首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aldegunde M  Mancebo M 《Peptides》2006,27(4):719-727
Neuropeptide Y (NPY) is one of the most potent stimulants of food intake in mammals, but very little is known about NPY actions in fish. The present study investigated the role of NPY in food intake in the rainbow trout (Oncorhynchus mykiss). Food intake was monitored at different times after intracerebroventricular administration of porcine NPY (4 or 8 microg). Both doses significantly increased food intake at 2 and 3 h, and this effect was dose-dependent. However, 50 h after administration of NPY, food intake was significantly lower than in control fish, and cumulative food intake had returned to levels similar to those seen in the control group. The NPY antagonist (D-Tyr27,36, D-Thr32)-NPY (10 microg) inhibited food intake 2 h after icv administration, but did not block the orexigenic effect of NPY when administered jointly with 4 microg NPY. To identify the NPY receptor subtypes involved in the effects of NPY on food intake, we studied the effects of the Y1 receptor agonist (Leu31, Pro34)-NPY (4 microg), the Y2 receptor agonist NPY(3-36) (4 microg), and the highly specific Y5 receptor agonist (cPP(1-7), NPY19-23, Ala31, Aib32, Gln34)-hPP (4 microg). Short-term (2 h) food intake was moderately stimulated by the Y1 agonist, more strongly stimulated by the Y2 agonist, and unaffected by the Y5 agonist. We found that administration of NPY (8 microg icv) had no effect on aminergic systems in several brain regions 2 and 50 h after NPY administration. These results indicate that NPY stimulates feeding in the rainbow trout, and suggest that this effect is cooperatively mediated by Y2- and Y1-like NPY receptors, not by Y5-like receptors.  相似文献   

2.
Does neuropeptide Y contribute to the anorectic action of amylin?   总被引:2,自引:0,他引:2  
Morris MJ  Nguyen T 《Peptides》2001,22(3):541-546
Neuropeptide Y (NPY) is a potent feeding stimulant acting at the level of the hypothalamus. Amylin, a peptide co-released with insulin from pancreatic beta cells, inhibits feeding following peripheral or central administration. However, the mechanism by which amylin exerts its anorectic effect is controversial. This study investigated the acute effect of amylin on food intake induced by NPY, and the effect of chronic amylin administration on food intake and body weight in male Sprague Dawley rats previously implanted with intracerebroventricular (icv) cannulae. Rats received 1 nmol NPY, followed by amylin (0.05, 0.1, 0.5 nmol) or 2 microl saline. Increasing doses of amylin resulted in a dose-dependent inhibition of NPY-induced feeding by 31%, 74% and 99%, respectively (P < 0.05). To determine the chronic effects of i.c.v. amylin administration on feeding, rats received 0.5 nmol amylin or saline daily, 30 min before dark phase, over 6 days. Amylin significantly reduced food intake at 1, 4, 16 and 24 hours; after 6 days, amylin-treated rats showed a significant reduction in body weight, having lost 17.3 +/- 6.1 g, while control animals gained 7.7 +/- 5.1 g (P < 0.05). Brain NPY concentrations were not elevated, despite the reduced food intake, suggesting amylin may regulate NPY production or release. Thus, amylin potently inhibits NPY-induced feeding and attenuates normal 24 hour food intake, leading to weight loss.  相似文献   

