首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new 10-hydroxycamptothecin (HCPT)-producing fungus was isolated from Camptotheca acuminata. The strain was classified as a Xylaria sp. based on the internal transcribed spacer and 18S rDNA gene analysis. All elicitors tested, except methyl jasmonate, increased HCPT production in submerged culture. The maximum yield was 5.4 mg HCPT/l−1, when salicylic acid was added at 0.1 mM to the culture medium  相似文献   

2.
Summary This study was conducted to examine the effect of biotin and thiamine concentrations on callus growth and somatic embryogenesis of date palm (Phoenix dactylifera L.). Embryogenic callus derived from offshoot tip explants was cultured on hormone-free MS medium containing biotin at 0, 0.1, 1, or 2 mg l−1 combined with thiamine at 0.1, 0.5, 2, or 5 mg l−1. Embryogenic callus weight, number of resultant embryos, and embryo length were significantly influenced by thiamine and biotin concentration. The optimum callus growth treatment consisted of 0.5 mg l−1 thiamine and 2 mg l−1 biotin. This treatment also gave the highest number of embryos. Embryo elongation was greatest at 0.5 or 2 mg l−1 thiamine combined with 1 mg l−1 biotin. Embryos from all treatments germinated and regenerants exhibited normal growth in soil. This study provides an insight into the importance of optimizing various culture medium components to overcome in vitro recalcitrace of date palm.  相似文献   

3.
Development of suitable strategy to overcome genotypic limitations of in vitro regeneration in sorghum would help utilize high yielding but poor tissue culture responsive genotypes in genetic manipulation programmes. A factorial experiment was conducted with two explants (immature embryos and inflorescences), eight genotypes (five Sorghum sudanense and three Sorghum bicolor genotypes), three levels of 2,4-D (1 mg l−1, 3 mg l−1, and 5 mg l−1), and two levels of kinetin (0.0 mg l−1 and 0.5 mg l−1). The induced callus was transferred to the regeneration media with factorial combinations of IAA (1.0 mg l−1 and 2.0 mg l−1) and kinetin (0.5 mg l−1 and 1.0 mg l−1). S. sudanense regenerated at significantly higher frequency (38.91%) and produced shoots more intensely (2.2 shoots/callus) than S. bicolor (26.93%, 1.26 shoots/callus). Immature inflorescences regenerated at a much higher frequency (46.48%) and produced significantly more number of shoots (2.71 shoots/callus) than immature embryos (22.35%, 0.99 shoots/callus). Moreover, differences for plant regeneration between genotypes of the same species were minimal when using immature inflorescences. Increase in the 2,4-D concentration in callus induction media exhibited inhibitory effect on callus induction, growth, shoot induction and number of shoots/callus but inclusion of kinetin in callus induction media improved these responses. Use of immature inflorescence explant and inclusion of kinetin in callus induction media could overcome genotypic limitations of plant regeneration to a large extent. The extent of variability, heritability and expected genetic advance was more in plant regeneration traits than in callus induction traits. This indicated that the variability in respect of these attributes in the genotypes may be due to the additive gene action and selection of genotypes for these characters would be rewarding.  相似文献   

4.
Guggulsterone, a hypolipidemic natural agent, is produced in resin canals of the plant Commiphora wightii. In this study, the efficacy of different plant growth regulators was evaluated for optimizing its production. Morphactin was found to be effective in enhancing the accumulation of guggulsterones in callus cultures. Maximum callus growth was recorded on medium containing morphactin (0.1 mg l−1) and 2iP (2.5 mg l−1), whereas maximum guggulsterone production occurred when the calluses were cultured on medium containing 0.1 mg l−1 morphactin and 1.0 mg l−1 2iP. Morphactin and 2iP interacted significantly to enhance the callus growth and guggulsterone production by about 8-folds in one-year-old cultures. However, the effect of morphactin on callus growth and guggulsterone production was not uniform over the levels of 2iP tested. Such an effect of morphactin has never been reported on the production of secondary metabolites.  相似文献   

