首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of the present series of experiments was to investigate the effect of the size of follicle from which the oocytes originate on their subsequent in vitro developmental ability. Ovarian follicles were isolated and grouped according to size (2–6 mm, >6 mm). Primary oocytes were carefully liberated and grouped according to morphology into one of five categories: denuded; expanded; with two or three layers of cumulus; with four or five layers; and with many (six or more) layers. Following in vitro maturation (IVM), fertilization (IVF), and culture (IVC), more oocytes with many layers of cumulus (P < 0.01, 70.2%, 73/104 vs. 46.8%, 87/186, respectively) and a higher proportion of blastocysts were obtained from follicles > 6 mm compared to 2–6 mm follicles (P < 0.01, 65.9%, 60/91 from >6 mm follicles vs. 34.3%, 34/99 from 2–6 mm follicles, respectively). Use of follicular fluid (BFF) from follicles of different sizes in the IVM medium did not significantly increase the cleavage rate or blastocyst yield compared to controls. Administration of procine folliclestimulating hormone (pFSH) to donors prior to slaughter was investigated as a possible means of increasing the number of larger sized follicles in the ovaries and, thereby, the quality of the recovered oocytes. It was found that administration of six injections of pFSH beginning 3 days prior to slaughter resulted in a significant increase (P < 0.001) in the proportion of follicles >6 mm in diameter (31.6%) compared to that in nontreated controls (6.6%) and to animals that received only four injection groups (9.4%). The blastocyst yield from oocytes originating from >6 mm follicles, whether from unstimulated or from pFSH-treated animals, was approximately double that of oocytes from 2–6 mm follicles (P < 0.01; 42.9%, 24/56 for >6 mm follicles vs. 22.8%, 21/92 for 2–6 mm follicles, respectively, for the 6 pFSH group; P > 0.05; 62.5%, 5/8 for >6 mm follicles vs. 32.8%, 22/67 for 2–6 mm follicles, respectively, for the control). © 1994 Wiley-Liss, Inc.  相似文献   

2.
The effect of maturation in vitro on metabolism of individual bovine oocytes was examined. Three maturation media were used: standard, consisting of tissue culture medium 199 supplemented with serum and pyruvate, and a chemically defined medium supplemented with either amino acids or lactate. Development to blastocyst was significantly higher (P < 0.05) after maturation in standard medium (47%) than in defined medium with lactate (17%) but was not different than maturation in defined medium with amino acids (29%). Glucose metabolism through the Krebs cycle was not different after maturation in standard or defined medium with amino acids or lactate (0.48, 0.43, 0.38 pmol/oocyte/3 hr, respectively) but was affected by the removal of unlabeled pyruvate from the metabolic measurement medium (0.16, 0.21, 0.27 pmol/oocyte/3 hr, respectively). When physiological concentrations of glucose (0.52 mM) and pyruvate (0.5 mM) were used, oxidation of pyruvate was not different after maturation in standard or defined medium with amino acids or lactate (1.38, 1.13, 1.13 pmol/ oocyte/3 hr, respectively); however, glycolysis was significantly increased (P < 0.05) in treatments that supported higher blastocyst development (standard medium, 1.77 pmol/oocyte/3 hr; defined medium with amino acids, 1.58 pmol/oocyte/3 hr; defined medium with lactate, 1.32 pmol/oocyte/3 hr). Metabolism of glucose through the Krebs cycle was low in all media. In contrast, oxidation of pyruvate readily occurred after maturation in vitro. Metabolism of glucose through the Embden-Meyerhof pathway is important during oocyte maturation in vitro, and higher glycolytic rates in in vitro matured oocytes may reflect increased developmental competence.  相似文献   