3.
The effects of neuropeptide Y (NPY), a tyrosine-rich peptide found in the rat brain, on feeding and sexual behavior were studied in male and female rats. Intraventricular (ivt) injections of NPY during the final hours of the light period induced feeding in a dose-related manner. While the lowest dose tested (0.02 nM) was without effect, higher doses (0.12, 0.47, 2.3 nM) uniformly elicited feeding with a latency of about 15 min in male rats. With the most effective dose, 0.47 nM, the increased food intake was due to an increased local eating rate. In contrast, the pattern of feeding behavior after a related peptide, rat pancreatic polypeptide (rPP), was quite different and less impressive. During the first hour, only one ivt dose of rPP (0.45 nM) evoked an increase in food intake, due to an increased time spent eating. Further, the effects of NPY on food intake were greater during the nocturnal period. Interestingly, increased food intake in nocturnal tests (4 h) was due solely to augmented intake during the first 60 min after ivt administration. In mating tests, initiated 2 h after the onset of darkness and 10 min after ivt administration of peptide, all but the lowest dose of NPY (0.01 nM) drastically suppressed ejaculatory behavior. Most rats treated with higher doses of NPY (0.02, 0.12, or 0.47 nM) mounted and intromitted only a few times before the cessation of sexual activity, and elongated latencies to the initial mount and intromission were observed. In contrast to the dramatic NPY-induced suppression of ejaculatory behavior, rPP (0.11 and 0.45 nM) was without effect on copulatory behavior. To substantiate further that the impairment of sexual behavior seen in NPY-treated rats was not due to an attenuated sexual ability, an additional experiment was performed. Penile reflexes, including erection, were monitored 10 min after ivt injection of NPY (0.12 nM), rPP (0.11 nM), or saline. No effect of NPY or rPP was observed on the proportion of rats showing erection or latency to initial erection, or in the number of erections per test. In fact, a slight facilitation of penile dorsiflexion responses was seen after NPY. These findings suggest that NPY selectively depresses sexual motivation in the male rat. In ovariectomized female rats responding to estrogen plus progesterone with a good level of sexual receptivity (lordosis quotient > 70), ivt saline and 0.01 nM NPY were without effect on sexual behavior. However, higher doses of NPY (0.12 and 0.47 nM) promptly suppressed sexual behavior in tests initiated 10 min after treatment. A significant 50% decrement in receptivity and a virtual elimination of proceptive behavior were observed. Further, although a low level of mounting (one to five mounts in 15 min) was seen in both the saline (33% mounting) and the 0.01 nM NPY (38% mounting) treated groups, none was observed in animals treated with the higher NPY doses. These observations indicate that NPY may also suppress female sexual behavior.  相似文献   

4.
Imidazoline I1-receptors (I1R) are known to regulate blood pressure and rilmenidine, an agonist, is widely used as antihypertensive agent in clinic. However, the role of I1R in feeding behavior is still unclear. In the present study, we used the agonist of I1R to investigate the effect on hyperphagia in streptozotocin (STZ)-induced diabetic mice. Rilmenidine decreased the food intake of STZ-diabetic mice in a dose-dependent manner. The reduction of food intake was abolished by pretreatment with efaroxan at the dose sufficient to block I1R. Intracerebroventricular (icv) administration of rilmenidine into STZ-diabetic mice also significantly reduced hyperphagia, which was reversed by icv administration of efaroxan. In addition, similar results were observed in STZ-diabetic mice, which received chronic treatment with rilmenidine 3 times daily (t.i.d.) for 7 days. Moreover, the hypothalamic neuropeptide Y (NPY) level was reduced by rilmenidine that was also reversed by pretreatment with efaroxan. In conclusion, the obtained results suggest that rilmenidine can decrease food intake in STZ-diabetic mice through an activation of I1R to lower hypothalamic NPY level.  相似文献   

