首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Inducible nitric oxide synthase (iNOS) contributes importantly to septic pulmonary protein leak in mice with septic acute lung injury (ALI). However, the role of alveolar macrophage (AM) iNOS in septic ALI is not known. Thus we assessed the specific effects of AM iNOS in murine septic ALI through selective AM depletion (via intratracheal instillation of clodronate liposomes) and subsequent AM reconstitution (via intratracheal instillation of donor iNOS+/+ or iNOS-/- AM). Sepsis was induced by cecal ligation and perforation, and ALI was assessed at 4 h: protein leak by the Evans blue (EB) dye method, neutrophil infiltration via myeloperoxidase (MPO) activity, and pulmonary iNOS mRNA expression via RT-PCR. In iNOS+/+ mice, AM depletion attenuated the sepsis-induced increases in pulmonary microvascular protein leak (0.3 +/- 0.1 vs. 1.4 +/- 0.1 microg EB.g lung(-1).min(-1); P < 0.05) and MPO activity (37 +/- 4 vs. 67 +/- 8 U/g lung; P < 0.05) compared with that shown in non-AM-depleted mice. In AM-depleted iNOS+/+ mice, septic pulmonary protein leak was restored by AM reconstitution with iNOS+/+ AM (0.9 +/- 0.3 microg EB.g lung(-1).min(-1)) but not with iNOS-/- donor AM. In iNOS-/- mice, sepsis did not induce pulmonary protein leak or iNOS mRNA expression, despite increased pulmonary MPO activity. However, AM depletion in iNOS-/- mice and subsequent reconstitution with iNOS+/+ donor AM resulted in significant sepsis-induced pulmonary protein leak and iNOS expression. Septic pulmonary MPO levels were similar in all AM-reconstituted groups. Thus septic pulmonary protein leak is absolutely dependent on the presence of functional AM and specifically on iNOS in AM. AM iNOS-dependent pulmonary protein leak was not mediated through changes in pulmonary neutrophil influx.  相似文献   

2.
3.
4.
Macrophages activated by exposure to cytokines and/or to endotoxin produce nitric oxide (NO.), a free radical that is a mediator of the host response to infection. Activation induces the expression of nitric oxide synthase, the enzyme that catalyzes formation of NO. from L-arginine and molecular oxygen. We report the cloning of a cDNA encoding the inducible nitric oxide synthase from a murine macrophage cell line, RAW264.7, exposed to interferon-gamma and lipopolysaccharide. Oocytes injected with mRNA transcribed from this cDNA demonstrate arginine-dependent production of nitrite, a stable metabolite of NO.. Nitric production is blocked by the enzyme inhibitor, NG-monomethylarginine, and is independent of calcium/calmodulin. RAW264.7 cells demonstrate rapid accumulation of the nitric oxide synthase-encoding mRNAs upon activation. Comparison of the deduced amino acid sequence to the calcium/calmodulin-dependent nitric oxide synthase previously purified (Bredt, D. S., and Synder, S.H. (1990) Proc. Natl. Acad. Sci. U. S. A. 87, 682-685) and cloned (Bredt, D. S., Hwang, P. M., Glatt, C. E., Lowenstein, C., Reed, R. R., and Synder, S. H. (1991) nature 351, 714-718) from rat brain identifies shared binding sites for the cofactors NADPH and flavins in the C-terminal half of both proteins and an additional conserved region near the N terminus that may recognize L-arginine and/or contribute to the active site.  相似文献   

5.
6.
A calmodulin-dependent nitric oxide synthase was significantly induced in the liver of rats treated intravenously with heat-killed Propionibacterium acnes and 5 days later with Escherichia coli lipopolysaccharide. The apparent calmodulin-dependent and -independent isozymes were separated by Mono Q column chromatography after their partial purification by 2',5'-ADP-agarose affinity chromatography. Both enzymes had a molecular weight of 125,000 as determined by SDS-polyacrylamide gel electrophoresis and required NADPH, tetrahydrobiopterin, and dithiothreitol as cofactors. Their activities were completely inhibited by the specific nitric oxide synthase inhibitors NG-monomethyl-L-arginine and N omega-nitro-L-arginine at 80 and 800 microM, respectively. The peptide maps of these two isozymes with lysylendopeptidase and their reverse-phase column chromatographic profiles were indistinguishable. In the presence of bovine calmodulin, the purified calmodulin-dependent isozyme behaved as a calmodulin-independent isozyme on Mono Q column chromatography. The purified calmodulin-independent isozyme was converted to a calmodulin-dependent isozyme by EDTA and EGTA. Calmodulin blot analysis using 125I-calmodulin showed that the two isozymes bound calmodulin equally efficiently.  相似文献   

