首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inhibition of leukotriene D4 catabolism by D-penicillamine   总被引:5,自引:0,他引:5  
Inhibition of the catabolism of the most biologically potent cysteinyl leukotriene, LTD4, was studied in rat hepatoma cells in vitro and in the rat in vivo. LTD4 dipeptidase, an ectoenzyme on the surface of AS-30D hepatoma cells, exhibited an apparent Km value of 6.6 microM for LTD4. D-Penicillamine and L-penicillamine inhibited this enzyme activity with apparent Ki values of 0.46 mM and 0.21 mM respectively. Bestatin, an inhibitor of the aminopeptidase activity of hepatoma cells, did not affect LTD4 hydrolysis at concentrations as high as 5 mM, indicating that the aminopeptidase did not contribute to LTD4 catabolism. In the rat in vivo, D-penicillamine also inhibited LTD4 catabolism. After intravenous injection of [3H]LTC4 an accumulation of [3H]LTD4 and a retarded formation of [3H]LTE4 were observed in the circulating blood after D-penicillamine pretreatment. Within 1 h after intravenous [3H]LTC4 injection, about 80% of the administered radioactivity was recovered in bile. After D-penicillamine pretreatment [3H]LTD4 was the major biliary leukotriene metabolite, whereas in untreated controls leukotriene metabolites more polar than LTC4 predominated in bile. After stimulation of endogenous leukotriene production in vivo by platelet-activating factor, N-acetyl-LTE4 was the major cysteinyl leukotriene detected in bile. D-Penicillamine treatment prior to platelet-activating factor resulted in the accumulation of LTD4, which under these circumstances was the major endogenous leukotriene metabolite detected in bile.  相似文献   

2.
1. The uptake, metabolism and biliary excretion of the cysteinyl leukotrienes LTC4, LTD4 and LTE4, were studied in a non-recirculating rat liver perfusion system at constant flow in both antegrade (from the portal to the caval vein) and retrograde (from the caval to the portal vein) perfusion directions. During a 5-min infusion of [3H]LTC4, [3H]LTD4 and [3H]LTE4 (10 nmol/l each) in antegrade perfusions single-pass extractions of radioactivity from the perfusate were 66%, 81% and 83%, respectively. Corresponding values for LTC4 and LTD4 in retrograde perfusions were 83% and 93%, respectively, indicating a more efficient uptake of cysteinyl leukotrienes in retrograde than in antegrade perfusions. The concentrations of unmetabolized leukotrienes in the effluent perfusate were 8-12% in antegrade and 2-4% in retrograde perfusions. [14C]Taurocholate extraction from the perfusate was inhibited by LTC4 by only 3%, suggesting that an opening of portal-venous/hepatic-venous shunts does not explain the effects of perfusion direction on hepatic LTC4 uptake. 2. Following infusion of [3H]LTC4 and [3H]LTD4, in the antegrade perfusion direction, about 80% and 87%, respectively, of the radiolabel taken up by the liver was excreted into bile. In retrograde perfusions, however, only 40% and 57%, respectively, was excreted into bile and the remainder was slowly redistributed into the perfusate, indicating that leukotrienes were taken up into a hepatic compartment with less effective biliary elimination or converted to metabolites escaping biliary excretion. The metabolite pattern found in bile was not affected by the direction of perfusion. Biliary products of LTC4 were polar metabolites (31-38%), LTD4 (27-30%), LTE4 (about 1%) and N-acetyl-LTE4 (3-4%) in addition to unmodified LTC4 (17-18%). 3. LTC4 was identified as a major metabolite of [3H]LTD4 in bile, amounting to about 20% of the total radioactivity excreted into bile. This is probably due to a gamma-glutamyltransferase-catalyzed glutamyl transfer from glutathione in the biliary compartment, as demonstrated in in vitro experiments. The presence of sinusoidal gamma-glutamyltransferase activity in perfused rat liver was shown in experiments on the hydrolysis of infused gamma-glutamyl-p-nitroanilide. 90% inhibition of this enzyme activity by AT-125 did not affect the metabolism of LTC4. 4. When [3H]LTE4 was infused in the antegrade perfusion direction, biliary metabolites comprised N-acetyl-LTE4 (24%) and polar components (60%).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
The liver is the major organ which eliminates leukotriene C4 (LTC4) and other cysteinyl leukotrienes from the blood circulation into bile. Transport of LTC4 was studied using inside-out vesicles enriched in canalicular and sinusoidal membranes from rat liver. The incubation of canalicular membrane vesicles with [3H]LTC4 in the presence of ATP resulted in an uptake of LTC4 into vesicles. The initial rate of ATP-stimulated LTC4 uptake was about 40-fold higher in canalicular than in sinusoidal membrane vesicles. When liver plasma membrane vesicles were incubated in the absence of ATP, an apparent transient uptake of LTC4 was observed which was temperature-dependent and not affected by the osmolarity. This indicates that LTC4 was bound to proteins on the surface of plasma membrane vesicles. Two proteins with relative molecular weights of 17,000 and 25,000 were detected by direct photoaffinity labeling as major LTC4-binding proteins. One protein (Mr 25,000) was ascribed to subunit 1 (Ya) of glutathione S-transferase which was associated with the membrane. LTD4, LTE4, N-acetyl-LTE4, and omega-carboxy-N-acetyl-LTE4 were also transported into liver plasma membrane vesicles in an ATP-dependent manner with initial rates relative to LTC4 (1.0) of 0.46, 0.11, 0.35, and 0.22, respectively. Mutual competition between the cysteinyl leukotrienes and S-(2,4-dinitrophenyl)-glutathione for uptake indicated that they are transported by a common carrier. Apparent Km values of the transport system for LTC4, LTD4, and N-acetyl-LTE4 were 0.25, 1.5, and 5.2 microM, respectively. The ATP-dependent transport of LTC4 into vesicles was not inhibited by doxorubicin, daunorubicin, or verapamil, or by the monoclonal antibody C219, suggesting that the transport system differs from P-glycoprotein. Liver plasma membrane vesicles prepared from mutant rats deficient in the hepatobiliary excretion of cysteinyl leukotrienes lacked the ATP-dependent transport of cysteinyl leukotrienes and S-(2,4-dinitrophenyl)-glutathione. These results demonstrate that the ATP-dependent carrier system is responsible for the transport of cysteinyl leukotrienes and glutathione S-conjugates from the hepatocytes into bile.  相似文献   