3.
The role of follicle cells in the acrosome reaction of frozen-thawed bovine spermatozoa, in vitro fertilization, cleavage, and development in vitro was investigated. Cumulus-oocyte complexes were cocultured and matured in vitro with additional granulosa cells for 24 hr. Immediately before in vitro insemination, the oocytes were divided into three types with different follicle cells: denuded and corona- and cumulus-enclosed oocytes. The proportion of live, acrosome-reacted spermatozoa significantly increased at 3 and 6 hr after insemination in all types of oocytes. However, the mean proportion of live, acrosome-reacted spermatozoa that inseminated cumulus-enclosed oocytes at 6 hr after insemination was significantly higher than that of spermatozoa inseminating denuded oocytes (18.3% and 13.3%, respectively). The frequency of in vitro fertilization was significantly higher for cumulus-enclosed oocytes (65.4%) than for denuded and corona-enclosed oocytes (30.8% and 39.4%, respectively). Cumulus-enclosed oocytes when cocultured with oviduct epithelial cells also had significantly higher rates of cleavage (two- to eight-cell, 59.8%; eight-cell, 22.4%) and blastocyst formation (7.7%) than denuded and corona-enclosed oocytes. No eight-cell embryos or more advanced stages of embryonic development were observed in either denuded or corona-enclosed oocytes without the coculture. The present results indicate that cumulus cells at fertilization play an important role in inducing the acrosome reaction and promoting a high fertilization rate, cleavage, and development into blastocysts in vitro.  相似文献   

4.
The present study examined the competence of oocytes from bovine ovaries stored at low temperatures for at least 1 day, which is the necessary time period to complete inspection for bovine spongiform encephalopathy. Storage of ovaries at 10 degrees C for 24 h did not affect oocyte maturation (68% versus 68%) or the potential of oocytes to develop into day 8 blastocysts after in vitro fertilization (25% versus 27%), parthenogenetic activation (19% versus 25%), or somatic cell nucleus transfer (27% versus 32%) compared with controls. In vitro-fertilized and parthenogenetic oocytes from ovaries stored at 10 degrees C for 48 h had a significantly decreased maturation rate and developmental potential, but nucleus-transferred oocytes that received cultured cumulus cells did not (27% versus 32%). Thus, bovine ovaries can be stored at 10 degrees C for at least 24 h without decreasing oocyte maturation competence or the developmental potential of in vitro-fertilized, parthenogenetically activated, and somatic cell nucleus-transferred oocytes, at least to the blastocyst stage. The present study provides valuable information with regard to removing bovine ovaries from abattoirs after testing for bovine spongiform encephalopathy.  相似文献   

5.
Eckert J  Niemann H 《Theriogenology》1995,43(7):1211-1225
This study examined the role of protein supplementation at the various steps of the in vitro production of bovine embryos derived from two different morphological categories of COC. The basic medium was TCM 199 and was supplemented with hormones during maturation in vitro and either estrous cow serum (ECS), bovine serum albumin (BSA) at various concentrations or polyvinyl-alcohol (PVA). Fertilization in vitro was carried out using frozen-thawed semen or one bull in Fert-talp containing heparin, hypotaurin and epinephrine and either 6 mg/ml BSA or 1 mg/ml PVA. In vitro culture up to the blastocyst stage was performed in TCM 199 supplemented with either ECS, BSA or PVA. The first experiment investigated the influence of different medium-supplements (ECS, BSA or PVA) on nuclear maturation and revealed no significant differences among treatment groups nor between categories of COC (63.9% to 74.9% and 48.9% to 77.0%, respectively). The time course of in vitro fertilization was elucidated in Experiment 2 in medium supplemented with either protein or PVA during maturation and fertilization. Penetration was not affected (70.9% to 79.3% penetration 12 h after onset of oocyte-sperm-co-incubation), but formation of pronuclei was decreased (P < 0.05) 12 and 19 h after onset of oocyte-sperm-co-incubation and was retarded in medium supplemented with PVA (12 h: 63.8 vs 21.4 %; 19 h: 57.5 vs 20.8 %, respectively) while cleavage was not affected. In Experiment 3, six treatment groups were formed in which the two different morphological categories of cumulus-oocyte-complexes (COC) were incubated in basic medium supplemented with 1) ECS during maturation and embryo culture and BSA during fertilization; 2) PVA during maturation and embryo culture, fertilization medium with PVA; 3) PVA during maturation and embryo culture, fertilization medium with BSA; 4) BSA (1 mg/ml) during maturation, fertilization and embryo culture; 5) BSA (6 mg/ml) during maturation, fertilization and embryo culture; and 6) BSA (10 mg/ml) during maturation, fertilization and embryo culture. The rates of cleavage and the development to morulae or blastocysts did not differ (P > 0.05) among treatment groups and between both categories of COC and were showing a high degree of variability (cleavage 54.0% to 65.1% and 41.3% to 55.7%, respectively; morulae 25.3% to 53.0% and 26.0% to 51.2%, respectively; blastocysts 5.4% to 24.7% and 0.6% to 20.3%, respectively). Parthenogenetic activation only rarely occurred in medium containing PVA throughout all steps of in vitro production of bovine embryos (Experiment 4) and led to early cleavage stages (8%), but no development to morula- or blastocyst-stages was observed. It is concluded that 1) formation of pronuclei was retarded in medium lacking protein-supplementation, indicating that BSA is required for regular fertilization in vitro and 2) under our experimental conditions, protein-supplementation is not necessary for maturation and development up to the blastocyst stage in vitro.  相似文献   

