首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract— Fourteen animals each received 4 cutaneous shocks with an interval of 3–5 min between them. During a fifth trial 3–5 min later, eleven subjects received a fifth shock and then 3–30 s afterwards, as cerebral slow potentials developed in response to the stimulus, samples of parietal cortex were rapidly frozen and extracted by a cryoplate. Three baseline subjects received no shock at the time of the fifth trial and had their parietal tissue samples taken without the presence of slow potentials. A correlation coefficient of r=?0.77 (P < 0.01) was observed between the slow potential amplitude on the surface of the parietal cortex at the time of the sampling and the analyzed level of cyclic AMP in the underlying tissue. Five of the shocked animals whose samples were taken before the slow potentials increased significantly showed a tissue level of 11.1 ± 3.0 pmol cyclic AMP/mg protein. This level was significantly higher (P < 0.01) than that of the baseline animals (3.1 ± 2.0 pmol cyclic AMP/mg protein). The other six shocked animals who had developed large slow potentials manifested a cyclic AMP level that was not different from the baseline group. It is concluded that a reoccurring cutaneous shock results in the immediate increase in the level of cyclic AMP in the parietal cortex and that within 30 s this level decreases in proportion to the amplitude of the slow potential that develops in the same region.  相似文献   

2.
Low levels of adenosine 3',5'-monophosphate (cyclic AMP) were detected in the cyanobacterium Anabaena variabilis using a protein binding assay and two radioisotopic labelling methods. The basal concentration of intracellular cyclic AMP ranged from 0.27 pmol/mg protein in A. variabilis Kutz grown under heterotrophic conditions to 1.0--2.7 pmol/mg protein in A. variabilis strain 377 grown autotrophically. Extracellular cyclic AMP was found to comprise as much as 90% of the total cyclic AMP in rapidly growing cultures. When A. variabilis strain 377 was starved of nitrogen, a 3--4-fold increase in intracellular cyclic AMP was observed during the 24 h period coincident with early heterocyst development.  相似文献   

3.
Cyclic AMP, [3H]thymidine incorporation, and DNA content were measured in the cell cycle of Physarum polycephalum. A sensitive radioimmunoassay was employed to assay cyclic AMP so that plasmodia could be assayed individually. In contrast to previously published results (Lovely, J.R. and Threlfall, R.J. (1976) Biochem. Biophys. Res. Commun. 71, 789–795), no pre-mitotic peak of cyclic AMP was detected. In seven experiments levels of cyclic AMP showed only small changes in individual experiments and ranged from 1–6 pmol/mg protein in different experiments. When plasmodia in the immediate premitotic period were collected on the basis of nuclear mitotic morphology, no evidence of a peak of cyclic AMP was found. Light was found to increase plasmodial cyclic AMP in a rapid, transient fashion. However, the brief exposure of cell cycle samples to light during collection did not induce any apparent cell cycle specific peaks of cyclic AMP. Although the occurrence of extremely rapid transient peaks of cyclic AMP in the cell cycle cannot be ruled out, it appears likely that the P. polycephalum cell cycle can proceed normally without major changes in cyclic AMP.  相似文献   

4.
Low levels of adenosine 3′,5′-monophosphate (cyclic AMP) were detected in the cyanobacterium Anabaena variabilis using a protein binding assay and two radioisotopic labelling methods. The basal concentration of intracellular cyclic AMP ranged from 0.27 pmol/mg protein in A. variabilis Kutz grown under heterotrophic conditions to 1.0–2.7 pmol/mg protein in A. variabilis strain 377 grown autotrophically. Extracellular cyclic AMP was found to comprise as much as 90% of the total cyclic AMP in rapidly growing cultures. When A. variabilis strain 377 was starved of nitrogen, a 3–4-fold increase in intracellular cyclic AMP was observed during the 24 h period coincident with early heterocyst development.  相似文献   