4.
Metabolism of cysteinyl leukotrienes in monkey and man   总被引:1,自引:0,他引:1  
The proinflammatory cysteinyl leukotrienes are inactivated in primates by (a) intravascular degradation, (b) hepatic and renal uptake from the blood circulation, (c) intracellular metabolism of leukotriene E4 (LTE4), and (d) biliary and renal excretion of LTC4 degradation products. We have analyzed cysteinyl leukotriene metabolites excreted into bile and urine of the monkey Macaca fascicularis and of man. In both species, hepatobiliary leukotriene elimination predominated over renal excretion. In a representative healthy human subject at least 25% of the administered radioactivity were recovered from bile and 20% from urine within 24 h. In monkey and man intravenous administration of 14,15-3H2-labeled LTC4 resulted in the biliary and urinary excretion of labeled LTE4, omega-hydroxy-LTE4, omega-carboxy-LTE4, omega-carboxy-dinor-LTE4, and omega-carboxy-tetranor-dihydro-LTE4. Small amounts of N-acetyl-LTE4 were detected in human urine only. Oxidative metabolism of LTE4 proceeded more rapidly in the monkey resulting in the formation of higher relative amounts of omega-oxidized leukotrienes in this species as compared to man. [3H]H2O amounted to less than 2% of the administered dose in monkey and human bile and urine samples. Incubation of isolated human hepatocytes with [3H2]LTC4, [3H2]LTD4, and [3H2]LTE4 showed that only [3H2]LTE4 underwent intracellular oxidative metabolism resulting in the formation of omega- and beta-oxidation products. N-Acetylated LTE4 derivatives were not detected as products formed by human hepatocytes. By a combination of reversed-phase high-performance liquid chromatography and radioimmunoassay, endogenous LTE4 and N-acetyl-LTE4 were detected in human urine in concentrations of 220 +/- 40 and 24 +/- 3 pM, corresponding to 12 +/- 1 and 1.5 +/- 0.2 nmol/mol creatinine, respectively (mean +/- SEM; n = 10). Endogenous LTD4 and LTE4 were detected in human bile (n = 3) in concentrations between 0.2-0.9 nM. Our results demonstrate that LTD4 and LTE4 are major LTC4 metabolites in human bile and/or urine and may serve as index metabolites for the measurement of endogenously generated cysteinyl leukotrienes. Moreover, omega-oxidation and subsequent beta-oxidation from the omega-end contribute to the metabolic degradation of LTE4 not only in monkey but also in man.  相似文献   