7.
We investigated the effect of testosterone, the main sexual steroid hormone in men, upon inducible nitric oxide synthesis in murine macrophages. Incubation of murine macrophages (RAW 264.7 cells) stimulated by bacterial lipopolysaccharide (2 microg/ml) with increasing amounts of testosterone (0.1-40 microM) showed a dose dependent inhibition of inducible nitric oxide synthesis. Inducible nitric oxide synthase protein expression was reduced in a dose dependent manner as revealed by immunoblotting when cells were incubated with increasing amounts of testosterone. This was associated with a decline in iNOS mRNA-levels as determined by competitive semiquantitative PCR. As nitric oxide plays an important role in immune defense and atherosclerosis prevention, testosterone-induced iNOS inhibition could lead to an elevated risk of infection as well as to the development of atherosclerotic lesions.  相似文献   

8.
Antifibrotic role of inducible nitric oxide synthase.   总被引:4,自引:0,他引:4  
Long-term treatment in rats with l-NAME, an isoform-non-specific inhibitor of nitric oxide synthase (NOS), leads to fibrosis of the heart and kidney, suggesting that nitric oxide (NO) may play a role in preventing tissue fibrosis. In this process, a likely target of NO is the quenching of reactive oxygen species (ROS) through peroxynitrite formation, and one possible source for this NO is inducible NOS (iNOS). Using Peyronie's disease (PD) tissue from both human specimens and from a rat model of PD as the source of fibrotic tissue, we investigated if NO derived from iNOS could act as such an antifibrogenic defense mechanism by determining whether: (a) tunical ROS and iNOS are increased in PD; and (b) the long-term inhibition of iNOS activity decreases the NO/ROS balance in the tunica albuginea thereby promoting collagen deposition. It was determined that in the human PD plaque, iNOS mRNA and protein, ROS, collagen, and the peroxynitrite marker, nitrotyrosine, were all increased in comparison to the normal tunica. In the rat model of PD, the fibrotic plaque also showed significant increases in iNOS mRNA and protein, nitrotyrosine, ROS as measured by heme oxygenase-1, and collagen when compared with the normal control tunica. When a selective inhibitor of iNOS, L-NIL, was given to rats with the PD-like plaque, this resulted in a decrease in nitrotyrosine levels but intensified ROS levels and collagen deposition. These data demonstrate that: (a) iNOS induction occurs in both the human and rat PD fibrotic plaque; and (b) that the NO derived from iNOS appears to counteract ROS formation and collagen deposition. Because the inhibition of iNOS activity leads to a decrease in the NO/ROS ratio, thereby favoring the development of fibrosis, it is proposed that iNOS induction in this tissue may be a protective mechanism against fibrosis and abnormal wound healing.  相似文献   

9.
NG-Hydroxy-L-arginine, [15N]-NG-hydroxy-L-arginine, and NG-hydroxy-NG- methyl-L-arginine were used as mechanistic probes of the initial step in the reaction catalyzed by nitric oxide synthase isolated from murine macrophages. NG-Hydroxy-L-arginine was found to be a substrate for nitric oxide synthase with a Km equal to 28.0 microM, yielding nitric oxide and L-citrulline. NADPH was required for the reaction and (6R)-tetrahydro-L-biopterin enhanced the initial rate of nitric oxide formation. The stoichiometry of NG-hydroxy-L-arginine loss to L-citrulline and nitric oxide (measured as nitrite and nitrate) formation was found to be 1:1:1. NG-Hydroxy-L-arginine was also observed in small amounts from L-arginine during the enzyme reaction. Studies with [15N]-NG-hydroxy-L-arginine indicated that the nitrogen in nitric oxide is derived from the oxime nitrogen of [15N]-NG-hydroxy-L- arginine. NG-Hydroxy-NG-methyl-L-arginine was found to be both a reversible and an irreversible inhibitor of nitric oxide synthase, displaying reversible competitive inhibition with K(i) equal to 33.5 microM. As an irreversible inhibitor, NG-hydroxy-NG-methyl-L-arginine gave kinact equal to 0.16 min-1 and KI equal to 26.5 microM. This inhibition was found to be both time- and concentration-dependent as well as showing substrate protection against inactivation. Gel filtration of an NG-hydroxy-NG-methyl-L-arginine-inactivated nitric oxide synthase failed to recover substantial amounts of enzyme activity.  相似文献   