5.
Summary As a first step towards applying biotechnology to blue grama, Bouteloua gracilis (H. B. K.) Lag. ex Steud., we have developed a regenerable tissue culture system for this grass. Shoot apices were isolated from 3-d-old seedlings and cultured in 15 different growth regulator formulations combining 2,4-dichlorophenoxyacetic acid (2,4-D), Picloram (4-amino-3, 5,6-trichloropicolinic acid), N6-benzyladenine (BA) or adenine (6-aminopurine). The highest induction of organogenic callus was obtained with formulations containing 1 mg l−1 (4.52 μM) 2,4-D plus 0.5 mg l−1 (2.22 μM) BA. and 2 mg l−1 (8.88 μM) BA plus 1 mg l−1 (4.14 μM) Picloram with or without 40 mg l−1 (296.08 μM) adenine. Lower frequencies of induction were obtained for embryogenic as compared to organogenic callus. The most efficient treatments for induction of embryogenic callus contained 2 mg l−1 (9.05 μM) 2,4-D combined with 0.25 (1.11 μM) or 0.50 mg l−1 (2.22 μM) BA, or 1 mg l−1 (4.52 μM) 2,4-D with 0.50 mg l−1 (2.22 μM) BA. Regeneration was achieved in hormonefree Murashige anmd Skoog (MS) medium, half-strength MS medium or MS medium plus 1 mg l−1 (1.44 μM) gibberellic acid. The number of plantlets regenerated per 500 mg callus fresh weight on MS medium ranged from 9 for 2 mg l−1 (9.05 μM) 2,4-D to 62.2 for induction medium containing 2 mg l−1 (8,28 μM) Picloram, 1 mg l−1 (4.44 μM) BA and 40 mg l−1 (296.08 μM) adenine. Regnerated plants grown in soil under greenhouse conditions reached maturity and produced seeds.  相似文献   

6.
 The development of a rapid protocol for high-efficiency somatic embryogenesis and plant regeneration from seed-derived embryogenic callus cultures of California poppy (Eschscholzia californica Cham.) is reported. The optimized procedure required less than 13 weeks from the initiation of seed cultures to the recovery of plantlets and involved the sequential transfer of cultures onto solid Murashige and Skoog basal medium containing three different combinations of growth regulators. All steps were performed at 25  °C. Friable primary callus was induced from seeds of E. californica cultured on medium supplemented with 1.0 mg l−1 2,4-dichlorophenoxyacetic acid. The primary callus was transferred to medium containing 1.0 mg l−1 1-naphthaleneacetic acid and 0.5 mg l−1 6-benzylaminopurine to establish embryogenic callus and promote somatic embryogenesis. Regenerated plantlets were recovered after the conversion of somatic embryos on medium containing 0.05 mg l−1 6-benzylaminopurine and showed normal development. Embryogenic callus was induced at a frequency of 85%, an average of 45 somatic embryos were produced per callus, 90% of the somatic embryos converted, and about 70% of the plantlets were recovered in soil. The growth rate of somatic embryo-derived shoots could be increased by gibberellic acid treatment, but the resulting plantlets were hyperhydritic. Received: 14 February 1999 / Revision received: 27 April 1999 / Accepted: 14 May 1999  相似文献   

7.
We have evaluated the effects of the antibiotic hygromycin B on cotton (Gossypium hirsutum L.) callus induction, callus proliferation, and seed germination. Nontransgenic cotyledon and hypocotyl showed obvious variance in tolerance to hygromycin. Cotyledons were more sensitive to hygromycin than hypocotyls. Hygromycin at 7.5 and 20 mg l−1 completely inhibited callus initiation from cotyledon and hypocotyl explants, respectively. Nontransformed calli did not grow on media supplemented with 10 mg l−1 hygromycin and were killed at 15 mg l−1. In seed germination assay, the presence of 20 mg l−1 hygromycin significantly suppressed shoot and root elongation of seedlings. This hygromycin concentration was applied to select regenerated transgenic plantlets and their progenies. Based on these results, we developed an efficient hygromycin selection protocol for Agrobacterium-mediated cotton transformation and regeneration.  相似文献   