5.
1. The isolated perfused rat liver efficiently takes up cysteinyl leukotrienes (LTs) C4, D4, E4 and N-acetyl-LTE4 from circulation. More than 70% of these cysteinyl LTs are excreted from liver into bile within 1 h of onset of a 5 min infusion, while about 5% remain in the liver. About 20% of infused N-acetyl-LTE4 escapes hepatic first-pass extraction under our conditions. 2. Metabolites of LTC4 appearing in bile within 20 min of the onset of infusion include mainly LTD4 and N-acetyl-LTE4, but also omega-hydroxy-N-acetyl-LTE4 and omega-carboxy-N-acetyl-LTE4. Metabolites generated from omega-carboxy-N-acetyl-LTE4 by beta-oxidation from the omega-end represent the major biliary LTs secreted at later times. 3. Stimulation of the isolated perfused liver by the combined infusion of the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) and the Ca2+ ionophore A23187 results in a transient increase of endogenous cysteinyl LT production, which is independent of extrahepatic cells. 4. The immunosuppressive drug cyclosporine causes a dose-dependent inhibition of hepatobiliary cysteinyl LT excretion, probably by interference with the sinusoidal uptake system for cysteinyl LTs.  相似文献   

6.
Rat livers were perfused in a non-recirculating mode at constant pressure via the portal vein with media containing 5 mM glucose, 2 mM lactate, and 0.2 mM pyruvate. [3H]LTC4 was infused for a period of 5 min to a final concentration of 20 nM; it increased glucose and lactate output and reduced perfusion flow. 1) Leukotriene radioactivity was recovered 10 min after the onset of [3H]LTC4 infusion to about 40% in the effluent, to 20% in the bile, and to 40% in the liver. 2) Radioactivity in the effluent increased to a maximum 4-5 min after the onset and decreased again to essentially zero 3 min after completion of [3H]LTC4 infusion. [3H]LTC4 and [3H]LTD4 were the major labeled components in the effluent accounting for 45% and 38%, respectively, of the effluent radioactivity. 3) [3H]LTC4 and [3H]LTD4 were also the major components in bile; they accounted for 50% and 30%, respectively, of the radioactivity excreted, while more polar [3H]leukotriene metabolites accounted for the remainder. 4) In the liver, [3H]LTC4 and [3H]LTD4 were the major and [3H]LTE4, N-acetyl-[3H]LTE4 as well as omega-hydroxy-N-acetyl-[3H]LTE4 and omega-carboxy-N-acetyl-[3H]LTE4 were minor components detected 5 min after completion of [3H]LTC4 infusion. It is concluded from the present findings that during a 5 min infusion period about one third each of the infused LTC4 remained unchanged, was converted to LTD4, and was further degraded to LTE4 and polar metabolites including omega-oxidation products of N-acetyl-LTE4.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Mercapturic acid formation, an established pathway in the detoxication of xenobiotics, is demonstrated for cysteinyl leukotrienes generated in rats in vivo after endotoxin treatment. The mercapturate N-acetyl-leukotriene E4 (N-acetyl-LTE4) represented a major metabolite eliminated into bile after injection of [3H]LTC4 as shown by cochromatography with synthetic N-acetyl-LTE4 in four different HPLC solvent systems. The identity of endogenous N-acetyl-LTE4 elicited by endotoxin in vivo was additionally verified by enzymatic deacetylation followed by chemical N-acetylation. The deacetylation was catalyzed by penicillin amidase. Endogenous cysteinyl leukotrienes were quantified by radioimmunoassay after HPLC separation. A N-acetyl-LTE4 concentration of 80 nmol/l was determined in bile collected between 30 and 60 min after endotoxin injection. Under this condition, other cysteinyl leukotrienes detected in bile by radioimmunoassay amounted to less than 5% of N-acetyl-LTE4. The mercapturic acid pathway, leading from the glutathione conjugate LTC4 to N-acetyl-LTE4, thus plays an important role in the deactivation and elimination of these potent endogenous mediators.  相似文献   

