首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Angiogenesis is an essential step for many physiological and pathological processes. Tumor necrosis factor (TNF) superfamily cytokines are increasingly recognized as key modulators of angiogenesis. In this study, we tested whether TNF-related activation-induced cytokine (TRANCE), a new member of the TNF superfamily, possesses angiogenic activity in vitro and in vivo. TRANCE stimulated DNA synthesis, chemotactic motility, and capillary-like tube formation in primary cultured human umbilical vein endothelial cells (HUVECs). Both Matrigel plug assay in mice and chick chorioallantoic membrane assay revealed that TRANCE potently induced neovascularization in vivo. TRANCE had no effect on vascular endothelial growth factor (VEGF) expression in HUVECs and TRANCE-induced angiogenic activity was not suppressed by VEGF-neutralizing antibody, implying that TRANCE-induced angiogenesis may be the result of its direct action on endothelial cells. TRANCE evoked a time- and dose-dependent activation of the mitogen-activated protein kinases ERK1/2 and focal adhesion kinase p125(FAK) in HUVECs, which are closely linked to angiogenesis. These signaling events were blocked by the Src inhibitor PP1 or the phospholipase C (PLC) inhibitor. Furthermore, these inhibitors and the Ca(2+) chelator BAPTA-AM suppressed TRANCE-induced HUVEC migration. These results indicate that the angiogenic activity of TRANCE is mediated through the Src-PLC-Ca(2+) signaling cascade upon receptor engagement in endothelial cells, suggesting the role of TRANCE in neovessel formation under physiological and pathological conditions.  相似文献   

2.
Reversible phosphorylation of proteins regulates the majority of all cellular processes, e.g. proliferation, differentiation, and apoptosis. A fundamental understanding of these biological processes at the molecular level requires characterization of the phosphorylated proteins. Phosphorylation is often substoichiometric, and an enrichment procedure of phosphorylated peptides derived from phosphorylated proteins is a necessary prerequisite for the characterization of such peptides by modern mass spectrometric methods. We report a highly selective enrichment procedure for phosphorylated peptides based on TiO2microcolumns and peptide loading in 2,5-dihydroxybenzoic acid (DHB). The effect of DHB was a very efficient reduction in the binding of nonphosphorylated peptides to TiO2 while retaining its high binding affinity for phosphorylated peptides. Thus, inclusion of DHB dramatically increased the selectivity of the enrichment of phosphorylated peptides by TiO2. We demonstrated that this new procedure was more selective for binding phosphorylated peptides than IMAC using MALDI mass spectrometry. In addition, we showed that LC-ESI-MSMS was biased toward monophosphorylated peptides, whereas MALDI MS was not. Other substituted aromatic carboxylic acids were also capable of specifically reducing binding of nonphosphorylated peptides, whereas phosphoric acid reduced binding of both phosphorylated and nonphosphorylated peptides. A putative mechanism for this intriguing effect is presented.  相似文献   

3.
The importance of tissue transglutaminase (TG2) in angiogenesis is unclear and contradictory. Here we show that inhibition of extracellular TG2 protein crosslinking or downregulation of TG2 expression leads to inhibition of angiogenesis in cell culture, the aorta ring assay and in vivo models. In a human umbilical vein endothelial cell (HUVEC) co-culture model, inhibition of extracellular TG2 activity can halt the progression of angiogenesis, even when introduced after tubule formation has commenced and after addition of excess vascular endothelial growth factor (VEGF). In both cases, this leads to a significant reduction in tubule branching. Knockdown of TG2 by short hairpin (shRNA) results in inhibition of HUVEC migration and tubule formation, which can be restored by add back of wt TG2, but not by the transamidation-defective but GTP-binding mutant W241A. TG2 inhibition results in inhibition of fibronectin deposition in HUVEC monocultures with a parallel reduction in matrix-bound VEGFA, leading to a reduction in phosphorylated VEGF receptor 2 (VEGFR2) at Tyr1214 and its downstream effectors Akt and ERK1/2, and importantly its association with β1 integrin. We propose a mechanism for the involvement of matrix-bound VEGFA in angiogenesis that is dependent on extracellular TG2-related activity.  相似文献   