5.
Rats were kindled through nonmagnetic electrodes stereotaxically implanted into the medial septum. Concentrations of cyclic AMP and cyclic GMP were measured by radioimmunoassay in seven brain regions after microwave fixation during the development and expression of kindled seizures. Hippocampal concentrations were similar to untreated controls (cyclic GMP level in the left and right hippocampus, 0.66 +/- 0.04 and 0.68 +/- 0.07 pmol/mg of protein, respectively; cyclic AMP, 9.4 +/- 0.9 and 9.6 +/- 0.8 pmol/mg of protein, respectively), in kindled animals that were not stimulated, and in naive animals in response to septal stimulation, in spite of the presence in the latter group of bilateral hippocampal afterdischarges. Animals that failed to develop kindling and kindled animals that failed to have a seizure in response to stimulation also showed no change in cyclic nucleotide concentrations in any brain region. Kindled animals that developed a seizure following stimulation showed significant elevations in levels of both cyclic GMP and cyclic AMP in hippocampus and in several other brain regions. A single naive animal that had a seizure in response to its first stimulation also appeared to have elevated concentrations of both cyclic nucleotides in hippocampus. These data suggest that the elevation in levels of both cyclic GMP and cyclic AMP during kindled seizures is associated with seizure development rather than with the generation of afterdischarges or with the kindling engram.  相似文献   

6.
1. The Gilman (1970) procedure for determining cyclic AMP (adenosine 3':5'-cyclic monophosphate) by saturation analysis gave erroneous results when applied to the analysis of extracts of whole brain or preparations of membrane fragments from brain. 2. The extracts contained a non-diffusible factor, which enhanced the binding of cyclic AMP by the muscle protein fraction. 3. Extracts also contained material which inhibited binding, but net inhibition of binding was only observed when relatively concentrated extracts were analysed. 4. The error introduced by the factors modifying binding could be eliminated by incorporation of unlabelled internal standards in the unknowns. The design adopted enables a statistical estimate to be made of the standard error of a single assay. 5. The modified assay was used to determine bound cyclic AMP and adenylate cyclase activity in cerebral membrane fragments. Five preparations of synaptic membrane fragments contained less than 3.5pmol of cyclic AMP/mg of protein; a microsomal fraction from rat contained 65pmol of cyclic AMP/mg of protein.  相似文献   

7.
Primary cultures containing ≥99% neurons, ≥99% non-neuronal cells (glia), or both cell types were prepared from the sympathetic ganglia of 12-day chick embryos. Levels of cyclic AMP in the non-neuronal cells (~14 pmol/mg protein) were approximately 3-fold higher than levels in the neurons (~4 pmol/mg protein). Mixed cultures had concentrations of cyclic AMP which fell between the values measured for pure neuronal and pure non-neuronal cultures. The measured cyclic AMP values of mixed cultures were indistinguishable from values predicted by summing the expected contributions of the neurons and non-neuronal cells. Thus, contact between the neurons and non-neuronal cells in these mixed cultures did not appear to alter the level of cyclic AMP in either cell type. Neuronal-glial interactions, such as the specific neuronal stimulation of non-neuronal cell proliferation, occurred independently of any changes in the level of cyclic AMP in the mixed cultures. Cell density was varied in both pure and mixed cultures, and both cyclic AMP concentrations and amounts of [3H]thymidine incorporation into DNA were measured. The cyclic AMP content of the non-neuronal cells varied inversely with cell density. [3H]Thymidine incorporation was independent of cell density in both neuronal and non-neuronal cultures. Parallel density-dependent decreases in cyclic AMP concentration and [3H]thymidine incorporation were observed in mixed cultures as cell density was increased. The data suggest that there is no relationship between changes in rate of non-neuronal cell proliferation and cyclic AMP levels in these cultures.  相似文献   