6.
This study examined the relationship between survivin expression and the stage of development of in vitro cultured bovine oocytes and embryos; and whether survivin expression is affected by the quality of cumulus–oocyte complexes (COCS) or the quality of pre-implantation embryos. A polyclonal antibody was prepared using recombinant bovine survivin protein. Expression of survivin mRNA and protein was analyzed by real-time quantitative RT-PCR and immunocytochemistry. In the first experiment, survivin mRNA expression was examined at developmental stages from germinal vesicle (GV) oocyte to blastocyst, it was significantly decreased after fertilization of matured oocytes (P < 0.05), then increased slightly to the 8-cell stage followed by rapid increases at the morula and blastocyst stages (P < 0.05). In the second experiment, the effect of oocyte quality on survivin protein, pro-apoptotic (bax, caspase-3) and anti-apoptotic (survivin, bax inhibitor) mRNA expression was examined. Survivin protein was more strongly expressed in good quality COCS than in poor quality COCS. The expression of the anti-apoptotic genes, survivin and bax inhibitor, was significantly higher (P < 0.05) and that of the pro-apoptotic genes, bax and caspase-3, was significantly lower (P < 0.05) in good compared to poor quality COCS. The developmental competence of good quality COCS (30.4% blastocysts) was significantly better than that of poor quality COCS. In the last experiment also, we confirmed that significantly higher expression of survivin and bax inhibitor genes and significantly lower expression of bax and caspase-3 genes was resulted in good quality blastocysts than in poor quality blastocysts (P < 0.05). It was concluded that the expression of survivin was related to the quality of COCS, their developmental competence and the quality of in vitro produced blastocysts. Consequently, survivin may be a good candidate marker for embryo quality.  相似文献   

7.
Ali A  Coenen K  Bousquet D  Sirard MA 《Theriogenology》2004,62(9):1596-1606
Protein supplementation during in vitro maturation can profoundly affect both the rate and overall efficiency of the maturation procedure. The present study was conducted to assess the ability of different concentrations (1, 5, and 10%) of bovine follicular fluid (bFF) to support in vitro maturation of oocytes and subsequent developmental capacity. The bFF was derived either from competent follicles ( > 8 mm) obtained by transvaginal recovery following superovulation or from a pool of small follicles (2-5 mm) from abbatoir-derived ovaries. Bovine oocytes were cultured for 24 h in synthetic oviduct fluid medium (m-SOF) supplemented with polyvinylpyrrolidone. Following fertilization and embryo culture, more oocytes (P < 0.05) reached the blastocyst stage when oocytes were cultured with 5% bFF from competent follicles (41 +/- 3.7%) compared with bFF derived from small follicles (16 +/- 2.9%). Estradiol and recombinant human follicle stimulating hormone added to the competent bFF during maturation acted in synergy to increase blastocyst production rate (P < 0.05); this blastocyst production rate (57 +/- 1.2%) was higher than those obtained with the addition of these two hormones to bFF derived from small follicles (26 +/- 2.9%). The quality of blastocysts obtained was reflected by inner cell mass (51.30 +/- 3.5 and 25.50 +/- 3.7) and trophectoderm cell numbers (99.72 +/- 2.5 and 94.80 +/- 4.7) for bFF from competent and small follicles, respectively. In conclusion, follicular fluid originating from competent follicles increased the developmental competence of abbatoir-derived oocytes.  相似文献   