4.
The mechanisms of colorimetric assays based on aggregation of gold nanoparticles (GNPs) have been separated into two categories, crosslinking, and noncrosslinking aggregation. The noncrosslinking aggregation has recently been emerging as a simple and rapid mechanism and has been applied to enzymatic activity assays and DNA detection. We report here the detailed study of an enzymatic activity assay for protein kinases based on noncrosslinking aggregation. The principle of the assay is to detect kinase activity by utilizing the difference of coagulating ability of a cationic substrate peptide and its phosphorylated form toward GNPs with anionic surface charge. The critical coagulation concentrations (CCCs) of the peptides were about 10(3) times lower than those of the metal cations with the same cationic charges. The multivalent coordination bonds of the functional groups of the peptides with the GNP surface will strongly support the adsorption of the peptide on the GNP surface. The effect of the GNP size (10, 20, 40, 60 nm) on the dynamic range of OD before and after aggregation was studied. The dynamic range became a maximum for 20 nm GNP among those studied. The difference of CCC between the phosphorylated and nonphosphorylated peptides was governed by (1) the ratio between the peptide concentration and the surface area concentration of GNP and (2) the net charge of the peptides. When the assay system was applied to the activity assessment of protein kinase A, the dynamic range of OD was largest for 20 nm GNPs. However, when the peptide concentration was lowered, the largest 60 nm GNP was advantageous because of its smaller specific surface area.  相似文献   

5.
Uremic toxins such as indoxyl sulfate (IS) accumulate at a high level in end stage renal disease (ESRD) and can exhibit significant systemic endothelial toxicity leading to accelerated cardiovascular events. The precise molecular mechanisms by which IS causes endothelial dysfunction are unknown. We tested the hypothesis that IS negatively influences properties of endothelial cells, such as migration and tube formation, by depleting nitric oxide (NO) bioavailability, and that an NO donor can reverse these inhibitory effects. IS inhibited human umbilical vein endothelial cell (HUVEC) migration and formation of tubes on matrigel. Mechanistically, IS inhibited VEGF-induced NO release from HUVECs. An NO donor, SNAP, reversed IS-mediated inhibition of HUVEC migration as well as tube-formation. IS inhibited ERK 1/2 MAP kinase activity in a dose-dependent manner, but this was preserved by SNAP. Inhibition of ERK 1/2 with a pharmacological inhibitor (U0126) decreased HUVEC migration and tube formation; these effects too were prevented by SNAP. Further, IS stimulated activation of myosin light chain (MLC), potentially stimulating endothelial contractility, while SNAP decreased MLC activation. Thus, we conclude that the negative effects of IS on endothelial cells are prevented, to a major extent, by NO, via its divergent actions on ERK MAP kinase and MLC.  相似文献   

6.
Homogeneous antibody-free assays of protein kinase activity have great utility in high-throughput screening in support of drug discovery. In an effort to develop such an assay, we have used a pair of fluorescein-labeled peptides of identical amino acid sequence with and without phosphorylation on serine to mimic the substrate and product, respectively, of a kinase. Using fluorescence polarization (FP), we have demonstrated that a mixture of zinc sulfate, phosphate-buffered saline, and bovine serum albumin added to the peptides dramatically and differentially increased the fluorescence polarization of the phosphorylated peptide over its nonphosphorylated derivative. A similar FP differential was observed using different peptide pairs, though the magnitude varied. The FP values obtained using this method were directly proportional to the fraction of phosphopeptide present. Therefore, an FP assay was developed using a proprietary kinase. Using this FP method, linear reaction kinetics were obtained in enzyme titration and reaction time course experiments. The IC(50) values for a panel of inhibitors of kinase activity were determined using this FP method and a scintillation proximity assay. The IC(50) values were comparable between the two methods, suggesting that the zinc FP assay may be useful as an inexpensive high-throughput assay for identifying inhibitors of kinase activity.  相似文献   

7.
Improvements to phosphopeptide enrichment protocols employing titanium dioxide (TiO2) are described and applied to identification of phosphorylation sites on recombinant human cyclin-dependent kinase 2 (CDK2). Titanium dioxide binds phosphopeptides under acidic conditions, and they can be eluted under basic conditions. However, some nonphosphorylated peptides, particularly acidic peptides, bind and elute under these conditions as well. These nonphosphorylated peptides contribute significantly to ion suppression of phosphopeptides and also increase sample complexity. We show here that the conversion of peptide carboxylates to their corresponding methyl esters sharply reduces nonspecific binding, improving the selectivity for phosphopeptides, just as has been reported for immobilized metal affinity chromatography (IMAC) columns. We also present evidence that monophosphorylated peptides can be effectively fractionated from multiply phosphorylated peptides, as well as acidic peptides, via stepwise elution from TiO2 using pH step gradients from pH 8.5 to pH 11.5. These approaches were applied to human CDK2 phosphorylated in vitro by yeast CAK1p in the absence of cyclin. We confirmed phosphorylation at T160, a site previously documented and shown to be necessary for CDK2 activity. However, we also discovered several novel sites of partial phosphorylation at S46, T47, T165, and Y168 when ion-suppressing nonphosphorylated peptides were eliminated using the new protocols.  相似文献   