8.
Abstract —The accumulation of adenosine-3',5'-cyclic monophosphate (cyclic AMP) has been investigated in murine brain following electroconvulsive shock and decapitation. Animals were made hypothermic (20°C) to minimize the freezing time of the brain and to delay metabolic events. Cyclic AMP concentrations were decreased in the cerebral cortex of hypothermic rats and mice. Furthermore, the changes in cyclic AMP elicited by electroconvulsive shock and decapitation were delayed. In hypothermic animals, the metabolic rate as determined by high energy phosphate use was decreased to 65% of control values. The interconversions of the active and inactive forms of glycogen phosphorylase and glycogen synthase were sufficiently retarded in hypothermic animals to correlate with changes in cyclic AMP concentrations. The conversion of phosphorylase b to a and synthase a to b occurred when cyclic AMP concentrations had increased from 2 to 5 μmol/kg, following either electroconvulsive shock or decapitation. The results indicate that cyclic AMP plays a role in regulation of glycogen metabolism in cerebral cortex.  相似文献   

9.
The isolation of synaptic vesicles from mouse brain by a modification of previously reported methodology is described. Homogeneity of the preparations was ascertained by electron microscopy. Vesicles thus isolated contained cyclic AMP (365 ± 44 pmol/mg of protein; mean ± S.E.M.) and adenosine 3′,5′-monophosphate phosphodiesterase activity (500 pmol/mg of protein per 30 min). The number of vesicles in three of the vesicle preparations was determined by a visual count of grid fields under the electron microscope. The content of cyclic AMP in the vesicles was calculated at 5000-7500 molecules/vesiclc. The presence of cyclic AMP in the synaptic vesicles from presynaptic nerve endings would support a role for this nucleotide in nerve transmission.  相似文献   

10.
Abstract— In mouse cerebellum, in vivo. cyclic GMP levels are 7 pmol/mg protein in the vermis and 40% lower in the hemispheres, whereas cyclic AMP levels are 7 9 pmol/mg protein in both regions. In the vermis. most of the cyclic GMP is contained in the molecular layer; cyclic AMP levels are highest in the granular layer. Amphetamine, harmaline. pentylenetetrazol and physical shaking elevate, and diazepam and reserpine depress levels of cyclic GMP in both vermis and hemispheres. Oxotremorine and atropine, respectively, increase and decrease cyclic GMP levels only in vermis. Regardless of the agent used, most of the change (67 89%) in cyclic GMP levels occurs in the molecular layer of the vermis; the remainder occurs in the granular layer. Of the drugs tested, only pentylenetetrazol affects cyclic AMP levels, and this drug increases cyclic AMP levels in both vermis and hemispheres and causes equal elevations in the molecular and granular layers of the vermis. In incubated slices of mouse cerebellum, none of the drugs produces changes in cyclic nucleotide levels which are similar to those in vivo. These data indicate that many drugs and conditions that alter cyclic GMP levels in cerebellum act via a common, but indirect, process. We suggest that cyclic GMP levels in cerebellum are regulated by the activity of both the climbing fiber and mossy fiber cerebellar afferent systems. Increased activity in these afferent pathways causes elevation of cyclic GMP levels in Purkinje cells and perhaps in other cells; decreased activity leads to depressed cyclic GMP levels.  相似文献   