5.
The present study evaluated the effect of the neuropeptide Y (NPY) Y1 receptor antagonists BIBO 3304 and SR 120562A and of the Y5 receptor antagonists JCF 104, JCF 109, and CGP 71683A on feeding induced either by NPY or food deprivation. In a preliminary experiment, NPY was injected into the third cerebroventricle (3V) at doses of 0.07, 0.15, 0.3, or 0.6 nmol/rat. The dose of 0.3 nmol/rat, which produced a cumulative 2-h food intake of 11.2 +/- 1.9 g/kg body weight, was chosen for the following experiments. The antagonists were injected in the 3V 1 min before NPY. The Y1 receptor antagonist BIBO 3304 significantly inhibited NPY-induced feeding at doses of 1 or 10 nmol/rat. The Y1 receptor antagonist SR 120562A, at the dose of 10 but not of 1 nmol/rat, significantly reduced the hyperphagic effect of NPY, 0.3 nmol/rat. The Y5 receptor antagonists JCF 104 and JCF 109 (1 or 10 nmol/rat) and CGP 71683A (10 or 100 nmol/rat) did not significantly modify the effect of NPY, 0.3 nmol/rat. However, JCF 104 (10 nmol/rat) and CGP 71683A (100 nmol/rat), but not JCF 109 (10 nmol/rat), significantly reduced food intake during the interval from 2 to 4 h after injection of a higher dose, 0.6 nmol/rat, of NPY. Feeding induced by 16 h of food deprivation was significantly reduced by the Y1 receptor antagonist BIBO 3304 (10 nmol/rat), but it was not significantly modified by the same dose of SR 120562A or JCF 104. These findings support the idea that the hyperphagic effect of NPY is mainly mediated by Y1 receptors. The results obtained with JCF 104 and CGP 71683A suggest that Y5 receptors may have a modulatory role in the maintenance of feeding induced by rather high doses of NPY after the main initial feeding response.  相似文献   

6.
Porcine neuropeptide Y (pNPY) administered into the third ventricle of the brain is known to elicit a powerful feeding response in steroid-treated ovariectomized and intact male rats. The present study compared the effects of pNPY and 3 structurally related peptides, human NPY (hNPY), an analog of NPY (NPY-A, [norLeu4]NPY) and peptide YY (PYY) on feeding behavior in intact female rats. Intraventricular administration of pNPY, hNPY, NPY-A and PYY over a dose range of 0.5 to 10 micrograms evoked feeding behavior to a varying extent. Cumulative food intake during 60 and 120 min was increased in a dose-related fashion at 0.5 and 2.0 microgram for the 4 peptides. Whereas the 10-micrograms dose of pNPY evoked a feeding response smaller than that seen after 2 micrograms, the responses to either 10 micrograms hNPY or 10 micrograms PYY were similar to that seen after 2 micrograms. The effects of these peptides on the time spent eating were quite different: while pNPY increased the time spent eating, this effect was not dose-related, whereas hNPY, NPY-A and PYY produced dose-related increments in the time spent eating. The most dramatic increment in local eating rate was observed after 2.0 micrograms pNPY, with lesser increments seen after 2.0 microgram hNPY and NPY-A. This increased local eating was apparently responsible for the highest cumulative food intake observed. These results demonstrate that (a) 2 micrograms pNPY is equally effective in stimulating feeding behavior in intact female rats as it is in steroid-primed ovariectomized female and intact male rats.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Yokosuka M  Dube MG  Kalra PS  Kalra SP 《Peptides》2001,22(3):507-514
To identify the site(s) of NPY Y5 receptor (Y5R) mediation of NPY-induced feeding, we employed c-Fos immunostaining and a selective Y5R antagonist (Y5R-A), CGP71683A, in adult male rats. Intracerebroventricular (icv) administration of NPY stimulated feeding and c-Fos-like immunoreactivity (FLI) in the dorsomedial hypothalamus, supraoptic nucleus and the two subdivision of the hypothalamic paraventricular nucleus (pPVN), the parvocellular (pPVN), and magnocellular (mPVN). Y5R-A on its own, injected either intraperitoneally or icv, neither affected feeding nor FLI in hypothalamic sites. However, Y5R-A pretreatment suppressed NPY-induced food intake and FLI selectively in the mPVN. Taken together with our previous similar finding of Y1R involvement, these results suggest that NPY receptor sites concerned with feeding behavior reside selectively in the mPVN and Y1 and Y5 receptors are either coexpressed or expressed separately in those target neurons that promote appetitive drive.  相似文献   