8.
Summary A complete and efficient protocol is presented for plant regeneration from cell-suspension cultures of Dalbergia sissoo Roxb., an economically important leguminous tree. Factors influencing callus initiation, establishment of cell-suspension culture, callus formation from embredded microcolonies, and shoot organogenesis from suspension-derived callus were identified. Of the two different auxins tested, callus induction was better on a medium containing naphthalene acetic acid (NAA). The percentage of callus induction increased considerably when NAA at 2.0 mg l−1 (10.8 μM) was added in conjunction with 0.5 mg l−1 (2.2 μM) N6-benzyladenine (BA). Of the three different explants evaluated for callus induction, hypocotyl segments were most responsive. Friable hypocotyl-derived callus from the second subculture passage was used to initiate the cell-suspension culture. Optimum growth of the cell suspension was observed in MS medium supplemented with the same growth regulators as described above for callus induction, with an initial inoculum cell density of 1%. The plating efficiency of the microcolonies was greatly influenced by harvesting time and the gelling agent used for plating. Efficiency was highest (93%) with cells harvested at their exponential growth phase and plated in 1.2 g l−1 Phytagel. Shoot organogenesis from callus cultures was higher on a medium supplemented with a combination of BA and NAA than on BA alone. Seventy-one per cent of cultures exhibited shoot-bud differentiation on a medium containing 3.0 mg l−1 (13.3 μM) BA and 0.5 mg l−1 (2.7 μM) NAA. Regenerated shoots were rooted on half-strength MS medium containing 1 mg l−1 each of indole-3-acetic acid (5.7 μM), indole-3-butyric acid (4.9 μM) and indole-3-propionic acid (5.3 μM). Plantlets were acclimated and established in soil.  相似文献   

9.
Summary The present study aimed to evaluate the response to salinity of Populus euphratica, which is more salt-resistant than other poplar cultivars, at the cellular level. To this purpose, callus was induced from shoot segments of P. euphratica on Murashige and Skoog (MS) medium supplemented with 0.5 mg l−1 (2.2 μM) 6-benzyladenine (BA) and 0.5 mg l−1 (2.7 μM 1-naphthaleneacetic acid (NAA). Callus was transferred to MS medium supplemented with 0.25 mg l−1 (1.1 μM) BA and 0.5 mg l−1 NAA. The relative growth rate of callus reached a maximum in the presence of 50 mmol l−1 NaCl and growth was inhibited with increasing NaCl concentrations. Examination of the changes of osmotic substances under salt stress showed that accumulation of proline, glycine betaine, and total soluble sugars increased with increasing salt concentrations. The results indicate that the response of the callus of P. euphratica to salt stress is similar to that of the whole plant.  相似文献   

10.
A protocol was developed for regeneration and Agrobacterium-mediated genetic transformation of Lesquerella fendleri. Calli were first induced from hypocotyls and cotyledons on MS plus 0.5 mg l−1 BA, 1 mg l−1 NAA and 1 mg l−1 2,4-D, then co-cultivated for 2–3 days in darkness on MS supplemented with 0.5 mg l−1 BA, 0.2 mg l−1 NAA and 100 μmol l−1As together with Agrobacterium tumefaciens strain EHA105/pCAMBIA1301 that harbored genes for uidA (GUS) and hygromycin resistance. Following co-cultivation, calli transfected by A. tumefaciens were transferred to MS with 0.5 mg l−1 BA, 0.2 mg l−1NAA, 500 mg l−1 Cef and 10 mg l−1 hygromycin and cultured for 10 days, then the hygromycin was increased to 20 mg l−1 on the same medium. After 4 weeks the resistant regenerants were transferred to MS with 0.5 mg l−1BA, 0.2 mg l−1 NAA, 500 mg l−1 Cef and 25 mg l−1 hygromycin for further selections. Transgenic plants were confirmed by polymerase chain reaction analysis, GUS histochemical assay and genomic Southern blot hybridization. With this approach, the average regeneration frequency from transfected calli was 22.70%, and the number of regenerated shoots per callus was 6–13. Overall results described in this study demonstrate that Agrobacterium-mediated transformation is a promising approach for improvement of this Lesquerella species.  相似文献   

11.
Seashore paspalum (Paspalum vaginatum Swartz) is a salt tolerant, fine textured turfgrass used on golf courses in coastal, tropical, and subtropical regions. A callus induction and plant regeneration protocol for this commercially important turfgrass species has been developed. Induction of highly regenerable callus with approximately 400 shoots per cultured immature inflorescence (1 cm in length) was achieved by culturing 0.2 cm segments on media with 3 mg l−1 3,6-dichloro-2-methoxybenzoic acid (dicamba) and 0.1 or 1.0 mg l−1 benzylaminopurine (BA). A multifactorial experiment demonstrated the combination of 3 mg l−1 dicamba and 1.0 mg l−1 BA for induction of callus resulted in 12 times higher plant regeneration frequency compared to 3 mg l−1 2,4-dichlorophenoxyacetic acid (2,4-D) alone or ten times higher plant regeneration frequency than the combination of 3 mg l−1 2,4-D and 1.0 mg l−1 BA. These results are expected to support the development of a genetic transformation protocol for seashore paspalum.  相似文献   