11.
The effect of Ca2+ and putative neurotransmitters on formation of cyclic AMP and cyclic GMP has been studied in incubated slices of brain tissue. Cyclic AMP levels in cerebellar slices after about 90 min of incubation ranged from 10 pmol/mg protein in rabbit, to 25 in guinea pig, to 50 in mouse and 200 in rat. Cyclic GMP levels in the same four species showed no correlation with cyclic AMP levels and were, respectively, 1.3, 20, 5 and 30 pmol/mg protein. The absence of calcium during the prolonged incubation of cerebellar slices had little effect on final levels of cyclic AMP, while markedly decreasing final levels of cyclic GMP. Reintroduction of Ca2+ resulted in a rapid increase in cerebellar levels of cyclic GMP which was most pronounced for guinea pig where levels increased nearly 7-fold within 5 min. Prolonged incubation of guinea pig cerebral cortical slices in calcium-free medium greatly elevated cyclic AMP levels apparently through enhanced formation of adenosine, while having little effect on final levels of cyclic GMP. Norepinephrine and adenosine elicited accumulations of cyclic AMP and cyclic GMP in both guinea pig cerebral cortical and cerebellar slices. Glutamate, γ-aminobutyrate, glycine, carbachol, and phenylephrine at concentrations of 1 mM or less had little or noe effect on cyclic nucleotide levels in guinea pig cerebellar slices. Prostaglandin E1 and histamine slightly increased cerebellar levels of cyclic AMP. Isoproterenol increased both cyclic AMP and cyclic GMP. The accumulation of cyclic AMP and cyclic GMP elicited by norepinephrine in cerebellar slices appeared, baed on dose vs. response curves, agonist-antaganonist relationships and calcium dependency, to involve in both cases activation of a similar set of ß-adrenergic receptors. In cerebellar slices accumulations of cyclic AMP and cyclic GMP elicted by norepinephrine and by a depolarizing agent, veratridine, were strongly dependent on the presence of calcium. The stimulatory effects of adenosine on cyclic AMP and cyclic GMP formation were antagonized by theophylline. The lack of correlations between levels of cyclic AMP and cyclic GMP under the various conditions suggested independent activation of cyclic AMP- and cyclic GMP-generating systems in guinea pig cerebellar slices by interactions with Ca2+, norephinephrine and adenosine.  相似文献   

12.
The cyclic AMP level of 17-day-old chick embryo retina increased from 20 to 331 pmol/mg protein when the tissue was incubated for 20 min in the presence of 4-(3-butoxy-4-methoxybenzyl-2-imidozolinone) (RO 20-1724). The addition of 0.5 mM-3-isobutyl-1-methylxanthine (IBMX) or 0.5 units/ml of adenosine deaminase (EC 3.5.4.4) to the medium reduced the increase of cyclic AMP content from 20 to 100 pmol/mg protein. Dipyridamole did not interfere with the rise of the retinal cyclic AMP level observed with RO 20-1724. The EC50 of 6-amino-2-chloropurine riboside (2-chloroadenosine)-elicited accumulation of cyclic AMP of retinas incubated in the presence of RO 20-1724 plus adenosine deaminase was approximately 1 microM. When retina incubation was carried out in the presence of 0.5 mM-IBMX, the 2-chloroadenosine dose-response curve was shifted to the right two orders of magnitude. Maximal stimulation of the cyclic AMP level of 17-day-old chick embryo retina incubated in the presence of 0.5 mM-IBMX was observed at 1 mM-adenosine concentration. This effect was not blocked by dopamine antagonists. Guanosine and adenine did not affect the retinal cyclic AMP level. AMP and ATP had a slight stimulatory effect. Adenosine response of embryonic retina increased sharply from the 14th to the 17th embryonic day. A similar, but not identical adenosine effect was observed in cultured retina cells.  相似文献   