8.
Neuropeptide Y (NPY) and melanocortin (MC) peptides have opposite effects on food intake: NPY-like peptides and MC receptor antagonists stimulate feeding and increase body weight, whereas melanocortins and NPY antagonists inhibit food intake. In this study we tested whether the orexigenic effect of the selective MC4 receptor antagonist HS014 (1 nmol) could be inhibited by three different NPY antagonists, (R)-N2-(diphenylacetyl)-N-[(4-hydroxy-phenyl)methyl]D-argininam ide (BIBP3226), (R)-N-[[4-(aminocarbonylaminomethyl)-phenyl]methyl]-N2(diphenyl acetyl)-argininamidetrifluoroacetate (BIBO3304), and decapeptide [D-Tyr(27,36)D-Thr32]NPY(27-36), after icv administration in freely feeding male rats. All three NPY receptor antagonists inhibited the orexigenic effects of HS014 partially and with markedly different potency. [D-Tyr(27,36)D-Thr32]NPY(27-36) was active only in subconvulsive dose. The NPY Y1 selective antagonist BIBP3226 was more effective in inhibiting the effect of HS014 than BIBO3304 despite in vitro data indicating that BIBP3226 is about 10 times less potent than BIBO3304 at NPY Y1 receptor. An enantiomer of BIBO3304, BIBO3457, failed to inhibit HS014-induced feeding, indicating that the effects of BIBO3304 were stereoselective. These results suggest that stimulation of food intake caused by weakening of melanocortinergic tone at the MC4 receptor is partially but not exclusively related to NPY Y1 receptor activation.  相似文献   

9.
A.S. Levine  J.E. Morley   《Peptides》1984,5(6):1025-1029
Neuropeptide Y (NPY) is a 36 amino acid peptide with potent cardiovascular effects. In the present study, intraventricular injection of NPY was shown to markedly stimulate feeding and drinking during the illuminated period of the light/dark cycle, a time when rats ingest small amounts of food. It also enhanced nocturnal food and water intake following a 24 hour period of food deprivation and during nocturnal feeding. The NPY induction of food intake was suppressed by the opiate antagonist, naloxone, and by the dopamine antagonist, haloperidol. Phentolamine, an alpha adrenergic antagonist, failed to suppress NPY-induced feeding. Based on the maximum quantity of food which was ingested following central administration of NPY, this peptide appears to represent one of the most potent stimulators of feeding yet to be described.  相似文献   

10.
Neuropeptide Y (NPY) injected into the paraventricular nucleus (PVN) is known to elicit a powerful feeding response in satiated, brain-cannulated rats [41, 42, 43]. The present experiment investigates the effect of peptide YY (PYY), a structurally-related peptide, on feeding behavior and, in addition, the effects of both PYY and NPY on the pattern of macronutrient selection. Injection of PYY directly into the PVN, in doses ranging from 7.8 to 235 pmol/0.3 μl, caused a strong, dose-dependent stimulation of feeding behavior, as well as a small stimulation of drinking behavior, in satiated rats. The mean latency to eat was 9.3 min, with substantial feeding occurring within 30 min of the injection. At low doses, the increase in feeding was seen predominantly during the first hr. At the highest dose, in contrast, food intake continued to increase progressively over the next few hr, such that by 4 hr postinjection food intake was more than 20 g over vehicle baseline. In 1 hr tests with 3 pure macronutrient (protein, fat and carbohydrate) diets simulataneously available, PYY and NPY (78 pmol/0.3 μl) both elicited a strong and selective increase in carbohydrate consumption, with little or no effect on protein or fat consumption. These results suggest that hypothalamic receptors sensitive to PYY and NPY may participate in the control of carbohydrate consumption.  相似文献   

11.
Neuropeptide Y (NPY) and peptide YY (PYY) were injected intracerebroventricularly (ICV) in broiler chicks. Both NPY and PYY markedly increased food intake during the first hour post-injection compared to saline (SAL) controls. Food intake doubled in chicks given 5 micrograms NPY. A response surface analysis suggested that following ICV injection of NPY, maximum food intake occurred, using a dose of 9 micrograms. In contrast, an estimated dose between one and 5 micrograms PYY resulted in maximum food intake, giving the latter a slightly higher potency. Time spent drinking was not significantly different among NPY, PYY and SAL groups. Chicks given NPY or PYY also spent significantly less time standing while those given PYY spent significantly less time preening compared to controls.  相似文献   