12.
Levels of camptothecin (CPT) and 10-hydroxycamptothecin (HCPT) were determined in different cultures of Camptotheca acuminata grown either in a Temporary Immersion System (TIS) or on solid medium. CPT was also detected in liquid culture medium. HPLC analysis showed significant differences in CPT contents in all tissues analysed and the highest CPT contents were found in shoots grown on solid medium and in TIS with a mean of 2.2 and 2.5 mg g−1 DW, respectively. The highest content of CPT detected in seedlings was 1.96 mg g−1 DW; while that of somatic embryos at cotyledonary stage and regenerated plants were 0.87 and 1.23 mg g−1 DW, respectively. It was also shown that shoots cultured in TIS secreted substantial amount of CPT into the liquid medium. After 4 weeks in culture a mean of 6, 05 and 12, 6 μg g−1 FW were determined at 4 and 8 immersion cycles daily (IC d−1), respectively. This aspect opens new possibilities regarding the isolation of CTP using TIS culture systems.  相似文献   

13.
Summary A procedure for the regeneration of complete plantlets of Tylophora indica from cultured leaf callus via somatic embryogenesis is described. Callus induction from leaf explants was on Murashige and Skoog (MS) medium with different concentrations of 2,4-dichlorophenoxyacetic acid (2.4-D; 0.03–3 mg l−1; 0.0–13.56 μM) and kinetin (Kn; 0.01 mg l−1; 0.05 μM). The best response for callus induction was obtained on MS medium containing 2 mg l−1 (9.04 μM) 2.4-D and 0.01 mg l−1 (0.05 μM) Kn. After two subeultures on the same medium the embryogenic callus was transferred to MS medium with different concentrations of the cytokinin, 6-benzyladenine (0.5–3 mg l−1; 2.22–13.32 μM) and 2-isopentenyladenine (2ip; 0.53 mg l−1; 2.46–14.76 μM) along with 0.01 mg l−1 (0.05 μM) indole-3-butyric acid (IBA) for somatic embryo development and maturation. MS medium with 2 mg l−1 (9.84 μM) 2ip produced the maximum number of mature somatic embryos. The mature embryos were bipolar and on transfer to MS basal medium produced complete plantlets. After hardening the regenerants were planted in the Gudalur forests of Western Ghats. Total DNA was extracted from 14 regenerants and the mother plant. Random amplified polymorphic, DNA (RAPD) analysis was carried out using 20 arbitrary oligonucleotides. The amplification products were monomorphic among all the plants revealing the genetic homogeneity and true-to-type nature of the regenerants.  相似文献   

14.
Summary Sodium chloride-tolerant plantlets of Dendrocalamus strictus were regenerated successfully from NaCl-tolerant embryogenic callus via somatic embryogenesis. The selection of embryogenic callus tolerant to 100 mM NaCl was made by exposing the callus to increasing (0–200 mM) concentrations of NaCl in Murashige and Skoog medium having 3% (w/v) sucrose, 0.8% (w/v) agar, 3.0 mg l−1 (13.6 μM) 2,4-dichlorophenoxyacetic acid (2,4-D), and 0.5mg l−1 (2.3μM) kinetin (callus initiation medium). The tolerance of the selected embryogenic callus to 100 mM NaCl was stable through three successive transfers on NaCl-free callus initiation medium. The tolerant embryogenic callus had high levels of Na+, sugar, free amino acids, and proline but a slight decline was recorded in K+ level. The stable 100 mM NaCl-tolerant embryogenic callus differentiated somatic embryos on maintenance medium [MS medium +3% sucrose +0.8% agar +2.0 mg l−1 (9.0 μM) 2,4-D+0.5 mg l−1 (2.3 μM) kinetin] supplemented with different (0–200 mM) concentrations of NaCl. About 39% of mature somatic embryos tolerant to 100 mM NaCl germinated and converted into plantlets in germination medium [half-strength MS+2% sucrose+0.02 mg l−1 (0.1 μM) α-naphthaleneacetic acid +0.1 mg l−1 (0.49 μM) indole-3-butyric acid] containing 100 mM NaCl. Of these plantlets about 31% established well on transplantation into a garden soil and sand (1:1) mixture containing 0.2% (w/w) NaCl.  相似文献   