8.
Aim of the study was to investigate the effect of vitrification on viability, cytoskeletal integrity and in vitro developmental competence after in vitro fertilization (IVF) of oocytes vitrified before or after in vitro maturation (IVM) using a pig model. Oocytes from abattoir-derived porcine ovaries were vitrified at either the germinal vesicle (GV) or metaphase II (MII) stage by modified solid surface vitrification (SSV). Oocyte viability was evaluated by stereomicroscopic observation whereas their nuclear stage and morphology of microtubules and F-actin were observed by confocal microscopy after immunostaining. Fertilization was assessed by orcein staining. The survival rate after vitrification was higher for MII-stage than for GV-stage oocytes. However, the ability of surviving oocytes to reach the MII stage after vitrification at the GV stage (GV-vitrified oocytes) was similar to that of control oocytes. Furthermore, after IVM, GV-vitrified oocytes had better spindle and F-actin integrity than oocytes vitrified at the MII stage (MII-vitrified oocytes). In accordance with this result, GV-vitrified oocytes had better ability to extrude the second polar body and support male pronucleus formation after in vitro fertilization (IVF), in comparison to MII-vitrified oocytes. Fertilization rates did not differ among groups. Finally, the ability of GV-vitrified oocytes to develop into embryos was superior to that of MII-vitrified oocytes. However, both vitrified groups showed reduced blastocyst development compared with the control group. In conclusion vitrification of porcine oocytes at the GV stage is advantageous in conferring better cytoskeletal organization and competence to develop to the blastocyst stage in comparison with vitrification at the MII stage.  相似文献   

9.
10.
The in vitro ability between fetal and cow oocytes to resume meiosis and progression to metaphase-II (M-II) was compared. Cumulus oocyte complexes (COCs) were harvested from 2 to 6 mm follicles from ovaries of 7.5 month to term fetuses and adult cows. Cumulus cells were removed using 3 mg/ml hyaluronidase and repeated pipetting. Denuded oocytes were fixed in 3% glutaraldehyde, stained with DAPI and evaluated under fluorescent microscopy for nuclear status before in vitro maturation (IVM). COCs from fetal and adult ovaries were also matured in 200 microl droplets of medium 199 supplemented with 10 microg/ml FSH, 10/ml LH, 1.5 microg/ml estradiol, 75 microg/ml streptomycin, 100 IU/ml penicillin, 10 mM hepes and 10% FBS for 24 h at 39 degrees C and 5% CO(2). Matured oocytes were fixed, stained and evaluated as explained above for nuclear status namely stage of germinal vesicle (GV) development and subsequent meiotic competence. Data were analyzed using chi-square analysis. The majority of fetal oocytes (P<0.05) before IVM were at GV stages GV-I (27.7%), GV-II (37.6%) and GV-V (22.8%) compared to cow oocytes, which were at GV stages IV (28.3%) and V (46.7%). After IVM, fewer fetal oocytes were at earlier stages of GV development and majority (P<0.05) were at GV-V (24.0%), premetaphase (17.4%) and metaphase-I (M-I: 7.2%) stages. However, after IVM, more cow oocytes matured to M-II than did fetal oocytes (93.7% versus 26.9%; P<0.05). In conclusion, fetal oocytes do not mature in vitro as well as cow oocytes. Our findings suggest that the low meiotic competence of fetal oocytes can be attributed to their being at earlier stages of GV development before IVM.  相似文献   

