首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Techniques are described for the trapping of electric eel acetylcholinesterase in polyacrylamide gel. The activity of the trapped enzyme was substantially reduced, the effect being due to inhibition by acrylamide, but the emzyme immobilized in polyacrylamide was considerable more stable than that in free solutionma kinetic study was made of the hydrolysis of acetylthiocholine, covering a range of membrane thicknesses, enzyme concentrations, substrate concentrations and temperatures. The results were interpreted with reference to the theoretical treatment of Sundaram, Tweedale and Laidler, and of Kobayaski and Laidler, and provided support for those treatments; Clear evidence was obtained for diffusion control with the thicker membranes. An activation energy was obtained for the diffusion of the substrate within the membrane, by combining the temperature results for thick and thin membranes at low substrate concentrations. The results lead to the conclusion that the in vivo kinetics of acetylcholinesterase are largely diffusion-free in muscle filaments, but are substantially diffusion-controlled in fibrils and fibers.  相似文献   

3.
Acetylcholinesterase (acetylcholine hydrolase, EC 3.1.1.7) is readily in hibited by 10(-5) M diphenylphosphorochloridate even though the inhibitor hydrolyzes in a few seconds. The fluoridate is a much weaker inhibitor. The inhibited enzyme, diphenyl phosphoryl enzyme spontaneously recovers only about 50% of its activity with a half time of about 17 min at pH 7.0 and 6 min at pH 8.0. The fact that only 50% of the original activity returns is due to aging. The rates of reactivation and aging can be very greatly increased by a few percent of an organic solvent. Depending on the solvent even 1% may increase the rates by a factor of 5 or 6. The highest increase in rate was 70-fold. Quaternary NH+4 also increases the rates. Organic solvents and NH+4 also accelerate the reactivation of the much more stable diethyl phosphoryl enzyme derivative.  相似文献   

4.
Acetylcholinesterase from cobra (Naja naja oxiana) venom has been purified by affinity chromatography to an homogeneous state, as ascertained by sodium dodecylsulfate/polyacrylamide gel electrophoresis and sedimentation analysis. The specific activity of the preparation was 5000 IU/mg with acetylcholine as substrate. Unlike acetylcholinesterases from insoluble cell structures, the native molecule of the cobra venom enzyme consists of a single polypeptide chain of molecular weight 67,000 +/- 2000. At high enzyme concentrations (greater than 0.2 mg/ml, greater than 1 microM) and ionic strength 0.1 M, it reversibly tends to form higher-molecular-weight 7.1-S aggregates. Despite the apparent structural simplicity of the venom acetylcholinesterase, the disc electrophoresis and isoelectric focusing experiments revealed that the enzyme exists in a number of forms with a common molecular weight but with different isoelectric points. Neuraminidase treatment did not reduce the number of the forms.  相似文献   

5.
6.
Areas containing AChE-positive capillaries were mapped in the brain of the cat and the guinea pig. Regions with AChE-positive capillaries mostly also contain neuronal elements with AChE activity. Electron-microscopical cytochemistry revealed localization of AChE in basement membranes of endothelial cells and pericytes very often in continuity with activity of the extracellular space. Intraendothelial AChE activity was seen only in pinocytic vesicles. The vascular AChE is thought to be of neuronal origin since no cytochemical evidence has been obtained for a synthesis of this enzyme in endothelial or other non-neuronal cells in the CNS.  相似文献   

7.
Tailed forms of Electrophorus acetylcholinesterase, mainly A (9 S) and C (14.2 S) forms, have been subjected to collagenase treatment. Several steps have been identified, yielding molecules which have lost different portions of the tail, and eventually resulting in separation of the isolated tetramers. These modifications result in the disappearance of the low-ionic strength aggregating properties. The molecules which have retained relatively large fragments of the tail do not aggregate in the same conditions as the intact forms, but still form small aggregates in the presence of high levels of polyanions. A model of the tailed molecules, illustrating the existence of discrete collagenase-sensitive regions in the tail, is discussed.  相似文献   

8.
Binding of the asymmetric forms of acetylcholinesterase to heparin.   总被引:5,自引:0,他引:5       下载免费PDF全文
The interaction between acetylcholinesterase (EC 3.1.1.7) and heparin, a sulphated glycosaminoglycan, was studied by affinity chromatography. A specific binding of the asymmetric acetylcholinesterase to an agarose gel containing covalently bound heparin was demonstrated. This interaction required an intact collagenous tail, shown by the fact that the binding is abolished by pretreatment with collagenase. The globular forms did not bind to the column. Both total and intracellular asymmetric acetylcholinesterase forms isolated from the endplate region of the rat diaphragm muscle showed higher affinity for the heparin than did the enzyme from the non-endplate region. The binding to the resin was destabilized with 0.55 M-NaCl, and, among the various glycosaminoglycans tested, only heparin was able to displace the acetylcholinesterase bound to the column. Our results added further support to the concept that the asymmetric acetylcholinesterase forms are immobilized on the synaptic basal lamina via interactions with heparin-like molecules, probably related to heparan sulphate proteoglycans.  相似文献   

