首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
DNA isolated from avian virus-producing leukemic myeloblasts induced the production of viruses, but not morphological transformation, in cultivated chicken fibroblasts. The recovered virus had the same biological characteristics as the original avian myeloblastosis virus (AMV) and produced myeloblastosis and nephroblastomas when injected into chickens. Neutralization experiments with chicken anti-AMV-BAI strain A sera showed an antigenic community between the DNA-transfected virus and the original virus. Virus induced in fibroblasts after treatment with DNA from a viral nephroblastic nephroblastoma line only gave nephroblastoma when injected into chicken. Treatment of chicken embryo cells with DNA extracted from normal chicken embryos did not induce viral production.  相似文献   

4.
将禽流感病毒M2基因克隆于真核表达质粒pIRES-EGFP中,使其位于pCMV启动子的调控下,并与绿色荧光蛋白基因(EGFP)串联后,将上述串联基因插入到含MDV CVI988的非必需区US基因的重组质粒pUS2中,构建带标记的重组质粒,然后将此重组质粒转染感染了MDV CVI988的鸡胚成纤维细胞,利用同源重组的方法,筛选了表达禽流感病毒M2基因的重组病毒MDV1。经PCR、Dot-blotting,Western-blotting等实验的结果表明,禽流感病毒M2基因的确插入到MDV1(CVI988)基因组中并获得表达。重组MDV1免疫1日龄SPF鸡21天后,用ELISA可检测到M2蛋白的特异性抗体。接种了重组病毒rMDV的鸡体内针对H9N2疫苗血凝素的抗体滴度(p<0.05)明显提高,以禽流感病毒AIV A/Chicken/Guangdong/00(H9N2)攻毒后进行病毒重分离试验的结果发现,重组病毒能有效地降低病毒的排出量(p<0.01),说明该重组病毒可以用于防制禽流感的免疫。  相似文献   

5.
Sixty chickens were randomly divided into two groups (30 chickens in each group) to determine the effect of oral administration of chicken intestinal antimicrobial peptides (CIAMP) on the humoral immune response. Chickens of both groups were fed the same diet. In the treatment group chickens received drinking water supplemented with CIAMP (1 microg/ml) right after hatching. Samples of blood, bursa of Fabricus, spleen and intestine were taken at day 1, 4, 7, 10 and 17 of experiment. CIAMP supplementation enhanced the content of IgG and IgM in serum from day 4-10 and day 10-17, respectively, (p < 0.05), IgM-forming cells in bursa of Fabricus and spleen at the age of 7 days (p < 0.05) and IgG-forming cells in bursa of Fabricus at the age of 4 days (p < 0.05). In addition, CIAMP enhanced the IgA-forming cells in caecal tonsils diffuse area at day 4 (p < 0.05). Furthermore, CIAMP enhanced the antibody response to infectious bursal disease virus vaccine (IBDV) in chickens 21 days following IBDV vaccine administration (p < 0.05). These results suggested that CIAMP could modulate the humoral immune response of chickens and increased the antibody titres of infectious bursal disease virus vaccine.  相似文献   

6.
Song H  Nieto GR  Perez DR 《Journal of virology》2007,81(17):9238-9248
In light of the recurrent outbreaks of low pathogenic avian influenza (LPAI) and highly pathogenic avian influenza (HPAI), there is a pressing need for the development of vaccines that allow rapid mass vaccination. In this study, we introduced by reverse genetics temperature-sensitive mutations in the PB1 and PB2 genes of an avian influenza virus, A/Guinea Fowl/Hong Kong/WF10/99 (H9N2) (WF10). Further genetic modifications were introduced into the PB1 gene to enhance the attenuated (att) phenotype of the virus in vivo. Using the att WF10 as a backbone, we substituted neuraminidase (NA) for hemagglutinin (HA) for vaccine purposes. In chickens, a vaccination scheme consisting of a single dose of an att H7N2 vaccine virus at 2 weeks of age and subsequent challenge with the wild-type H7N2 LPAI virus resulted in complete protection. We further extended our vaccination strategy against the HPAI H5N1. In this case, we reconstituted an att H5N1 vaccine virus, whose HA and NA genes were derived from an Asian H5N1 virus. A single-dose immunization in ovo with the att H5N1 vaccine virus in 18-day-old chicken embryos resulted in more than 60% protection for 4-week-old chickens and 100% protection for 9- to 12-week-old chickens. Boosting at 2 weeks posthatching provided 100% protection against challenge with the HPAI H5N1 virus for chickens as young as 4 weeks old, with undetectable virus shedding postchallenge. Our results highlight the potential of live att avian influenza vaccines for mass vaccination in poultry.  相似文献   