11.
The present study examined the effect of low culture temperature during in vitro maturation (IVM) of pig oocytes on their nuclear maturation, fertilisation and subsequent embryo development. In experiment 1, oocytes were cultured at 35 or 39 degrees C for 44 h in modified tissue culture medium 199 supplemented with 10 ng/ml epidermal growth factor, 0.57 mM cysteine, 75 microg/ml potassium penicillin G, 50 microg/ml streptomycin sulphate, 0.5 microg/ml LH and 0.5 microg/ml FSH to examine the nuclear maturation status. In experiment 2, oocytes were cultured at 35 degrees C for 44 or 68 h and nuclear maturation was examined. In experiment 3, oocytes matured for 44 or 68 h at 39 degrees C and for 68 h at 35 degrees C were co-incubated with frozen-thawed spermatozoa for 5-6 h. Putative embryos were transferred into North Carolina State University (NCSU) 23 medium containing 0.4% bovine serum albumin. At 12 h after insemination, some oocytes were fixed to examine the fertilisation rate and the remaining embryos were examined at 48 and 144 h for cleavage and blastocyst formation rate, respectively. Compared with 39 degrees C, culture of oocytes at 35 degrees C for 44 h significantly (p < 0.05) reduced the metaphase II (M II) rate (79% vs 12%). However, extension of culture time to 68 h at 35 degrees C significantly increased (p < 0.05) the M II rate (7% vs 58%). In experiment 3, compared with other groups, fewer (p < 0.05) oocytes reached M II when cultured at 35 degrees C for 68 h (69-81% vs 49%). Extension of culture duration to 68 h at 39 degrees C stimulated spontaneous activation (28%) of oocytes. No difference in cleavage rates was observed among different groups. Compared with oocytes matured for 44 h at 39 degrees C (31%), the proportion of blastocysts obtained was low (p < 0.05) for oocytes matured at 35 degrees C (13%) or 39 degrees C (3%) for 68 h. The results indicate that lower culture temperature can delay nuclear maturation of pig oocytes. However, extension of culture time can stimulate nuclear maturation and these oocytes are capable of fertilisation and development to the blastocyst stage at moderate rates.  相似文献   

12.
The objective of this study was to determine an optimum maturation period of canine oocytes for the development in vitro after in vitro fertilization (IVF). Canine oocytes larger than 110 micrometers in diameter, which were collected from ovaries at the follicular phase of the reproductive cycle, were cultured for each time (48, 72 and 96 h) in TCM 199 medium supplemented with 10% canine serum, fertilized, and then cultured in vitro for 8 days. Significantly more oocytes reached metaphase II (MII) in the 72-h culture group than in the 48-h culture group (25.6% vs. 41.0%). The percentages of oocytes that reached MII or beyond after maturation culture did not differ significantly between the 72- and 96-h culture groups, but the percentage of parthenogenetically activated oocytes in the 96-h culture group was significantly higher than that in the 72-h culture group. The percentages of cleaved embryos after IVF were significantly higher in the 48- and 72-h culture groups than in the 96-h culture group. In the 48-h culture group, 3.9% of fertilized oocytes developed to the 16-cell stage or beyond, but none of the cleaved embryos in the 72- and 96-h culture groups developed to the same stage. These results indicate that full nuclear maturation of oocytes collected from ovaries at the follicular phase occurs after 72 h of in vitro culture. However, an optimum maturation period (48 h) for the in vitro development of canine oocytes after IVF may be different from the period necessary to reach the maximal oocyte maturation rate, when based on the developmental stage of the cleaved embryos.  相似文献   

13.
In this study, we evaluated mitochondrial distribution and ATP content of individual bovine oocytes before and after in vitro maturation (IVM). Cumulus-oocyte complexes were classified according to morphological criteria: category 1, homogeneous oocyte cytoplasm, compact multilayered cumulus oophorus; category 2, cytoplasm with small inhomogeneous areas, more than five layers of compact cumulus; category 3, heterogeneous/vacuolated cytoplasm, three to five layers of cumulus including small areas of denuded zona pellucida; category 4, heterogeneous cytoplasm, completely or in great part denuded. In immature oocytes, staining with MitoTracker green revealed mitochondrial clumps in the periphery of the cytoplasm, with a strong homogenous signal in category 1 oocytes, a weaker staining in category 2 oocytes, allocation of mitochondria around vacuoles in category 3 oocytes, and poor staining of mitochondria in category 4 oocytes. After IVM, mitochondrial clumps were allocated more toward the center, became larger, and stained more intensive in category 1 and 2 oocytes. This was also true for category 3 oocytes; however, mitochondria maintained their perivacuolar distribution. No mitochondrial reorganization was seen for category 4 oocytes. Before IVM, the average ATP content of category 1 oocytes (1.8 pmol) tended to be higher than that of category 2 oocytes (1.6 pmol) and was significantly (P < 0.01) higher than in category 3 (1.4 pmol) and 4 oocytes (0.9 pmol). The IVM resulted in a significant (P < 0.01) increase in the average ATP content of all oocyte categories, with no difference between oocytes extruding versus nonextruding a polar body. After in vitro fertilization (IVF) and culture, significantly (P < 0.05) more category 1 and 2 than category 3 and 4 oocytes developed to the morula or blastocyst stage (determined 168 h after IVF). Total cell numbers of expanded blastocysts derived from category 1 and 2 oocytes were significantly (P < 0.05) higher than of those originating from category 3 and 4 oocytes. These data indicate that mitochondrial reorganization and ATP levels are different between morphologically good and poor oocytes and may be responsible for their different developmental capacity after IVF.  相似文献   