13.
Junctional transverse tubules (TT) isolated from triads of rabbit skeletal muscle by centrifugation in an ion-free sucrose gradient were compared with membrane subfractions, predominantly derived from the free portion of TT, that had been purified from sarcoplasmic reticulum membrane contaminants by three different methods. The markers used were diagnostic membrane markers and the dihydropyridine (DHP) receptor, which is a specific marker of the junctional membrane of TT. Junctional TT have a high membrane density (Bmax. 60 pmol/mg of protein) of high-affinity (Kd 0.25 nM) DHP-binding sites using [3H]PN200-110 as the specific ligand. When analysed by SDS/PAGE under reducing conditions and by Western blot techniques, the TT were found to contain a concanavalin A-binding 150 kDa glycoprotein which probably corresponds to the alpha 2-subunit of the DHP receptor. This conclusion was supported by correlative immunoblot experiments with a specific antibody. Junctional TT are further distinguished from free TT by the presence of a high number (Bmax. 20 pmol/mg of protein) of [3H]cyclic AMP receptor sites, as determined by the Millipore filtration technique of Gill & Walton [(1974) Methods Enzymol. 38, 376-381]. Use of this method means that the number of receptors may have been underestimated. The TT-bound cyclic AMP receptor was identified as a 55 kDa protein by specific photoaffinity labelling with 8-N3-[3H]cyclic AMP, and had similar phosphorylation properties and apparent molecular mass to the RII form of the regulatory subunit of cyclic AMP-dependent protein kinase. Co-localization of the intrinsic cyclic AMP-dependent protein kinase and of the DHP receptor complex to the junctional membrane of TT supports the hypothesis that the 170 kDa alpha 1-subunit of the receptor is a substrate for the kinase.  相似文献   

14.
In open-chest pentothal-chloralose anesthetized dogs, plasma catecholamine and cyclic AMP levels were evaluated in the aortic and coronary sinus blood, during stimulations of the left ansa subclavia (1, 2, and 4 Hz). Basal aortic and coronary sinus catecholamine levels were respectively 0.373 +/- 0.090 and 0.259 +/- 0.048 ng/mL and cyclic AMP levels averaged 21.4 +/- 1.4 and 20.9 +/- 1.6 pmol/mL. Statistically significant increases in cyclic AMP levels were induced by sympathetic stimulations at 1 Hz (2.0 +/- 0.6 pmol/mL, 2 Hz (2.5 +/- 1.2 pmol/mL) and 4 Hz (6.5 +/- 1.5 pmol/mL), concomitantly with elevations of coronary sinus catecholamine levels. Sotalol (5 mg/kg) abolished the increases in coronary sinus cyclic AMP levels induced in coronary sinus cyclic AMP output averaged 282 +/- 30 pmol/min (1 Hz), 662 +/- 160 pmol/min (2 Hz), and 1679 +/- 242 pmol/min (4 Hz). Sympathetically induced cyclic AMP output (4Hz) was blunted by sotalol (-81 +/- 14 pmol/min). Aortic cyclic AMP levels were not significantly influenced by stellate stimulation. Intense correlations were found between increased in coronary sinus plasma catecholamines and cyclic AMP concentration levels (r = 0.81, slope - 1.45, ordinate = -1.42, n = 15) as well as between delta cyclic AMP output versus delta catecholamine output values in the coronary sinus (r = 0.93. slope output levels. Intracoronary infusion of phenylephrine (10 micrograms/min) or nitroprusside (200 micrograms/min) had no influence on cyclic AMP plasma levels whereas aortic and coronary sinus levels were respectively increased 5.5 +/- 1.9 and 7.3 +/- 1.4 pmol/mL during the administration of isoproterenol (5 micrograms/min). These data suggested that plasma cyclic AMP constitutes a sensitive index of cardiac beta-adrenergic activity elicited by the release of endogenous catecholamine during stellate stimulations.  相似文献   

15.
Rhodocyclus gelatinosus strain 1 (str. 1), a photoheterotrophic bacterium, used CO as an energy substrate under anaerobic CO/light conditions, and exhibited a diauxic growth response when CO was removed from the culture. Changes in the level of cyclic AMP which occurred in cells during diauxie suggested that the cyclic nucleotide operated as an intracellular control molecule. During CO/light-phase growth, intracellular cyclic AMP was 30 pmol/mg protein, and, as str. 1 adapted for photosynthetic growth after removal of CO, intracellular cyclic AMP levels decreased to 9 pmol/mg protein. Reexposure of a light culture to CO induced synthesis of CO oxidation activity (measured as CO:MV oxidoreductase). If 10 mM cyclic AMP was added with CO, the rate of synthesis of CO:MV oxidoreductase activity increased 25-fold, and str. 1 produced 1,230 units of activity (nmol CO oxidized min-1 mg-1 protein) after only 1 h. With cyclic AMP and no CO, no incerease in CO oxidation activity was seen. Appearance of CO oxidation activity in str. 1 represented de novo protein synthesis and was blocked with chloramphenicol. In addition to stimulating formation of CO oxidative activity, a high level of cyclic AMP in str. 1 during growth with CO appeared to influence photometabolism negatively by repressing bacteriochlorophyll formation.Abbreviations Bchl a bacteriochlorophyll a - MV methyl viologen - CO MV oxidoreductase, carbon monoxide: methyl viologen oxidoreductase  相似文献   