15.
Plantlet regeneration through shoot formation from young leaf explant-derived callus of Camptotheca acuminata is described. Calli were obtained by placing leaf explants on Woody plant medium (WPM) supplemented with various concentrations of 6-benzyladenine (BA) and naphthaleneacetic acid (NAA) or 2,4-dichlorophenoxyacetic acid (2,4-D). Callus induction was observed in all media evaluated. On the shoot induction medium, the callus induced on the WPM medium containing 19.8 μM BA and 5.8 μM NAA was the most effective, providing high shoot regeneration frequency (70.3 %) as well as the highest number of shoots (11.2 shoots explant−1). The good rooting percentage and root quality (98 %, 5.9 roots shoot−1) were achieved on WPM medium supplemented with 9.6 μM indole-3-butyric acid (IBA). 96 % of the in vitro rooted plantlets with well developed shoots and roots survived transfer to soil.  相似文献   

16.
Summary Embryogenic callus induction and plant regeneration systems have long been established for creeping bentgrass (Agrostis palustris Huds.), but little research has been reported on optimal medium for embryogenic callus induction and plant regeneration in velvet bentgrass (Agrostis canina L.), colonial bentgrass (Agrostis capillaries L.), and annual bluegrass (Poa annua L.). The present study compared 14 callus induction media and eight regeneration media for their efficacies on embryogenic callus induction and plant regeneration in these four species. The embryogenic callus initiation media contained the Murashige and Skoog inorganic salts and vitamins supplemented with 2,4-dichlorophenoxyacetic acid or 3,6-dichloro-anisic acid and 6-benzyladenine. l-Proline or casein hydrolyzate was included in some media to stimulate embryogenic callus formation and plant regeneration. The frequencies of embryogenic callus formation ranged from 0% to 38% and exhibited medium differences within each of the four species. Callus induction media, plant regeneration media, and genotypes affected plant regeneration rates, which varied between 0% and 100%. The embryogenic callus induced on Murashige and Skoog medium supplemented with 500 mgl−1 casein hydrolyzate, 6.63 mg l−1 (30 μM) 3,6-dichloro-anisic acid and 0.5–2.0 mg l−1 (2–9 μM) 6-benzyladenine had much higher regeneration rates than those formed on other callus induction media. Embryogenic callus of annual bluegrass had higher regeneration rates than those of bentgrass species. MSA2D, a media containing 2 mgl−1 (8 μM) 2,4-dichlorophenoxyacetic acid, 100 mgl−1 myo-inositol, and 150 mgl−1 asparagine, was effective in promoting embryogenic callus formation in creeping bentgrass but not in colonial and velvet bentgrasses and annual bluegrass.  相似文献   

17.
High frequency plant regeneration was induced from protocorm-derived callus cultured on half-strength of Murashige—Skoog medium with 2,4-dichlorophenoxyacetic acid (2,4-D, 0–5 mg l−1) and 1-phenyl-3-(1,2,3-thiadiazol-5-yl, 0–1 mg l−1) urea (TDZ) in the dark. Twelve totipotent callus lines were selected within 76 callus lines regenerated on half-strength of Murashige—Skoog (MS) medium with 0.5 mg l−1 TDZ. The proliferation rate was 4–5-fold in fresh weight after 30 days of culture on half-strength MS medium containing 5 mg l−1 2,4-D and 0.5 mg l−1 TDZ in the dark. The maximum number of shoot buds generated by 0.01 g callus explant was 134 after 4 months of culture. These calli were regenerated to plantlets via protocorm-like bodies (PLBs) after 75–150 days of culture. The shoots, with two true leaves, were transferred to hormone-free medium, rooting and eventually formed plantlets. Totipotent callus lines of Pleione formosana Hayata have been successfully established in this study.  相似文献   