8.
Uptake and metabolism of the cysteinyl leukotrienes C4 and E4 (LTC4 and LTE4) were studied in AS-30D hepatoma cell suspensions and compared with rat hepatocytes. The hepatoma cells were deficient in the uptake of [3H]LTC4 and [3H]LTE4 but took up, in control experiments, L-[14C]glutamine and [14C]adenosine in a time-dependent manner. By contrast, isolated hepatocyte suspensions incubated under the same conditions took up [3H]LTC4 and [3H]LTE4 as well as L-[14C]glutamine and [14C]adenosine. The hepatoma cells deficient in the uptake of cysteinyl leukotrienes metabolized extracellular [3H]LTC4 to [3H]LTD4 and to [3H]LTE4. Addition of acivicin, an inhibitor of gamma-glutamyltransferase, largely prevented metabolism of [3H]LTC4 by the hepatoma cells. Sonication of the cells did not enhance the formation of [3H]LTD4 and [3H]LTE4 from [3H]LTC4. We conclude that ectoenzymes of AS-30D hepatoma cells catalyze the conversion of LTC4 to LTE4 via LTD4. As compared to hepatocytes, these neoplastic cells have lost the uptake system for cysteinyl leukotrienes and may serve in studies on leukotriene metabolism by cell-surface enzymes.  相似文献   

9.
Metabolism of cysteinyl leukotrienes by the isolated perfused rat kidney.   总被引:1,自引:0,他引:1  
The metabolism of cysteinyl leukotrienes by the isolated perfused rat kidney was investigated. For this purpose LTC4, LTD4 or LTE4 were studied in separate experiments. The isolated perfused rat kidney metabolized all cysteinyl leukotrienes to the final metabolite N-acetyl-LTE4. In the presence of 5% albumin 50% of LTC4 was metabolized to LTD4 (22%), LTE4 (15%) and N-acetyl-LTE4 (13%) within 60 min. Excretion of radioactivity into urine was less than 1%. In contrast, in the absence of albumin, LTC4 was completely metabolized within 45 min to N-acetyl-LTE4, the sole and final metabolite of LTC4 found in the perfusion medium as well as in urine. After 60 min 19% and 42% of total radioactivity were found in the perfusion medium and in urine, respectively. Isolated glomeruli metabolized LTC4 to LTD4 and to LTE4 but not to N-acetyl-LTE4 at a rate comparable to the rate observed by the isolated perfused kidney in the absence of albumin. In contrast to isolated glomeruli isolated tubuli metabolized LTE4 to N-acetyl-LTE4 at a rate comparable to that observed by the isolated perfused kidney in the absence of albumin. The present study shows that the isolated perfused rat kidney metabolizes cysteinyl leukotrienes to the sole and final metabolite N-acetyl-LTE4. In the presence of albumin metabolism is slowed down and excretion of N-acetyl-LTE4 into urine is prevented.  相似文献   

10.
Hepatic uptake and metabolic disposition of leukotriene B4 in rats.   总被引:2,自引:0,他引:2       下载免费PDF全文
1. In isolated perfused rat liver and in vivo, up to 25% of [3H]leukotriene B4 was eliminated from the circulation via hepatic uptake and biliary excretion within 1 h. Total body recovery of 3H amounted to about 60% of infused [3H]leukotriene B4. 2. Hepatobiliary excretion of leukotriene B4 and its metabolites exceeded renal elimination by about 4-fold and depended, in contrast with excretion of cysteinyl leukotriene E4, upon continuous taurocholate supply. 3. Analyses of bile, liver and recirculated perfusate using h.p.l.c. indicated that the liver metabolized leukotriene B4 extensively to omega-carboxyleukotriene B4 and its beta-oxidized derivatives, and no unmetabolized leukotriene B4 appeared in bile. These results substantiate the important contribution of the hepatobiliary system with respect to the metabolic fate of leukotriene B4.  相似文献   