16.
L Cohn  M Cohn  F H Taylor 《Life sciences》1976,18(2):261-265
Three doses of amobarbital, an anesthetic dose (80 mg/kg), a minimum lethal dose (130 mg/kg), and a high lethal dose (180 mg/ kg) were administered intraperitoneally to groups of rats. All rats were injected intracerebroventricularly with 0.9% saline or dibutyryl cyclic AMP, 200 μg/rat. While those rats treated with saline solution were still sleeping at decapitation and those treated with dibutyryl cyclic AMP were awake, there were no significant differences in their brain concentrations of amobarbital.  相似文献   

17.
Abstract— A simple, sensitive and specific method for assaying cyclic AMP in various tissues is reported. Cyclic AMP was isolated from contaminating nucleotides and was converted to ATP with a phosphodiesterase-myokinase-pyruvate kinase system. The ATP was determined enzymically in a liquid scintillation counter by the firefly luciferin-luciferase technique. This procedure was capable of detecting as little as 5 × 10?14 mol of cyclic AMP and could therefore be used for analyses on less than 1 mg of brain. The assay was reproducible and linear over a wide range of tissue concentrations. In the rat, the highest levels of cyclic AMP (2.7–4.2 pmol/mg wet wt. of tissue) were present in the pineal, heart, pituitary, thyroid, cerebellar cortex, kidney, adrenal, liver and pyloric region of the stomach; intermediate levels (1.5–2.7 pmol/mg wet wt. of tissue) were found in testis, skin, aorta, intestine, submaxillary gland, spleen, muscle and cerebral cortex, moderately low levels (1.0–1.5 pmol/mg wet wt. of tissue) were found in lung, trachea and greater curvature of the stomach; whereas low levels (0.15–0.60 pmol/mg wet wt. of tissue) were found in adipose tissue.  相似文献   

18.
We have identified and characterized a cyclic AMP receptor protein in mitochondria of the yeast Saccharomyces cerevisiae. The binding is specific for cyclic nucleotides, particularly for cyclic AMP which is bound with high affinity (Kd of 10(-9) M) at 1 to 5 pmol/mg of mitochondrial protein. The mitochondrial cyclic AMP receptor is synthesized on cytoplasmic ribosomes and has an apparent molecular weight of 45,000 as determined by photoaffinity labeling. It is localized in the inner mitochondrial membrane and faces the intermembrane space. Cross-contamination of mitochondrial inner membranes by plasma membranes or soluble cytoplasmic proteins is excluded.  相似文献   