7.
Since 2002, H5N1 highly pathogenic avian influenza (HPAI) viruses have caused mortality in numerous species of wild birds; this is atypical for avian influenza virus (AIV) infections in these avian species, especially for species within the order Anseriformes. Although these infections document the susceptibility of wild birds to H5N1 HPAI viruses and the spillover of these viruses from infected domestic birds to wild birds, it is unknown whether H5N1 HPAI viruses can persist in free-living avian populations. In a previous study, we established that wood ducks (Aix sponsa) are highly susceptible to infection with H5N1 HPAI viruses. To quantify this susceptibility and further evaluate the likelihood of H5N1 HPAI viral maintenance in a wild bird population, we determined the concentration of virus required to produce infection in wood ducks. To accomplish this, 25 wood ducks were inoculated intranasally at 12-16 wk of age with decreasing concentrations of a H5N1 HPAI virus (A/Whooper Swan/Mongolia/244/05 [H5N1]). The median infectious dose and the lethal dose of H5N1 HPAI virus in wood ducks were very low (10(0.95) and 10(1.71) median embryo infectious dose [EID(50)]/ml, respectively) and less than that of chickens (10(2.80) and 10(2.80) EID(50)/ml). These results confirm that wood ducks are highly susceptible to infection with H5N1 HPAI virus. The data from this study, combined with what is known experimentally about H5N1 HPAI virus infection in wood ducks and viral persistence in aquatic environments, suggest that the wood duck would represent a sensitive indicator species for H5N1 HPAI. Results also suggest that the potential for decreased transmission efficiency associated with reduced viral shedding (especially from the cloaca) and a loss of environmental fitness (in water), may be offset by the ability of this virus to be transmitted through a very low infectious dose.  相似文献   

8.
【目的】由于H7N9禽流感病毒能够感染鸡,并且已经变异成了高致病性毒株,因此,鸡群中H7N9禽流感疫苗的免疫是一个趋势,而鸡群免疫后抗体检测方法的建立也十分必要。本研究旨在建立一种灵敏、高效、高通量的鸡群H7N9亚型禽流感病毒抗体间接酶联免疫吸附试验(ELISA)检测方法。【方法】通过昆虫杆状病毒表达系统分别表达属于W1、W2-A和W2-B分支H7N9流感病毒的3种野生型血凝素(HA)蛋白,以及跨膜区(TM)置换为H3 HA TM的W2-B分支HA蛋白(H7-53TM)。4种HA蛋白经过离子交换层析纯化后作为抗原,通过ELISA检测H7N9禽流感病毒抗体。【结果】ELISA特异性、敏感性和重复性试验结果显示,跨膜区置换主要影响HA蛋白ELISA检测的重复性,以H7-53TM为抗原的ELISA方法具有较好的重复性,其批内和批间变异系数小于10%,然而3种野生型HA蛋白与部分血清反应批内和批间变异系数大于10%,重复性较差,因此选择H7-53TM蛋白作为ELISA包被抗原。通过受试者工作特征曲线(ROC曲线)分析,以H7-53TM为抗原的ELISA能够精准地区分H7N9亚型流感病毒抗体阳性和阴性血清。通过相关性分析,该ELISA方法与134份鸡血清HI试验结果具有显著强相关性(r=0.854 6,P0.000 1),并且与3个分支疫苗株免疫血清的HI试验结果也具有显著相关性(r0.5,P0.05)。【结论】跨膜区置换能够提高HA蛋白抗原检测H7N9禽流感病毒抗体的重复性,并应用跨膜区置换的HA蛋白建立了一种能够检测不同分支疫苗株免疫的H7N9亚型禽流感病毒抗体间接ELISA检测方法。  相似文献   

9.
Two populations of virus having subgroup-specific homogeneity (A and B) were isolated from standard avian myeloblastosis virus stocks by passage in vivo through genetically defined chickens. Each possesses leukemogenic activity in vivo. Other properties and potential usefulness of these agents are discussed.  相似文献   