11.
The synthesis and metabolism of leukotrienes (LTs) by endothelial cells was investigated using reverse-phase high-performance liquid chromatography. Cells were incubated with [14C]arachidonic acid. LTA4 or [3H]LTA4 and stimulated with ionophore A23187. The cells did not synthesize leukotrienes from [14C]arachidonic acid. LTA4 and [3H]LTA4 were converted to LTC4, LTD4, LTE4 and 5,12-diHETE. Endothelial cells metabolized [3H]LTC4 to [3H]LTD4 and [3H]LTE4. The metabolism of [3H]LTC4 was inhibited by L-serine-borate complex, phenobarbital and acivicin in a concentration-related manner, with maximal inhibition occurring at a concentration of 0.1 M, 0.01 M and 0.01 M, respectively. LTC4, LTB4 and LTD4 stimulated the synthesis of prostacyclin, measured by radioimmunoassays as 6-keto-PGF1 alpha. The stimulation by LTC4 was greater than that by LTD4 or LTB4. LTE4, 14,15-LTC4 and 14,15-LTD4 failed to stimulate the synthesis of prostacyclin. LTD4 and LTB4 also stimulated the release of PGE2, whereas LTC4 did not. Serine-borate and phenobarbital inhibited LTC4-stimulated synthesis of prostacyclin in a concentration-related manner. They also inhibited the release of prostacyclin by histamine, A23187 and arachidonic acid. Acivicin had no effect on the release of prostacyclin by LTC4, histamine or A23187. Furthermore, FPL-55712, an LT receptor antagonist, inhibited LTC4-stimulated prostacyclin synthesis but had no effect on histamine-stimulated release of prostacyclin or PGE2. Indomethacin inhibited both LTC4- and histamine-stimulated release. The results show that (a) endothelial cells metabolize LTA4, LTC4 and LTD4 but do not synthesize LTs from arachidonic acid; (b) LTC4 act directly at the leukotriene receptor to stimulation prostacyclin synthesis; (c) the presence of the glutathione moiety at the C-6 position of the eicosatetraenoic acid skeleton is necessary for leukotriene stimulation of prostacyclin release; and (d) the metabolism of LTC4 to LTD4 and LTE4 does not appear to alter the ability of LTC4 to stimulate the synthesis of PGI2.  相似文献   

12.
In this study, specific binding sites for [3H]-LTC4 on membrane preparations from American bullfrog (Rana catesbeiana) brain were characterized. Binding assays were done in the presence of serine (5mM) borate (10 mM) for 30 min at 23 degrees C. Under these conditions, no metabolism of LTC4 to LTD4 occurred. Specific binding of [3H]-LTC4 reached steady state within 10 min, remained constant for 60 min, and was reversible with the addition of 1,000-fold excess unlabelled LTC4. Scatchard analysis of the binding data indicated a single class of binding sites with an estimated Kd of 89.83 nM and Bmax of 43.79 pmol/mg protein. Competition binding studies demonstrated that LTD4 and LTE4 were ineffective in displacing [3H]-LTC4 from its binding site. The Ki for LTC4 was 51 nM. S-decylglutathione, glutathione and hematin had Ki values of 44, 312,602, and 25,576 nM, respectively. The mammalian cysteinyl leukotriene antagonist L-660,711 inhibited specific binding of [3H]-LTC4, with a Ki of 87,149 nM. Guanosine-5'-0-3-thiotriphosphate (GTP gamma S) did not affect specific binding of [3H]-LTC4 indicating that, like mammalian LTC4 receptors, a Gi protein is not involved in the transduction mechanism. The LTC4 binding site in bullfrog brain demonstrates both similarities and differences from its mammalian counterpart.  相似文献   