19.
Basal activity and hormonal responsiveness of the adenylate cyclase-adenosine 3',5'-monophosphate system were examined in premalignant liver from rats chronically fed the hepatic carcinogen DL-ethionine, and these data were correlated with endogenous levels of plasma glucagon. By 2 weeks basal hepatic cyclic AMP levels, determined in tissues quick-frozen in situ, were 2-fold higher in rats ingesting ethionine than in the pair-fed control. Enhanced tissue cyclic AM content was associated with an increase in the adenylate cyclase activity of whole homogenates of fresh liver from rats fed ethionine (68 +/- 5 pmol cyclic AMP/10 min per mg protein) compared to control (48 +/- 4). Cyclic AMP-dependent protein kinase activity ratios were also significantly higher (control, 0.38 +/- 0.04; ethionine 0.55 +/- 0.05) and the percent glycogen synthetase activity in the glucose 6-phosphate-independent form was markedly reduced (control, 52 +/- 7%; ethionine, 15 +/- 1.5%) in the livers of ethionine-fed rats compared to the controls, suggesting that the high total hepatic cyclic AMP which accompanied ethionine ingestion was bilogically effective. These changes persisted throughout the 38 weeks of drug ingestion. Immunoreactive glucagon levels, determined in portal venous plasma, were 8-fold higher than control after 2 weeks of the ethionine diet (control, 185 +/- 24 pg/ml; ethionine, 1532 +/- 195). Analogous to the changes in hepatic parameters, plasma glucagon levels remained elevated during the entire period of drug ingestion until the development of hepatomas. The hepatic cyclic AMP response to a maximal stimulatory dose of injected glucagon was blunted in vivo in ethionine-fed rats (control, 14 -fold increase over basal, to 8.63 +/- 1.1 pmol/mg wet weight; ethionine, 4.6-fold rise over basal, to 5.42 +/- 0.9). Reduced cyclic AMP responses to both maximal and submaximal glucagon stimulation were also evident in vitro in hepatic slices prepared from rats fed the drug, and the reduction was specific to glucagon. Absolute or relative hepatic cyclic AMP responses to maximally effective concentrations of protaglandin E1 or isoproterenol in hepatic slices from ethionine-fed rats were greater than or equal to those observed in control slices. Parallel alterations in hormonal responsiveness were observed in adenylate cyclase activity of whole homogenates of these livers, implying that the changes in cyclic AMP accumulation following hormone stimulation were related to an alteration in cyclic AMP generation in the premalignant tissue. In view of the recognized hepatic actions of glucagon and the desensitization of adenylate cyclase which can occur during sustained stimulation of the liver with this hormone, the endogenous hyperglucagonemia that accompanies ethionine ingestion could play a role in the pathogenesis of both the basal alterations in hepatic cyclic AMP metabolism and the reduced responsiveness to glucagon observed in liver from rats fed this carcinogen.  相似文献   

20.
Abstract— In guinea-pig cerebral cortical slices levels of cyclic AMP increase in response to adenosine to about 200pmol/mg protein within 10 min and stay at that level up to 30 min. In the absence of calcium ions and the presence of 1mm -EGTA in the Krebs-Ringer-bicarbonate medium the effect of adenosine is enhanced, cyclic AMP levels rise to about 600 pmol/mg protein within 30 min. In normal and calcium deficient media restimulation of cyclic AMP formation with adenosine is possible after a prior stimulation with adenosine. When slices are preincubated for various periods of time with histamine or adenosine before addition of the complementary agent i.e. adenosine or histamine cyclic AMP levels obtained are unaltered compared to levels seen when adenosine and histamine are added together. Slices which are rendered unresponsive to stimulation with histamine + noradrenaline by a prior incubation with these agents do not regain any response during a 100 min period of incubation in medium. The PDE inhibitors diazepam, SQ 66007 and isobutylmethylxanthine are capable of restoring the sensitivity of the slices to histamine + noradrenaline. This suggests an involvement of PDE in the unresponsive phase of the slices. Addition of adenosine to slices not affected by histamine + noradrenaline does reestablish the response of these slices to the neurohormones. A dose-response curve of adenosine for the interaction with histamine + noradrenaline yields an ED50 of 16 μM using sensitive or desensitized slices. An adenosine concentration of only 7 μM is necessary to restore the original increase of cyclic AMP in response to histamine + noradrenaline to slices insensitive to the biogenic amines. The data are discussed in terms of a possible activation of PDE within cerebral cortical slices from guinea-pig. Adenosine may reverse this activation. The possibility of inactivation of adenylate cyclase during stimulation of cyclic AMP formation and the role of adenosine and PDE inhibitors in this process is being considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号