10.
In June of 2012, an H7N3 highly pathogenic avian influenza (HPAI) virus was identified as the cause of a severe disease outbreak in commercial laying chicken farms in Mexico. The purpose of this study was to characterize the Mexican 2012 H7N3 HPAI virus (A/chicken/Jalisco/CPA1/2012) and determine the protection against the virus conferred by different H7 inactivated vaccines in chickens. Both adult and young chickens intranasally inoculated with the virus became infected and died at between 2 and 4 days postinoculation (p.i.). High virus titers and viral replication in many tissues were demonstrated at 2 days p.i. in infected birds. The virus from Jalisco, Mexico, had high sequence similarity of greater than 97% to the sequences of wild bird viruses from North America in all eight gene segments. The hemagglutinin gene of the virus contained a 24-nucleotide insert at the hemagglutinin cleavage site which had 100% sequence identity to chicken 28S rRNA, suggesting that the insert was the result of nonhomologous recombination with the host genome. For vaccine protection studies, both U.S. H7 low-pathogenic avian influenza (LPAI) viruses and a 2006 Mexican H7 LPAI virus were tested as antigens in experimental oil emulsion vaccines and injected into chickens 3 weeks prior to challenge. All H7 vaccines tested provided ≥90% protection against clinical disease after challenge and decreased the number of birds shedding virus and the titers of virus shed. This study demonstrates the pathological consequences of the infection of chickens with the 2012 Mexican lineage H7N3 HPAI virus and provides support for effective programs of vaccination against this virus in poultry.  相似文献   

11.
12.
env-encoded residues are not required for transformation by p48v-myb.   总被引:9,自引:6,他引:3  
The v-myb oncogene of avian myeloblastosis virus induces acute myeloblastic leukemia in chickens and transforms avian myeloid cells in vitro. The protein product of this oncogene, p48v-myb, is partially encoded by the retroviral gag and env genes. We demonstrated that the env-encoded carboxyl terminus of p48v-myb is not required for transformation. Our results showed, in addition, that a coding region of c-myb which is not essential for transformation was transduced by avian myeloblastosis virus.  相似文献   

13.
The yolk sac of the 12-day chicken embryo retains the blast stage progenitors to cells of the myeloid lineages with a very low level of contamination by more mature myeloid cells which have begun to express the characteristic myeloid cell markers. Both in vivo and in vitro experiments have supported the hypothesis that target cells for the BAI-A strain of avian myeloblastosis virus are contained within the myeloid lineages. An assay system for avian myeloblastosis virus was developed which utilizes this yolk sac cell system and which appears to be more sensitive than previous published assays. In addition, the kinetics of a liquid culture transformation system is presented in which at least 4% of the yolk sac cell population was transformed in a relatively synchronous fashion at 2 days after infection. The morphological transformation preceded an increased rate of cell proliferation. Cell separation procedures provided a 10- to 20-fold enrichment of target cells and demonstrated that the target cell population copurifies with macrophage colony-forming cells which are the committed progenitors to the macrophage lineage. In combination with earlier work, this work demonstrated that cells committed to the macrophage lineage at all stages of differentiation may serve as target cells for infection by avian myeloblastosis virus.  相似文献   

14.
Sensitivity of eight chick lines to the avian myeloblastosis virus as the main source for RNA-dependent DNA-polymerase recovery was studied in the course of the "revertase" project. The virus (0.1 ml) was inoculated intracardially or intraperitoneally to one-day chicks, and then the virus titer was determined according to the ATP-activity. C and D-lines of the Enya-cross were shown to be most sensitive (sensitivity 75%) among the lines studied.  相似文献   

15.
The ESPLINE INFLUENZA A&B-N kit was evaluated for its applicability to the rapid diagnosis of influenza in chickens and pigs. The kit specifically detected viral antigens in tracheal swabs and tissue homogenates of the trachea, liver, spleen, and colon of chickens inoculated with a highly pathogenic avian influenza virus strain, A/chicken/Yamaguchi/7/04 (H5N1), at 48 hr post-inoculation (p.i.) as well as in the tracheal and cloacal swabs and tissue homogenates of dead chickens. For those infected with a low pathogenic strain, A/chicken/aq-Y-55/01 (H9N2), antigens were detected only in the samples from tracheal swabs and organs 1-4 days p.i. The kit also detected viral antigens in the nasal swabs of miniature pigs infected with swine and avian influenza viruses. The kit was found to be sensitive and specific enough for the rapid diagnosis of infections of influenza A virus in chickens and pigs.  相似文献   