9.
J Sketelj  M Brzin 《Histochemistry》1979,61(3):239-248
The kinetics of AChE solubilization from intact motor endplates of mouse diaphragm, by collagenase, papain and hyaluronidase, was studied in parallel with the ultrastructural localization of AChE in treated neuromuscular junctions. Hyaluronidase did not solubilize more AChE from isolated motor endplate regions than Ringer's solution itself. Residual AChE activity could be demonstrated histochemically in motor endplates even after the plateau of solubilization by collagenase or papain was reached. Less than 35% of junctional AChE is left after collagenase, and less than 20% after papain treatment, as estimated by the percentage of AChE activity left in the isolated endplate region of the diaphragm after protease treatment. Cytochemically, both proteases had a similar effect on postsynaptic AChE. Residual AChE activity was distributed randomly, adhering to the sarcolemma of junctional clefts. Presynaptic AChE localized in the gap between axon terminal and Schwann cell appears to be resistant to collagenase but not to papain treatment. The mode of AChE attachment or the composition of the intercellular material in this gap may differ from that of the primary and secondary clefts.  相似文献   

10.
11.
Abstract— Specific antibodies were raised in rabbits to acetylcholinesterase (AChE) from bovine caudate nucleus and the‘native’(14S + 18S) and globular (11S) forms of AChE from eel electric tissue. All AChE preparations were purified by affinity chromatography to a specific activity of 100–400 mmol acetylthiocholine hydrolyzed/mg protein/h. Antigenic specificities of the different enzyme forms were studied by immunodiffusion, Immunoelectrophoresis and micro-complement fixation. Minor differences in antigenic determinants were observed between the different molecular forms of electric tissue AChE. In crossover experiments using both eel AChE and bovine caudate AChE antisera there was complete absence of cross reactivity between the mammalian brain AChE and the different molecular forms of the electric tissue enzyme. Brain AChE activity was inhibited up to 50% in the presence of its antiserum.  相似文献   

12.
At high detergent concentrations, approximately the equivalent of 2 micelles of TX-100 reversibly bind to acetylcholinesterase and fully inhibit the enzyme. This result suggests that the appropriate lipid environment might regulate this neuronal enzyme's function.  相似文献   

13.
Acetylcholinesterase (AChE) activity, localized histochemically, appeared in the nuclei of presumptive somitic mesodermal cells prior to the onset of somitogenesis. AChE activity appeared in a rostro-caudal sequence, in cells located the equivalent of five somite lengths caudal to the last formed somite. To investigate whether AChE activity was required for somitogenesis, several inhibitors of AChE activity were tested for their ability to block somitogenesis. Diisopropylfluorophosphate (DFP), a broad spectrum inhibitor of serine proteases and related enzymes, was the only AChE inhibitor tested that disrupted somitogenesis. Gastrulae at 50% epiboly exposed continuously to DFP at concentrations between 40 microM and 90 microM completed epiboly, but exhibited a dose-dependent decrease in the number of somites formed, and a parallel decrease in the caudal extent of somite innervation, by 24 hours post-fertilization (h). Fifteen somite (15h) embryos exposed to DFP at the ED50 of 70 microM for 3 hours, followed by recovery to 24h, developed abnormal somites. Approximately five normal somites formed after drug treatment before the first abnormal somite formed. The abnormal somites corresponded in location to that area of the presumptive somitic mesoderm that would have initiated AChE activity while the DFP was present. While exposed to 70 microM DFP, presumptive somites formed and motoneurons extended processes that had initiated AChE activity at the time of treatment with DFP, although at a slower than normal rate. However, embryos exposed to 1 mM DFP for 30 minutes at both the 5 and 15 somite stages, followed by recovery to 24h, developed the normal number of somites but were reduced in the caudal extent of somite innervation, and occasionally developed abnormal primary motoneurons. As with the abnormal somites, the abnormal motoneurons would have initiated AChE activity while the DFP was present. Presumptive somitic mesoderm unable to initiate AChE activity due to inhibition by DFP developed abnormally. While the effects of DFP are not limited to inhibiting AChE, the data support the "clock and wavefront" model proposed for somite formation, and support the hypothesis that AChE activity has a role in somitogenesis in zebrafish.  相似文献   

14.
The number of acetylcholinesterase molecules in the rat megakaryocyte.   总被引:1,自引:0,他引:1  
A megakaryocyte cell series from rat bone marrow has been examined by the isotopic di-isopropyl fluorophosphate (DFP) method for esterases. After complete reaction with 32P-DFP, the numbers of DFP-reacted molecules inindividual cells havebeen determined by beta trackauto-radiography. Previous work has shown the percentage of organophosphate-sensitive sites in these cells which can be taken as active centers of acetylcholinesterase (AChase). Combining these data, the absolute numbers of organophosphate-sensitive esterase molecules and AChase molecules per cell were determined. Histograms show a narrow spread of values within each of four size classes from megakaryoblast to fully mature megakaryocyte, but, with means increasing 4-fold through this series, approximately in proportion to cell volume. A rat megakaryoblast has 2 X 10(6) AChase molecules, and a megakaryocyte (of 48-micro diameter) has 7.6 X 10(6) molecules. The apparent turnover number of the enzyme for intracellular reaction with substrate is calculated and compared with turnover numbers available for other AChases.  相似文献   