8.
Deoxyribonuclease I (DNase I) activity in serum has been shown to be a novel diagnostic marker for the early detection of acute myocardial infarction (AMI). However, the conventional method to measure DNase I activity is time-consuming. In the current study, to develop a rapid assay method for DNase I activity for clinical purposes, a microchip electrophoresis device was used to measure DNase I activity. Because DNase I is an endonuclease that degrades double-stranded DNA endo-nucleolytically to produce oligonucleotides, degradation of the DNA standard caused by DNase I action was detected using microchip electrophoresis. We detected DNase I activity within 10 min. This is the first study to apply microchip electrophoresis for the detection of DNase I activity; furthermore, it seems plausible that reduction of analysis time for DNase I activity could make this novel assay method using microchip electrophoresis applicable in clinical use.  相似文献   

9.
Although the significance of vascular endothelial growth factor (VEGF) and its receptors in angiogenesis is well established, the signal transduction cascades activated by VEGF and their involvement in mediating the mitogenic response of endothelial cells to VEGF are incompletely characterized. Here we demonstrate that VEGF activates mitogen-activated protein (MAP) kinases, including the extracellular signal-regulated protein kinase (ERK) and p38 MAP kinase, phosphatidylinositol 3-kinase (PI 3-kinase), and p70 S6 kinase in human umbilical vein endothelial cells (HUVEC). The activation of these enzymes was assayed by kinase phosphorylation and by kinase activity towards substrates. Studies with PI 3-kinase inhibitors revealed that activation of p70 S6 kinase was mediated by PI 3-kinase. Selective inhibition of ERK, PI 3-kinase, and p70 S6 kinase with the inhibitors PD098059, LY294002, and rapamycin, respectively, inhibited VEGF-stimulated HUVEC proliferation. In marked contrast, the p38 MAP kinase inhibitor SB203580 not only failed to inhibit but actually enhanced HUVEC proliferation; this effect was associated with the phosphorylation of Rb protein. Rb phosphorylation resulted from a decrease in the level of the cdk inhibitor p27KiP1. These results indicate that the activities of ERK, PI 3-kinase, and p70 S6 kinase are essential for VEGF-induced HUVEC proliferation. p38 MAP kinase suppresses endothelial cell proliferation by regulating cell-cycle progression.  相似文献   

10.
Ling S  Zhou L  Li H  Dai A  Liu JP  Komesaroff PA  Sudhir K 《Steroids》2006,71(9):799-808
Vascular endothelial cell (EC) integrity is key to arterial health; endothelial dysfunction is linked to atherogenesis. Atherosclerosis shows a male preponderance, possibly related to the protective effect of estrogens in women. This study examined the effect of estrogens on growth, apoptosis and adhesion molecule expression in cultured human EC. The effects of 17beta-estradiol (E2) were studied in human umbilical vein endothelial cells (HUVEC) under normal culture conditions, and following exposure to cyclic mechanical strain or tumor necrosis factor alpha (TNFalpha). E2 enhanced HUVEC growth in serum-enriched media, in a concentration-dependent manner. This up-regulation of EC growth by E2 was associated with an increase in telomerase activity, assessed by PCR-based TRAP analysis. Cyclic strain enhanced [(3)H]-thymidine incorporation into DNA, and increased activation of mitogen-activated protein (MAP) kinase ERK1/2 and expression of early growth genes (Egr-1 and Sp-1); E2 attenuated the strain-induced ERK1/2 activation but not the early growth gene expression or DNA synthesis. TNFalpha (20 ng/mL) induced apoptosis in HUVEC, causing a decrease in DNA synthesis, increase in floating and Annexin-V-stained cell numbers, and morphological changes. TNFalpha also upregulated ERK1/2 activity and expression of adhesion molecules (ICAM-1, VCAM-1 and E-selectin). E2 significantly attenuated the effects of TNFalpha on ERK1/2 activity, apoptosis, and E-selectin expression in the cells. Thus, estradiol enhances growth and reduces TNFalpha-induced apoptosis in EC; enhanced EC growth may be mediated via upregulation of telomerase activity. These effects are possible cellular mechanisms underlying female gender-associated cardiovascular protection.  相似文献   