10.
This in vivo study evaluates the effect of N-acetylcysteine (NAC) administration on nitric oxide (NO) production by the inducible form of nitric oxide synthase (iNOS). NO production was induced in the rat by the ip administration of 2 mg/100 g lipopolysaccharide (LPS). This treatment caused: (1) a decrease in body temperature within 90 min, followed by a slow return to normal levels; (2) an increase in plasma levels of urea, nitrite/nitrate, and citrulline; (3) the appearance in blood of nitrosyl-hemoglobin (NO-Hb) and in liver of dinitrosyl-iron-dithiolate complexes (DNIC); and (4) increased expression of iNOS mRNA in peripheral blood mononuclear cells (PBMC). Rat treatment with 15 mg/100 g NAC ip, 30 min before LPS, resulted in a significant decrease in blood NO-Hb levels, plasma nitrite/nitrate and citrulline concentrations, and liver DNIC complexes. PBMC also showed a decreased expression of iNOS mRNA. NAC pretreatment did not modify the increased levels of plasma urea or the hypothermic effect induced by the endotoxin. The administration of NAC following LPS intoxication (15 min prior to sacrifice) did not affect NO-Hb levels. These results demonstrate that NAC administration can modulate the massive NO production induced by LPS. This can be attributed mostly to the inhibitory effect of NAC on one of the events leading to iNOS protein expression. This hypothesis is also supported by the lack of effect of late NAC administration.  相似文献   

11.
Indomethacin (0.14-.5 mM concentration) inhibits nitric oxide production in murine peritoneal macrophages. This was evidenced by measuring both nitrite production or 14C-L-citrulline formation. The inhibition was caused by the diminution of de novo inducible nitric oxide synthase production as demonstrated by Western blotting experiment. The effect of indomethacin after 4 h treatment was irreversible. NO synthase and arginase activities and the uptake of arginine were not directly affected by the drug. Indomethacin also decreased uridine incorporation in macrophages. The effect of indomethacin on the induction of other enzymes (i.e. arginase) was weaker.  相似文献   

12.
13.
We tested the hypotheses that 1) inducible nitric oxide synthase (iNOS) mediates ozone (O3)-induced lung hyperpermeability and 2) mRNA levels of the gene for iNOS (Nos2) are modulated by Toll-like receptor 4 (Tlr4) during O3 exposure. Pretreatment of O3-susceptible C57BL/6J mice with a specific inhibitor of total NOS (N(G)-monomethyl-L-arginine) significantly decreased the mean lavageable protein concentration (a marker of lung permeability) induced by O3 (0.3 parts/million for 72 h) compared with vehicle control mice. Furthermore, lavageable protein in C57BL/B6 mice with targeted disruption of Nos2 [Nos2(-/-)] was 50% less than the protein in wild-type [Nos2(+/+)] mice after O3. To determine whether Tlr4 modulates Nos2 mRNA levels, we studied C3H/HeJ (HeJ) and C3H/HeOuJ mice that differ only at a missense mutation in Tlr4 that confers resistance to O3-induced lung hyperpermeability in the HeJ strain. Nos2 and Tlr4 mRNA levels were significantly reduced and correlated in resistant HeJ mice after O3 relative to those in susceptible C3H/HeOuJ mice. Together, the results are consistent with an important role for iNOS in O3-induced lung hyperpermeability and suggest that Nos2 mRNA levels are mediated through Tlr4.  相似文献   

14.
Inducible NO synthase (iNOS) expression and production of NO are both up-regulated with Helicobacter pylori infection in vivo and in vitro. We determined whether major pathogenicity proteins released by H. pylori activate iNOS by coculturing macrophages with wild-type or mutant strains deficient in VacA, CagA, picB product, or urease (ureA(-)). When filters were used to separate H. pylori from macrophages, there was a selective and significant decrease in stimulated iNOS mRNA, protein, and NO(2)(-) production with the ureA(-) strain compared with wild-type and other mutants. Similarly, macrophage NO(2)(-) generation was increased by H. pylori protein water extracts of all strains except ureA(-). Recombinant urease stimulated significant increases in macrophage iNOS expression and NO(2)(-) production. Taken together, these findings indicate a new role for the essential H. pylori survival factor, urease, implicating it in NO-dependent mucosal damage and carcinogenesis.  相似文献   