12.
ACTH-(1-24) and alpha-MSH, intracerebroventricularly (ICV) injected at the doses of 4 and 10 micrograms/animal, respectively, markedly inhibited spontaneous feeding in adult Sprague-Dawley rats, the effect remaining significant for 6-9 hours. At these same doses, ACTH-(1-24) and alpha-MSH abolished the feeding-stimulatory effect of the kappa opiate receptor agonist pentazocine, intraperitoneally (IP) injected at the dose of 10 mg/kg. The same antagonism was obtained by ICV injection of ACTH-(1-24) into rats IP treated with other kappa opiate agonists, bremazocine and tifluadom, at the doses of 1 and 5 mg/kg, respectively. These data suggest that melanocortin peptides play an inhibitory role in the complex regulation of food intake, and further support and extend the hypothesis of a melanocortin-opioid homeostatic system, its two neuropeptide components usually having opposite, mutually-balancing effects.  相似文献   

13.
In view of the recent demonstrations that Neuropeptide Y (NPY) and adrenergic transmitters coexist in neurons of the rat brain, we have compared the effects of intraventricular (Ivt) injections of NPY and catecholamines on LH release and food intake in intact male rats. Of the three catecholamines, dopamine (DA), norepinephrine (NE) and epinephrine (E), only E (5.3 micrograms or 15.9 micrograms/rat) significantly stimulated LH release, although NE and E (5.3 micrograms/rat) were equally effective in eliciting food intake in satiated rats. Ivt administration of 10 micrograms NPY significantly stimulated LH release, whereas either lower (0.5 or 2 micrograms/rat) or higher (25 micrograms/rat) doses were ineffective. In contrast, NPY at doses of 0.5 - 10 micrograms/rat increased cumulative food intake in a dose-related fashion. These findings present preliminary evidence of the physiological correlates of the neuronal coexistence of adrenergic transmitters and NPY in the brain and raise the possibility that NPY may normally act either independently, in concert with or via adrenergic systems to evoke LH release and feeding responses in the rat.  相似文献   

14.
Neuropeptide Y (NPY), a peptide contained within numerous presynaptic terminals in the hypothalamic paraventricular nucleus (PVN), was injected directly into the PVN of satiated, brain-cannulated rats, and food and water intake were measured 0.5, 1, 2 and 4 hrs postinjection. Neuropeptide Y (24 and 78 pmoles/0.3 microliter isotonic saline) caused a dose-dependent increase in food intake, as well as a small, dose-dependent increase in water intake. This effect on feeding occurred even when food was not presented until 4 hrs postinjection. To determine the behavioral specificity of this effect, the impact of PVN injection of NPY (78 pmoles) on various behaviors was observed. With food available, only feeding and drinking behavior were affected. No change in other behaviors, including grooming, rearing, sleeping, resting or different levels of activity, was observed. With food absent, NPY still elicited drinking, suggesting that this is a primary effect, rather than secondary to the feeding. In addition to drinking, NPY reliably increased activity while decreasing sleep and grooming. These results suggest an important role for hypothalamic NPY, or a structurally-related peptide, in the regulation of feeding and drinking behavior.  相似文献   

15.
Objective: Central feeding regulation involves both anorectic and orexigenic pathways. This study examined whether targeting both systems could enhance feeding inhibition induced by anorectic neuropeptides. Research Methods and Procedures: Experiments were carried out in 24‐hour fasted rats. Intracerebroventricular (ICV) injections were accomplished through stereotaxically implanted cannulae aimed at the lateral cerebral ventricle. Food intake of standard rat chow pellets was subsequently recorded for 2 hours. Results: Blockade of orexigenic central opioids and neuropeptide Y (NPY) by ICV naloxone (25 μg) or the NPY receptor antagonist [d‐Trp32]NPY (NPY‐Ant; 10 μg) powerfully augmented the feeding suppression induced by ICV glucagon‐like peptide 1 (7‐36)‐amide (GLP‐1; 10 μg) or xenin‐25 (xenin; 15 μg) in 24‐hour fasted rats. Most importantly, in combination with naloxone or NPY‐Ant, even a low and ineffective dose of GLP‐1 (5 μg) caused a 40% reduction of food intake, which was augmented further when both antagonists were given in combination with GLP‐1. The combination of GLP‐1 (5 μg) and xenin (10 μg) at individually ineffective doses caused a 46% reduction of food intake, which was abolished at a 10‐fold lower dose. This ineffective dose, however, reduced food intake by 72% when administered in combination with naloxone and NPY‐Ant. Discussion: Targeting up to four pathways of feeding regulation in the central nervous system by blockade of endogenous feeding stimuli and simultaneous administration of anorectic neuropeptides potentiated reduction of food intake. This raises a promising perspective for treatment of obesity.  相似文献   