14.
To determine the role of cumulus cells in oocyte maturation, we carried out an investigation on the effects of addition of cumulus cells to the maturation medium on the developmental competence of corona-enclosed oocytes and oocytes denuded from their somatic cells. The addition of cumulus cell (1.6 x 10(6) cells/mL) improved the development of bovine corona-enclosed oocytes, however, addition of a similar number of cumulus cells as cumulus-oocyte-complexes (COCs, cumulus cell density: 4.2 x 10(6) cells/mL) had no effect on the development of oocytes denuded from their somatic cells. To determine if corona-enclosed oocytes can obtain developmental competence without the addition of extra cumulus cells, the effects of cell density during in vitro maturation on the developmental competence were studied. A density of 1.6 to 3.2 x 10(6) cumulus cells/mL was the most effective for in vitro maturation of oocytes with intact gap junctions. The effects of the medium conditioned by COCs on the developmental competence of oocytes was also examined. It was demonstrated that COC-conditioned medium improved the development of bovine oocytes to the blastocyst stage. These data suggest that the developmental competence of bovine oocytes surrounded with corona cells is supported in a cell density-dependent manner in the maturation medium. In addition, the data indicate that cumulus cells benefit bovine oocyte development either by secreting soluble factors which induce developmental competence or by removing an embryo development-suppressive component from the medium.  相似文献   

15.
The aim of the present study was to determine whether androgens and progesterone influence the in vitro maturation of bovine oocytes as assessed by cleavage rates and competence to form blastocysts after in vitro fertilization. Bovine cumulus-oocyte complexes were cultured (n = 20 per drop) for 22-24 h at 38.5 degrees C in TCM-199 medium supplemented with 10% oestrous cow serum, eCG (2.5 iu ml(-1)) and a range of treatments that included aromatizable (testosterone; 100 nmol l(-1)) and non-aromatizable (dihydrotestosterone; 100 nmol l(-1)) androgens, an androgen antagonist (flutamide; 36 micromol l(-1)), progesterone (300 nmol l(-1)) and a progesterone antagonist (mifeprisone, RU486; 100 nmol l(-1)). Production of inhibin A, total alpha-subunit, activin A and follistatin by each group of cumulus-oocyte complexes was also measured, since inhibin-related peptides have been implicated as modulators of oocyte maturation and their production may be influenced by steroids and anti-steroids. Both testosterone and dihydrotestosterone increased oocyte cleavage rate (25%; P < 0.01) and dihydrotestosterone also increased (24%; P < 0.05) the proportion of oocytes that reached the >/= eight-cell stage. However, neither androgen affected blastocyst yield, or the proportion of blastocysts that hatched. The stimulatory effect of dihydrotestosterone on cleavage rate was reduced by flutamide but the anti-androgen had no effect when tested alone. Treatment with testosterone, but not dihydrotestosterone, decreased (P < 0.05) endogenous follistatin and increased (P < 0.05) the activin A:follistatin ratio in maturation medium. Concentrations of inhibin A, total alpha-subunit and activin A were not affected significantly by androgen or flutamide. Addition of progesterone or the anti-progestin mifepristone to cumulus-oocyte complexes had no effect on cleavage rate. However, progesterone reduced by approximately 40% (P < 0.05) the proportions of both total oocytes and cleaved oocytes that formed blastocysts. This effect was partially reversed by mifepristone. Neither progesterone nor mifepristone affected inhibin A, activin A or follistatin production. However, total alpha-subunit concentration was significantly greater in the progesterone-treated group than in the controls (50%; P < 0.05), indicating that the negative effect of progesterone on blastocyst yield may be mediated by increased inhibin alpha-subunit expression by cumulus cells.  相似文献   

