment. No change in either the size or the composition of the pool of uridine (nucleoside + nucleotide) was detected in 5-AU treated cells as compared to controls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号