16.
We have investigated the possibility that enterostatin may inhibit the intake of dietary fat by inhibiting either galanin or NPY-induced feeding pathways. Rats, adapted to either high fat (HF) or low fat-high carbohydrate (HC) diets and fitted with third ventricular cannulas were used to study the effects of intracerebroventricular (icv) enterostatin on icv NPY and galanin induced feeding responses in satiated rats. An equimolar dose of enterostatin (0.1nmoles) inhibited, while a tenfold excess of entersotatin abolished the feeding response to galanin in rats adapted to a HF diet. The galanin stimulation of food intake was reduced in rats adapted to the HC diet and this response was less sensitive to inhibition by enterostatin. Enterostatin had no inhibitory effects on NPY-induced feeding in rats adapted to the HC diet and only a small inhibitory effect, at tenfold molar excess, in rats adapted to the HF diet. The ability of enterostatin to bind to galanin or NPY Y-1 receptors was investigated in lig and binding studies. Enterstatin fialed to dispace 125I-galanin or 125I-PYY from specific binding sites in rat forebrain homogenates or SK-N-MC cells respectively. The data provide support for the hypothesis that enterostatin specifically inhibits a galanin-responsive fat intake system, but indicate that this effect is not modulated by direct interaction with either galanin or NPY-Y1 receptors.  相似文献   

17.
Abstract: This study was designed to determine the possible role of brain glucagon-like peptide-1 (GLP-1) receptors in feeding behavior. In situ hybridization showed colocalization of the mRNAs for GLP-1 receptors, glucokinase, and GLUT-2 in the third ventricle wall and adjacent arcuate nucleus, median eminence, and supraoptic nucleus. These brain areas are considered to contain glucose-sensitive neurons mediating feeding behavior. Because GLP-1 receptors, GLUT-2, and glucokinase are proteins involved in the multistep process of glucose sensing in pancreatic β cells, the colocalization of specific GLP-1 receptors and glucose sensing-related proteins in hypothalamic neurons supports a role of this peptide in the hypothalamic regulation of macronutrient and water intake. This hypothesis was confirmed by analyzing the effects of both systemic and central administration of GLP-1 receptor ligands. Acute or subchronic intraperitoneal administration of GLP-1 (7–36) amide did not modify food and water intake, although a dose-dependent loss of body weight gain was observed 24 h after acute administration of the higher dose of the peptide. By contrast, the intracerebroventricular (i.c.v.) administration of GLP-1 (7–36) amide produced a biphasic effect on food intake characterized by an increase in the amount of food intake after acute i.c.v. delivery of 100 ng of the peptide. There was a marked reduction of food ingestion with the 1,000 and 2,000 ng doses of the peptide, which also produced a significant decrease of water intake. These effects seemed to be specific because i.c.v. administration of GLP-1 (1–37), a peptide with lower biological activity than GLP-1 (7–36) amide, did not change feeding behavior in food-deprived animals. Exendin-4, when given by i.c.v. administration in a broad range of doses (0.2, 1, 5, 25, 100, and 500 ng), proved to be a potent agonist of GLP-1 (7–36) amide. It decreased, in a dose-dependent manner, both food and water intake, starting at the dose of 25 ng per injection. Pretreatment with an i.c.v. dose of a GLP-1 receptor antagonist [exendin (9–39); 2,500 ng] reversed the inhibitory effects of GLP-1 (7–36) amide (1,000 ng dose) and exendin-4 (25 ng dose) on food and water ingestion. These findings suggest that GLP-1 (7–36) amide may modulate both food and drink intake in the rat through a central mechanism.  相似文献   