15.
16.
17.
The inducible isoform of nitric oxide synthase (iNOS) and three zinc tetrathiolate mutants (C104A, C109A, and C104A/C109A) were expressed in Escherichia coli and purified. The mutants were found by ICP-AES and the zinc-specific PAR colorimetric assay to be zinc free, whereas the wild-type iNOS zinc content was 0.38 +/- 0.01 mol of Zn/mol of iNOS dimer. The cysteine mutants (C104A and C109A) had an activity within error of wild-type iNOS (2.24 +/- 0.12 micromol of NO min(-1) mg(-1)), but the double cysteine mutant had a modestly decreased activity (1.75 +/- 0.14 micromol of NO min(-1) mg(-1)). To determine if NO could stimulate release of zinc and dimer dissociation, wild-type protein was allowed to react with an NO donor, DEA/NO, followed by buffer exchange. ICP-AES of samples treated with 10 microM DEA/NO showed a decrease in zinc content (0.23 +/- 0.01 to 0.09 +/- 0.01 mol of Zn/mol of iNOS dimer) with no loss of heme iron. Gel filtration of wild-type iNOS treated similarly resulted in approximately 20% more monomeric iNOS compared to a DEA-treated sample. Only wild-type iNOS had decreased activity (42 +/- 2%) after reaction with 50 microM DEA/NO compared to a control sample. Using the biotin switch method under the same conditions, only wild-type iNOS had increased levels of S-biotinylation. S-Biotinylation was mapped to C104 and C109 on wild-type iNOS using LysC digestion and MALDI-TOF/TOF MS. Immunoprecipitation of iNOS from the mouse macrophage cell line, RAW-264.7, and the biotin switch method were used to confirm endogenous S-nitrosation of iNOS. The data show that S-nitrosation of the zinc tetrathiolate cysteine results in zinc release from the dimer interface and formation of inactive monomers, suggesting that this mode of inhibition might occur in vivo.  相似文献   

18.
19.
Nitric oxide (NO) synthase (EC 1.14.23) has been purified to apparent homogeneity from rat macrophages. The purification procedure involves affinity chromatography with adenosine 2',5'-diphosphate-agarose and gel filtration chromatography on a Superose 12 HR 10/30 column. The apparent molecular weight is 300,000 by gel filtration. On polyacrylamide gel electrophoresis in sodium dodecyl sulfate, the enzyme migrates as a single protein band with Mr = 150,000. The purified enzyme is colorless, and an absorption maximum is observed at 280 nm. The half-life of the enzyme activity is 6 h at pH 7.4 and 4 degrees C. The enzyme activity required the presence of NADPH, (6R)-5,6,7,8-tetrahydro-L-biopterin, and dithiothreitol. Although the cerebellar and endothelial enzyme require Ca2+ and calmodulin, these are not required by the macrophage enzyme. The macrophage nitric oxide synthase (an inducible enzyme) seems to be different from the cerebellar and endothelial enzyme (a constitutive enzyme).  相似文献   

20.
Peroxisome proliferator-activated receptor-gamma (PPARG) and PPAR-alpha (PPARA) control metabolic processes in many cell types and act as anti-inflammatory regulators in macrophages. PPAR-activating ligands include thiazolidinediones (TZDs), such as troglitazone, once frequently used to treat insulin resistance as well as symptoms of polycystic ovary syndrome (PCOS). Since macrophages within the ovary mediate optimal follicle development, TZD actions to improve PCOS symptoms are likely to be partly mediated through these specifically localized immune cells. In mouse ovary, PPARG protein was expressed in granulosa cells and in isolated cells localized to theca, stroma, and corpora lutea, consistent with EMR1+ macrophages. Isolation of immune cells (EMR1+ or H2+) showed that Pparg and Ppara were expressed in ovarian macrophages at much higher levels than in peritoneal macrophages. Ovulatory human chorionic gonadotropin downregulated expression of Pparg and Ppara in EMR1+ ovarian macrophages, but no hormonal responsiveness was observed in H2+ cells. Downstream anti-inflammatory effects of PPARG activation were analyzed by in vitro treatment of isolated macrophages with troglitazone. Interleukin-1 beta (Il1b) expression was not altered, and tumor necrosis factor-alpha (Tnf) expression was affected in peritoneal macrophages only. In ovarian macrophages, inducible nitric oxide synthase (Nos2), an important proinflammatory enzyme that regulates ovulation, was significantly reduced by troglitazone treatment, an effect that was restricted to cells from the preovulatory ovary. Thus, expression of PPARs within ovarian macrophages is hormonally regulated, reflecting the changing roles of these cells during the ovulatory cycle. Additionally, ovarian macrophages respond directly to troglitazone to downregulate expression of proinflammatory Nos2, providing mechanistic information about ovarian effects of TZD treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号