15.
16.
Homogenates from several insect species were assayed for inhibition of acetylcholinesterase by the potato glycoalkaloid alpha-chaconine. Colorado potato beetle acetylcholinesterase was up to 150-fold less sensitive than other species tested. Acetylcholinesterase from an insecticide-resistant strain of Colorado potato beetles was more sensitive to inhibition than the susceptible strain. Most insect species tested had inhibitory concentrations causing a 50% reduction in activity in the 5 to 40 microM range. Sensitive insect acetylcholinesterases were similar to mammalian cholinesterases in their response to alpha-chaconine. The results indicate that pesticides and host plant resistance factors may interact at the same target. Changes in the target due to selection pressure from either pesticides or host plant resistance factors could affect the efficacy of both control strategies.  相似文献   

17.
PRiMA: the membrane anchor of acetylcholinesterase in the brain.   总被引:14,自引:0,他引:14  
As a tetramer, acetylcholinesterase (AChE) is anchored to the basal lamina of the neuromuscular junction and to the membrane of neuronal synapses. We have previously shown that collagen Q (ColQ) anchors AChE at the neuromuscular junction. We have now cloned the gene PRiMA (proline-rich membrane anchor) encoding the AChE anchor in mammalian brain. We show that PRiMA is able to organize AChE into tetramers and to anchor them at the surface of transfected cells. Furthermore, we demonstrate that AChE is actually anchored in neural cell membranes through its interaction with PRiMA. Finally, we propose that only PRiMA anchors AChE in mammalian brain and muscle cell membranes.  相似文献   

18.
Acetylcholinesterase was demonstrated in the ganglion cells of the vestibular ganglion of the rat with Karnovsky's method. The acetylcholinesterase content was evaluated after a 24 hours incubation time by means of a three-grade scale. The cell size was determined by a particle size analyser. No correlation between the two values could be established. A comparison with the spiral ganglion showed a slightly lower acetylcholinesterase content in the vestibular ganglion. The content of acetylcholinesterase in the vestibular ganglion cells seems to be lower than in the spinal ganglion cells.  相似文献   

19.
11 S acetylcholinesterase (acetylcholine hydrolase, EC 3.1.1.7) from the electric eel Electrophorus electricus essentially consists of four catalytic subunits which appear to be identical structurally but to be assembled with slight asymmetry. During isolation and storage of the enzyme, proteolysis cleaves a portion of the subunits into major fragments containing the active site and minor fragments containing no active sites without change in the enzyme molecular weight. A previous report (Gentinetta, R. and Brodbeck, U. (1976) Biochim. Biophys. Acta 438 437--448) indicated that the intact and the fragmented subunits reacted with diisopropylfluorophosphate at different rates and that the reaction rate in the presence of excess phosphorylating agent was not strictly first order. Those findings could not be reproduced in this report. Intact and fragmented subunits were observed to react at the same rate with diisopropylfluorophosphate. In addition, the overall reaction kinetics both of 11 S and 18 S plus 14 S acetylcholinesterase were found to be strictly first order in the presence of an excess of diisopropylfluorophosphate throughout the course of reaction. These results are consistent with several previous reports that only one type of active site can be detected in acetylcholinesterase. The proteolysis which fragments a portion of the catalytic subunit has no apparent effect on the catalytic properties of the enzyme.  相似文献   

20.
Dimeric acetylcholinesterase is anchored in the cell membrane by a glycosyl-phosphatidylinositol attached to the C-terminus of the protein. The complex glycan contains an antigenic epitope, the cross-reacting determinant (CRD), which is only revealed after removal of the diradylglycerol by phosphatidylinositol-specific phospholipase C (PI-PLC) but is cryptic in the amphiphilic form. Polyclonal antibodies were raised against the CRD of vertebrate acetylcholinesterase. The purified anti-CRD antibodies recognized only the PI-PLC treated hydrophilic forms of acetylcholinesterase from bovine erythrocytes and Torpedo, and of variant surface glycoprotein from trypanosomes but not the corresponding amphiphilic proteins. Competition experiments showed that inositol-1,2-cyclic phosphate and glucosamine inhibited the binding of the antibodies to the CRD. Furthermore, binding of the anti-CRD antibodies to acetylcholinesterase containing N-methylated glucosamine was markedly reduced. The amphiphilic N-methylated enzyme is less sensitive to digestion with PI-PLC than the non-methylated form. From our results we conclude that inositol-1,2-cyclic phosphate and glucosamine, especially the free amine group of this residue, contribute significantly to the epitope recognized by the anti-CRD antibodies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号