18.
To investigate a role for the brain-gut peptide neurotensin (NT) in ingestive behavior, changes in food and water intake of food-deprived rats were examined following injection of NT into the paraventricular hypothalamic nucleus (PVN) or the mesenteric vein. Unilateral PVN NT (2.5, 5.0, 10.0 micrograms/0.3 microliter) produced substantial dose-dependent reductions in total food intake 0.5, 1, and 4 hr postinjection. In contrast, PVN NT had no effect on water intake and produced no change in grooming, rearing, sleeping, resting or locomotor activity. Bilateral PVN NT at a high dose (10.0 micrograms/side) suppressed consumption of solid or liquid diet in food-deprived rats, but did not affect water intake in water-deprived rats. This specificity is consistent with a role for CNS NT in feeding behavior. Intravenous NT (1-1000 pmole/kg/min for 30 min) did not specifically suppress food intake; however, low doses did increase water intake in food-deprived rats. These findings do not support a role for plasma NT in feeding, but do suggest that it may play a role in drinking behavior.  相似文献   

19.
We studied the effects of neuropeptide K (NPK), a 36 amino acid residue peptide of the tachykinin family, on latency to onset of feeding and cumulative 1 and 2 h food intake in three experimental paradigms. Intraperitoneal injection of NPK (1.25 and 3.14 nmol) to food-deprived rats delayed the onset of feeding and significantly decreased the cumulative food intake. Intraperitoneal injection of NPK (1.25 and 3.14 nmol) to water-deprived rats produced no effect on subsequent drinking behavior. Similarly, intraperitoneal injection of NPK (3.14 nmol) 15 min before onset of the dark phase (of the light-dark cycle) significantly delayed the occurrence of ingestive behavior and the cumulative food intake was markedly suppressed. Furthermore, administration of NPK intraperitoneally (0.5-3.14 nmol) 15 min before intraventricular (i.c.v.) injection of neuropeptide Y (NPY 0.47 nmol) to satiated rats significantly suppressed NPY-induced feeding and delayed the onset of ingestive behavior. However, when administered centrally prior to NPY injection, NPK delayed the onset of feeding response only. Collectively, these findings show that NPK can acutely and consistently suppress feeding behavior.  相似文献   

20.
S P Kalra  M G Dube  P S Kalra 《Peptides》1988,9(4):723-728
In these studies the pattern of feeding behavior during continuous intraventricular (IVT) infusion of NPY for 4 hr in the satiated female rat was monitored. Whereas saline infusion was ineffective, each of the three doses of NPY (117, 470 or 1175 pmol/hr) increased feeding during the entire 4 hr infusion and 2 hr postinfusion period. The cumulative food intake at the end of 4 hr of NPY infusion was enhanced in a dose-related fashion between 0, 117 and 470 pmol/hr; at 1175 pmol/hr food intake plateaued. In addition, the latency to initiate feeding response decreased in a dose-related fashion and feeding occurred in discrete (35-45) episodes during the 4 hr infusion period. Further, the total time feeding and local eating rate (g/min) increased significantly in response to the higher rates of NPY infusion. Concurrent infusion of cholecystokinin (CCK) at either equimolar or 2.5 x NPY dose, affected neither the NPY-induced cumulative food intake nor any other parameter of feeding behavior. On the other hand, cumulative food intake was significantly decreased in adrenalectomized rats in response to NPY infusion (470 pmol/hr); a response due primarily to a marked suppression in some, and almost complete cessation of food consumption in other rats during the second 2 hr period of NPY infusion. These studies show that continuous central infusion of NPY can produce sustained, intermittent feeding behavior and adrenalectomy significantly curtailed the duration of NPY effectiveness.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号