13.
Biliary and urinary excretion of peptide leukotrienes in the domestic pig   总被引:2,自引:0,他引:2  
The metabolism of leukotriene (LT)C4 and its major routes of elimination in vivo have been studied in four anesthetized domestic pigs administered intravenous [3H]-LTC4 (0.5 microCi/kg). The kinetic profile of LTC4 in the blood was followed for 60 min after administration while the biliary and urinary excretion of LTC4 and its metabolites were determined over a 120 min interval. The total recovery of radioactivity in bile and urine was 45% +/- 1 (n = 3) and 18% (n = 2) respectively. Examination of the radioactive metabolites in bile showed LTD4 (44% of biliary content) and LTE4 (21% of biliary content) as the major identified lipoxygenase products at t 1/2 (27 min). The only identified cysteinyl leukotriene observed in the urine was LTE4 (13% of urinary content). In both bile and urine substantial amounts of radioactivity were detected at the solvent front of the reverse phase chromatographic system indicating the presence of additional unidentified metabolites. We suggest that measurement of metabolites using these sampling methods may be useful for the detection and measurement of peptide leukotriene production in vivo.  相似文献   

14.
Inbred hyper-reactive rats, actively sensitized to OVA, were anesthetized, cannulated, and ventilated with room air. Tracheal instillation of Ag (OVA) resulted in an elevation of airways pressure (14.4 +/- 0.6 cm H2O). Measurement of biliary peptide leukotriene levels before and after Ag challenge using reverse phase HPLC and RIA techniques showed significant elevations in leukotriene (LT) levels, the amounts released being LTC4 (3.65 +/- 0.78), LTD4 (2.8 +/- 1.11), and N-Ac LTE4 (3.87 +/- 1.15) expressed as ng/100 g of body weight, n = 13. Identification of these metabolites were confirmed by HPLC/RIA techniques and LTC4 was further characterized by UV spectroscopy and its enzymatic conversion by gamma-glutamyl transpeptidase to LTD4. [3H]LTC4 (16 ng) administration by tracheal instillation resulted in a 31.4 +/- 4.3% recovery of radioactivity through the bile over 4 h (n = 3) with the major identified metabolite being N-Ac LTE4. [3H]LTC4 (16 ng) plus synthetic LTC4 (5 micrograms) showed a 30.8 +/- 3.1% recovery through the bile after tracheal instillation (3-h collection, n = 4) with significant amounts of LTC4 as well as N-Ac LTE4 present. [3H]LTC4 administration by the portal vein resulted in a 37.4 +/- 8.8% biliary recovery over 60 min (n = 6), the metabolites present in the bile being LTC4, LTD4, LTE4, and N-Ac LTE4. Pretreatment with the 5-lipoxygenase inhibitor L-656,224 (15 mg/kg, 3.5 h pre-p.o.) before Ag challenge resulted in a significant inhibition (greater than 90%, p less than 0.05) of biliary leukotriene levels in this model. Our study demonstrates that peptide leukotrienes are produced in the anesthetized rat after pulmonary anaphylaxis and that biliary leukotriene measurement is suitable for showing the biochemical efficacy of leukotriene inhibitors in vivo. In vivo tracer experiments suggest that the biliary metabolic profile of the peptide leukotrienes is dependent on the site and levels of release as well as the efficiency of the vascular clearance of the various metabolites.  相似文献   

15.
We studied the characteristics of the leukotriene (LT) C4 and D4 receptors on a cultured smooth muscle cell line, BC3H-1. Specific [3H]LTC4 binding to the cell membrane was greater than 80% of total binding and saturable at a density of 3.96 +/- 0.39 pmol/mg protein, with an apparent dissociation constant (Kd) of 14.3 +/- 2.0 nM (n = 9). The association and dissociation of [3H]LTC4 binding were rapid and apparent equilibrium conditions were established within 5 min. Calculated Kd value of [3H]LTC4 binding from the kinetic analysis was 9.9 nM. From the competition analysis, calculated Ki value of unlabeled LTC4 to compete for the specific binding of [3H]LTC4 was 9.2 nM and was in good agreement with the Kd value obtained from the Scatchard plots or kinetic analysis. The rank order of potency of the unlabeled competitors for competing specific [3H]LTC4 binding was LTC4 much greater than LTD4 greater than LTE4 greater than FPL-55712. The maximum number of binding sites (Bmax) of [3H]LTD4 in the membrane of BC3H-1 cell line was about 11 times lower than that of the [3H]LTC4. The calculated values of Kd and Bmax of [3H]LTD4 binding were 9.3 +/- 0.8 nM and 0.37 +/- 0.04 pmol/mg protein, respectively (n = 3). The rank order of potency or the unlabeled competitors for competing specific [3H]LTD4 binding was LTD4 = LTE4 greater than FPL-55712 much greater than LTC4. These findings demonstrate that BC3H-1 cell line possess both LTC4 and LTD4 receptors with a predominance of LTC4 receptors. Thus BC3H-1 cell line is a good model to study the regulation of LTC4 and LTD4 receptors.  相似文献   