16.
In the present study, oocytes retrieved from cross bred Karan Fries cows by ovum pick-up technique were graded into Group 1 and Group 2, based on the morphological appearance of the individual cumulus–oocyte complexes (COCs). To analyze whether the developmental potential of the COCs bears a relation to morphological appearance, relative expression of a panel of genes associated with; (a) cumulus–oocyte interaction (Cx43, Cx37, GDF9 and BMP15), (b) fertilization (ZP2 and ZP3), (c) embryonic development (HSF1, ZAR1 and bFGF) and (d) apoptosis and survival (BAX, BID and BCL-XL, MCL-1, respectively) was studied at two stages: germinal vesicle (GV) stage and after in vitro maturation. The competence was further corroborated by evaluating the embryonic progression of the presumed zygotes obtained from fertilization of the graded COCs. The gene expression profile and development rate in pooled A and B grade (Group 1) COCs and pooled C and D grade (Group 2) COCs were determined and compared according to the original grades. The results of the study demonstrated that the morphologically characterized Group 2 COCs showed significantly (P<0.05) lower expression for most of the genes related to cumulus–oocyte interplay, fertilization and embryonic development, both at GV stage as well as after maturation. Group 1 COCs also showed greater expression of anti-apoptotic genes (BCL-XL and MCL1) both at GV stage and after maturation, while pro-apoptotic genes (BAX and BID) showed significantly (P<0.05) elevated expression in poor quality COCs at both the stages. The cleavage rate in Group 1 COCs was significantly higher than that of Group 2 (74.46±7.06 v. 31.57±5.32%). The development of the presumed zygotes in Group 2 oocytes proceeded up to 8- to 16-cell stages only, while in Group 1 it progressed up to morulae (35.38±7.11%) and blastocyst stages (9.70±3.15%), indicating their better developmental potential.  相似文献   

17.
A pathogen which has been shown to commonly contaminate in vitro bovine embryo production system is bovine pestivirus (bovine viral diarrhea virus). Three experiments were designed to evaluate the in vitro maturation (experiment I), fertilization (experiment II) and embryo development (experiment III) of immature oocytes, inseminated oocytes and presumptive zygotes in the presence of a bovine pestivirus (non-cytopathic, nCP type 1). The virus inoculum used was derived from a persistently infected cow. In experiment I, follicular oocytes (n=1257) recovered from slaughterhouse derived ovaries were randomly assigned to either a control group (n=578) which did not become exposed to bovine pestivirus and a treatment group (n=679) which was inoculated with bovine pestivirus (2.20-3.69 log(10) TCID(50)/50 microl) at the time of commencement of in vitro maturation. Overall, there was no significant difference between the control and pestivirus inoculated oocytes in either the cumulus cell expansion rate (79+/-7.5% versus 74+/-10.7%) or the nuclear maturation rate (89+/-4.8% versus 85+/-7.4%), respectively. In experiment II, in vitro matured oocytes (n=607) were inseminated either in the absence (control; n=301) or the presence of bovine pestivirus (4-4.6 log(10) TCID(50)/50 microl; n=306). A significant (P<0.01) reduction in the overall number of fertilized oocytes with two well formed male and female pronuclei was observed in the treatment group compared to the control group (58.5+/-5.8% versus 73.3+/-3.6%, respectively). In experiment III, after in vitro maturation and fertilization, presumptive zygotes were randomly assigned to either a control group (n=139) which was not exposed to bovine pestivirus or a treatment group which was inoculated with bovine pestivirus (2.97-4.47 log(10) TCID(50)/30 microl; n=139). The zygotes were then cultured under mineral oil in an atmosphere of 88% N(2), 7% O(2) and 5% CO(2) at 39 degrees C. The morphologic appearance of the embryos was assessed 48 h after the commencement of culture, and then every 48 h up to days 7-8 after insemination. The 22% (31/139) and 3.6% (5/139) of the presumptive zygotes developed to the morula or blastocyst stage in the control and the bovine pestivirus inoculated groups, respectively (P<0.001). This study demonstrates that bovine pestivirus has a significant detrimental effect on in vitro fertilization and early in vitro embryo development.  相似文献   