16.
Two experiments were conducted with five gallinaceous and one passerine bird species to determine their responses to Turlock (TUR) virus inoculations. Inoculation of TUR strain 847-32 into bobwhites, chukars, ring-necked pheasants, chickens, and Japanese quail did not product detectable viremias. The first four species, however, did respond with neutralizing antibody. Inoculation of chickens with strain 69V-1095 resulted in a viremia which lasted 5 days and had a peak mean titer of 2.0 log 10 PFU per 0.2 ml of blood on the third day after infection. The observation that viremic birds exhibited no noticeable virus-associated morbidity or mortality suggested that TUR virus does not have a detrimental effect on free-ranging populations of the avian hosts studied during this investigation.  相似文献   

17.
18.
Avian leukosis viruses induce lymphoid leukosis, a lymphoma which develops within the bursa of Fabricius several months after virus infection. Chickens from the Hyline SC and FP lines are, respectively, susceptible and resistant to avian leukosis virus-induced lymphoid leukosis. We examined plasma and cellular DNA obtained from avian leukosis virus-infected chickens for the presence of viremia and integrated viral sequences to determine whether the extent of virus infection is comparable in individuals of both lines. A less than twofold difference in the frequency of viremia was detected between chickens of the two different lines. Although the analysis of plasma samples, which were obtained at different times postinfection, demonstrated that the duration of viremia was comparable in both susceptible and resistant chickens, the onset of the viremia observed in susceptible chickens generally preceded by 1 week that observed in resistant chickens. Moreover, integrated viral sequences were detected in approximately 90% of the SC and 40% of the FP chickens. The appearance of infectious virus in the plasma was, in general, associated with the presence of integrated viral sequences in both the bursal cells and the erythrocytes obtained from the same chicken. The presence of both the viremia and the integrated viral DNA sequences was transient, suggesting a mechanism for the elimination of virus-infected cells in both susceptible and resistant chickens. Furthermore, at 5 weeks postinfection no integrated exogenous viral sequences were detected in splenic lymphocytes obtained from either chicken line, regardless of whether these chickens were viremic or had integrated viral sequences detectable in other tissues. Our results indicate that extensive avian leukosis virus replication occurs in approximately 50% of the FP and 100% of the SC chickens. Although it appears that the viral infection spreads more quickly in the SC chickens, our results afford no obvious explanation of the resistance to the development of lymphoma exhibited by FP chickens.  相似文献   

19.
为研究H9N2亚型AIV排毒及形成气溶胶规律,将SPF鸡饲养于正负压隔离器中,采用AGI-30收集器(All Glass Impinger AGI-30)和气管泄殖腔棉拭子在攻毒后不同时间收集空气、气管和泄殖腔样品,并利用HI、Dot-ELISA和RT-PCR检测样品.结果发现攻毒后第4天开始形成气溶胶,并持续到第43天,实验证明H9N2亚型AIV不仅可以在呼吸道和泄殖腔复制,而且可以形成气溶胶.气管泄殖腔棉拭子在接种后第3天开始排毒,至第7天攻毒鸡全部分离到病毒.排毒时间可持续到第45天.但泄殖腔的排毒量明显低于气管的排毒量,这也说明H9N2型禽流感主要通过呼吸道排毒.  相似文献   

20.
The avian myeloblastosis virus provirus inserted in a lambda bacteriophage, recombinant clone 11A1-1 (Souza et al., Proc. Natl. Acad. Sci. U.S.A. 77:3004-3008, 1980), was transfected into chicken embryo fibroblasts which had been preinfected with either Rous-associated virus type 61 or the transformation-defective avian sarcoma virus tdB77. Within 4 to 5 h after transfection, the cells were injected into 16-day-old chicken embryos or 1-day-old chicks. Acute myeloblastic leukemia developed after a long latent period. Filtered (0.22-micrometer pores) supernatant of transformed buffy-coat cell cultures from one leukemic chicken of the lambda 11A1-1 (tdB77) group rapidly transformed yolk sac cells in vitro. Results from an infectivity interference assay and analysis of proviral DNA fragments generated with restriction endonucleases were consistent with the presence in leukemic cells of defective avian myeloblastosis virus and tdB77 as the helper virus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号