18.
Malaxis acuminata is a terrestrial orchid that grows in shady areas of semi-evergreen to shrubby forests. It is highly valued for its medicinal properties as dried pseudo-bulbs are important ingredients of several Ayurvedic preparations. In this study, adventitious shoot buds were induced from internodal explants of M. acuminata grown on Murashige and Skoog (MS) medium supplemented with different concentrations of 6-benzyladenine (BA), kinetin (Kn), and thidiazuron (TDZ). Of the three cytokinins used, TDZ at 3 mg l−1 induced the highest frequency (82%) of organogenic explants. However, all responding explants produced only a single adventitious shoot irrespective of the type and concentration of the cytokinin. Adding 0.5 mg l−1 α naphthaleneacetic acid (NAA) to the medium enhanced adventitious shoot formation. In the presence of 3 mg l−1 TDZ and 0.5 mg l−1 NAA, frequency of organogenesis was 96% with a mean number of 6.1 shoots per explant. Prolonged culture or subculture on the same medium did not promote further shoot production. However, transfer of these cultures to MS medium supplemented with 3 mg l−1 TDZ and 0.5 mg l−1 NAA and various concentrations of different polyamines (PAs), including spermine, spermidine, and putrescine, significantly increased mean shoot number per explant. The highest frequency of shoot induction (100%) and mean shoot number per explant (14.6) was observed on MS medium with 3 mg l−1 TDZ, 0.5 mg l−1 NAA, and 0.4 mM spermidine. Regenerated shoots were excised and subcultured on an elongation medium consisting of MS medium with 3 mg l−1 BA. Moreover, the highest frequency of rooting (96%) and mean number of roots per shoot (3.3) was observed on MS medium with 4 mg l−1 indole-3-butyric acid (IBA) and 1.5 mg l−1 activated charcoal (AC). Almost 90% of rooted shoots were successfully acclimatized and established ex vitro.  相似文献   

19.
The turf-type bermudagrasses are genetically variable and do not respond uniformly to tissue culture and plant regeneration protocols. We evaluated the callus induction response of two explant types, young inflorescences and nodes, from multiple genotypes including triploid TifSport, TifEagle, and Tift97-4 and tetraploid Tift93-132, Tift93-135, Tift93-156 and Tift93-157 on MS medium supplemented with 1–1.5 mg l−1 2,4-D + 0.01 mg l−1 BA + 1.16 g l−1 proline. Four types of callus were observed. Type I was fluffy, soft, and white non-embryogenic callus, common to all cultures. Type II was globular, transparent, and hard, but sticky callus, which was pre-embryogenic and could be selected for subculture. Type III callus was transparent, compact, and embryogenic. Type IV callus was opaque white and compact. Both Type III and Type IV calluses were embryogenic and regenerative. A combination of gelling agents in the medium (2 g l−1 Gelrite and 5 g l−1 agar) improved callus quality and increased the rate of compact callus formation during subculture. Embryogenesis from compact callus was observed in TifEagle, TifSport and Tift93-132, and shoots were regenerated on MS medium with 0.1 mg l−1 2,4-D + 0.5–4.0 mg l−1 BA. Low intensity light treatment (30 μmol m2 s−1 of cool white fluorescence) to callus before regeneration greatly enhanced regeneration frequency from 6.7% to 40% in recalcitrant TifSport.  相似文献   

20.
Plantlets of the mulberry (Morus alba L. vars. Chinese White, and Kokuso-27) were produced from callus cultures. For callus induction, leaf, internodal segments, and petiole explants of Chinese White, Kokuso-27 and Ichinose varieties were grown on MS basal medium fortified with 2,4-D and 6-benzylaminopurine (BA). Callogenesis was dependent on the nature of explant used, the genotype and growth regulators supplemented in the medium. Leaves were the best explant type used for callus induction. Best callogenesis was obtained on MS medium containing a combination of 1 mg l−1 2,4-D and 0.5 mg l−1 BA (95-100%). Calluses formed shoots on MS medium supplemented with 1 mg l−1 BA. Supplementation with 0.1 mg l−1 2,3,5-triiodobenzoic acid (TIBA) in this medium enhanced shooting response. Presence of TIBA in the medium also improved the long-term organogenic potential of the callus. Regenerated shoots produced roots on Murashige & Skoog (MS) medium containing either 0.5 mg l−1 indole-3-butyric acid (IBA) or α-naphthaleneacetic acid (NAA). Seventy percent of the rooted plants were established in the field where they are performing well. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号