18.
The effect of glucose (0, 1.5, 5.6 or 20.0 mM) in synthetic oviduct fluid supplemented with 20 amino acids (SOFaa) on the developmental competence of bovine oocytes after in vitro fertilization was investigated. Intracellular reactive oxygen species (ROS) and the glutathione content of bovine oocytes matured in SOFaa containing 0-20.0 mM glucose were also examined. When oocytes were matured in SOFaa without glucose, the nuclear maturation rate was lower than that in oocytes matured in glucose-containing medium. The developmental competence to the blastocyst stage of oocytes matured in 1.5 mM glucose was higher than that of oocytes matured in 20.0 mM glucose. In addition, the intracellular ROS content of oocytes matured in 0, 1.5 or 5.6 mM glucose was lower than that of oocytes matured in 20.0 mM glucose. Furthermore, the intracellular glutathione content of oocytes matured in 0, 1.5 or 5.6 mM glucose was higher than that of oocytes matured in 20.0 mM glucose. These results show that excessive glucose in the medium for oocyte maturation impairs the development of bovine oocytes to the blastocyst stage, possibly due to the increase of ROS and the decrease in the intracellular glutathione content of bovine oocytes.  相似文献   

19.
Bovine oocytes (90 to 99 microns in diameter) were isolated from early antral follicles (0.5 to 0.7 mm in diameter). Cumulus-oocyte complexes (COC) with pieces of parietal granulosa were embedded in collagen gels and cultured for 14 d. After in vitro growth culture, oocytes recovered from the collagen gels were further matured, fertilized and cultured in vitro, and then were transferred to recipient cows. After 14 d of growth culture, 37% of the oocytes (203/556) showed normal morphology in the collagen gels. The mean diameter of the oocytes was 110.1 +/- 6.0 microns, significantly larger (P < 0.01) than before growth culture (94.8 +/- 2.7 microns), and 77% were at the germinal vesicle stage while 23% had undergone germinal vesicle breakdown. After 24 h of maturation culture followed by insemination, 27% of in vitro-grown oocytes reached the second metaphase, and 42% of the oocytes were normally fertilized. After insemination, 18.2% of in vitro-grown oocytes cleaved and 3.7% developed to the blastocyst stage. Three blastocysts obtained from in vitro-produced 90- to 99-micron oocytes were transferred to 3 recipients. One recipient subsequently became pregnant and delivered a live calf on Day 277. These results demonstrated for the first time that 90 to 99-micron oocytes from early antral follicles can complete growth and acquire full developmental competence in vitro so that live young can be produced after maturation, fertilization, subsequent culture in vitro, and transfer to recipient cows.  相似文献   

20.
The present study was conducted to examine the effect of ascorbic acid 2-O-alpha-glucoside (AA-2G), a stable ascorbate derivative, on the sustenance of cytoplasmic maturation responsible for subsequent developmental competence after in vitro fertilization of porcine oocytes. Cumulus-oocyte complexes were cultured for 44 h in North Carolina State University 37 medium supplemented with cysteine, gonadotropins, 10% (v:v) porcine follicular fluid, and 0-750 microM AA-2G. When oocytes were matured in the presence of 250 microM AA-2G, their ability to promote transformation of the sperm nucleus into the male pronucleus (MPN) was strongly enhanced after in vitro fertilization. Similarly, the presence of 25 microM beta-mercaptoethanol (ME) enhanced the degree of progression to MPN of penetrated sperm by associating with the increase in intracellular glutathione (GSH) content. Although the AA-2G treatment during oocyte maturation showed no influence on the GSH concentration, significantly higher levels of ascorbic acid (AsA) were detected in these oocytes than in those oocytes cultured without AA-2G (P < 0.05). The length of DNA migration encompassed by reactive oxygen species (ROS), generated by the hypoxanthine-xanthine oxidase system, was not increased in the oocytes treated with AA-2G, whereas ME treatment could not block the DNA damage by ROS. These findings indicate that AA-2G in maturation medium can potentiate the cellular protection of oocytes against oxidative stress by continuously supplying AsA. The proportion of development to the blastocyst stage after in vitro insemination was significantly increased in oocytes matured with AA-2G (P < 0.05), and this proportion showed no difference in comparison with that of oocytes treated with ME. These findings suggest that a critical concentration of intracellular AsA, supplied by AA-2G during in vitro maturation, plays an important role in supporting the cytoplasmic maturation responsible for developmental competence after fertilization by prevention of oxidative stress against porcine oocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号