16.
Metabolism and analysis of cysteinyl leukotrienes in the monkey   总被引:11,自引:0,他引:11  
Predominant hepatobiliary elimination from blood and subsequent enterohepatic circulation of cysteinyl leukotrienes is demonstrated in the monkey Macaca fascicularis. From intravenous [3H]leukotriene C4, about 40% were recovered as metabolites in bile and about 20% in urine within 5 h. [3H]Leukotriene E4 was a predominant metabolite of defined structure in blood plasma, bile, and urine. From intraduodenal [3H]leukotriene C4, about 5% were recovered as metabolites in bile and about 8% in urine within 8 h. Endogenous cysteinyl leukotrienes generated in vivo were measured after implantation of a subcutaneously looped biliary bypass. Tapping of the loop allowed access to bile and prevented interference by leukotrienes produced by surgical trauma (Denzlinger, C., Rapp, S., Hagmann, W., and Keppler, D. (1985) Science 230, 330-332). Endogenous cysteinyl leukotrienes were analyzed in bile, urine, and blood plasma by the sequential use of high-performance liquid chromatography and a radioimmunoassay that was optimized for leukotriene E4 as a predominant metabolite detected in the tracer studies. Biliary leukotriene E4 rose from less than 0.2 to 9 nmol/liter, when leukotriene synthesis was elicited in anesthesized monkeys by staphylococcal enterotoxin B administered intragastrically. This study provides an approach to the analysis of cysteinyl leukotrienes in primates and serves to define the role of these mediators under pathophysiological as well as physiological conditions in vivo.  相似文献   

17.
The uptake of tritiated cysteinyl leukotrienes (LTC4, LTD4, LTE4) and LTB4 was investigated in freshly isolated rat hepatocytes and different hepatoma cell lines under initial-rate conditions. Leukotriene uptake by hepatocytes was independent of an Na+ gradient and a K+ diffusion potential across the hepatocyte membranes as established in experiments with isolated hepatocytes and plasma membrane vesicles. Kinetic experiments with isolated hepatocytes indicated a low-Km system and a non-saturable system for the uptake of cysteinyl leukotrienes as well as LTB4 under the conditions used. AS-30D hepatoma cells and human Hep G2 hepatoma cells were deficient in the uptake of cysteinyl leukotrienes, but showed significant accumulation of LTB4. Moreover, only LTB4 was metabolized in Hep G2 hepatoma cells. Competition studies on the uptake of LTE4 and LTB4 (10 nM each) indicated inhibition by the organic anions bromosulfophthalein, S-decyl glutathione, 4,4'-diisothiocyanato-stilbene-2,2'-disulfonate, probenecid, docosanedioate, and hexadecanedioate (100 microM each), but not by taurocholate, the amphiphilic cations verapamil and N-propyl ajmaline, and the neutral glycoside ouabain. Cholate and the glycoside digitoxin were inhibitors of LTB4 uptake only. Bromosulfophthalein, the strongest inhibitor of leukotriene uptake by hepatocytes, did not inhibit LTB4 uptake by Hep G2 hepatoma cells under the same experimental conditions. Leukotriene-binding proteins were analyzed by comparative photoaffinity labeling of human hepatocytes and Hep G2 hepatoma cells using [3H]LTE4 and [3H]LTB4 as the photolabile ligands. Predominant leukotriene-binding proteins with apparent molecular masses in the ranges of 48-58 kDa and 38-40 kDa were labeled by both leukotrienes in the particulate and in the cytosolic fraction of hepatocytes, respectively. In contrast, no labeling was obtained with [3H]LTE4 in Hep G2 cells. With [3H]LTB4 a protein with a molecular mass of about 48 kDa was predominantly labeled in the particulate fraction of the hepatoma cells, whereas in the cytosolic fraction a labeled protein in the range of 40 kDa was detected. Our results provide evidence for the existence of distinct uptake systems for cysteinyl leukotrienes and LTB4 at the sinusoidal membrane of hepatocytes; however, some of the inhibitors tested interfere with both transport systems. Only LTB4, but not cysteinyl leukotrienes, is taken up and metabolized by the transformed hepatoma cells.  相似文献   

18.
Arachidonate metabolites are potent biological mediators affecting multiple cellular functions. Although prostaglandins of the E series, which are products of the cyclooxygenase pathway, have been known as inhibitors or down-regulators of fibroblast proliferation and collagen synthesis, the more recently discovered products of the 5-lipoxygenase pathway have not been as extensively investigated with regard to fibroblast function. In this study, a sulfidopeptide product of the lipoxygenase pathway, leukotriene C4 (LTC4), was examined for its ability to modulate rat lung fibroblast collagen synthesis and proliferation in vitro. The data revealed the ability of LTC4 and to a lesser extent leukotriene D4 (LTD4) to stimulate collagen synthesis in a dose-dependent (10(-11)-10(-8) M) manner without affecting cellular proliferation as determined by radiolabeled thymidine incorporation; 1 nM LTC4 caused an 85% (p less than 0.02) increase above untreated controls in [3H]proline incorporation into collagenous protein in the media, which was blocked by the putative leukotriene receptor antagonist FPL55712 (10 microM) and inhibited by cycloheximide and actinomycin D. This LTC4 stimulatory effect was slightly more specific for collagen synthesis vs noncollagenous protein synthesis but was not accompanied with any change in the collagen type composition. Binding of [3H]LTC4 to these cells was specific, reversible, and saturable, with a Kd of 1.8 +/- 0.95 nM. Under equilibrium conditions, there was an estimated 2.39 X 10(4) receptors per cell. This binding was also inhibited by 10 microM FPL55712. Competitive binding studies show specificity of this binding for LTC4 relative to LTD4 and FPL55712. Furthermore, no significant conversion of LTC4 to LTD4 or leukotriene E4 was noted during the binding studies.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Leukotrienes (LTs) are active lipid mediators derived in the 5-lipoxygenase pathway. LTC(4), the primary cysteinyl LT, is cleaved by gamma-glutamyl transpeptidase (GGT), resulting in LTD(4). We studied the synthesis and metabolism of LTs in three patients with GGT deficiency. LTs were analyzed in urine, plasma, and monocytes after HPLC separation by enzyme immunoassays, radioactivity detection, and electrospray tandem mass spectrometry. Analysis of LTs in urine revealed increased concentrations of LTC(4) (12.8-17.9 nmol/mol creatinine; controls, <0.005 nmol/mol creatinine), whereas LTE(4) was below the detection limit (<0.005 nmol/mol creatinine; controls, 32.2 +/- 8.6 nmol/mol creatinine). In plasma of one patient, LTC(4) was found to be increased (17.3 ng/ml; controls, 9.6 +/- 0.4 ng/ml), whereas LTD(4) and LTE(4) were below the detection limit (<0.005 ng/ml). LTB(4) was found within normal ranges. In contrast to controls, the synthesis of LTD(4) and LTE(4) in stimulated monocytes was below the detection limit (<0.1 ng/10(6) cells; controls, 37.1 +/- 4.8 cells and 39.4 +/- 5.6 ng/10(6) cells, respectively). The formation of [(3)H]LTD(4) from [(3)H]LTC(4) in monocytes was completely deficient (<0.1%; controls, 85 +/- 7%). Our data demonstrate a complete deficiency of LTD(4) biosynthesis in patients with a genetic deficiency of GGT. GGT deficiency represents a new inborn error of cysteinyl LT synthesis and provides a unique model in which to study the pathobiological coherence of LT and glutathione metabolism.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号