11.
In a two-dimensional (2D) culture dish, the major activity of endothelial cells is proliferation with limited morphological change. When cultured in a three-dimensional (3D) collagen gel matrix, endothelial cells undergo a series of morphological changes starting with development of intracellular vacuoles and followed by cell elongation. Adjacent cells then coalesce to form tube-like structures. This process mimics the steps of capillary formation during angiogenesis. Using this model, we investigated the roles of extracellular signal-regulated kinase (ERK) and p38 MAP kinase (p38) in the tube formation from human umbilical vein endothelial cells (HUVEC). Proliferating HUVEC gradually lost their ability to divide after being transferred to 3D collagen matrices, where differentiation became the dominant cellular activity. The transition from proliferation to the differentiation state was accompanied by a drastic reduction of cyclin-dependent kinases CDC2, CDK4, and retinoblastoma (Rb) protein, but the expression of cyclin-dependent kinase inhibitor, p27kip1, was increased. Inhibition of p38 by SB203580 partially prevented these changes and increased the proliferation rate of HUVEC. However, cells under this condition exhibited unusually elongated cell bodies, and they were unable to coalesce to form tube structures. Inhibition of ERK neither affected the cell proliferation rate nor the expression levels of cell cycle regulators, but it completely blocked tube formation by inducing apoptosis, a finding different from the best-known role of ERK in cell proliferation in the 2D cell culture systems. We conclude that the major function of ERK is to maintain cell viability while p38 plays multiple roles in controlling cell proliferation, viability, and morphogenesis during tube formation.  相似文献   

12.
A novel nucleic acid analogue (2Cl-C.OXT-A) significantly stimulated tube formation of human umbilical endothelial cells (HUVEC). Its maximum potency at 100 μM was stronger than that of vascular endothelial growth factor (VEGF), a positive control. At this concentration, 2Cl-C.OXT-A moderately stimulated proliferation as well as migration of HUVEC. To gain mechanistic insights how 2Cl-C.OXT-A promotes angiogenic responses in HUVEC, we performed immunoblot analyses using phospho-specific antibodies as probes. 2Cl-C.OXT-A induced robust phosphorylation/activation of MAP kinase ERK1/2 and an upstream MAP kinase kinase MEK. Conversely, a MEK inhibitor PD98059 abolished ERK1/2 activation and tube formation both enhanced by 2Cl-C.OXT-A. In contrast, MAP kinase responses elicited by 2Cl-C.OXT-A were not inhibited by SU5416, a specific inhibitor of VEGF receptor tyrosine kinase. Collectively these results suggest that 2Cl-C.OXT-A-induces angiogenic responses in HUVEC mediated by a MAP kinase cascade comprising MEK and ERK1/2, but independently of VEGF receptor tyrosine kinase. In vivo assay using chicken chorioallantoic membrane (CAM) and rabbit cornea also suggested the angiogenic potency of 2Cl-C.OXT-A.  相似文献   

13.
Angiogenesis plays a critical role in the progression of cardiovascular disease, retinal ischemia, or tumorigenesis. The imbalance of endothelial cell proliferation and apoptosis disturbs the establishment of the vasculogenesis, which is affected by several arachidonic acid metabolites. 15-Hydroxyeicosatetraenoic acid (15-HETE) is one of the metabolites. However, the underlying mechanisms of angiogenesis induced by 15-HETE in human umbilical vascular endothelial cells (HUVECs) are still poorly understood. Since extracellular signal-regulated kinase (ERK) is a critical regulator of cell proliferation, there may be a crosstalk between 15-HETE-regulating angiogenic process and ERK-proliferative effect in HUVECs. To test this hypothesis, we study the effect of 15-HETE on cell proliferation, angiogenesis, and apoptosis using cell viability measurement, cell cycle analysis, western blot, scratch–wound, tube formation assay, and nuclear morphology determination. We found that 15-HETE promoted HUVEC angiogenesis, which were mediated by ERK. Moreover, 15-HETE-induced proliferation and cell cycle transition from the G0/G1 phase to the G2/M?+?S phase. All these effects were reversed after blocking ERK with PD98059 (an ERK inhibitor). In addition, HUVEC apoptosis was relieved by 15-HETE through the ERK pathway. Thus, ERK is necessary for the effects of 15-HETE in the regulation of HUVEC angiogenesis, which may be a novel potential target for the treatment of angiogenesis-related diseases.  相似文献   

14.
Previously, we demonstrated that the extracellular signal‐regulated kinase (ERK)‐mediated pathway contributes to the terbinafine (TB)‐induced increases of p21 and p53 protein level as well as decrease of DNA synthesis in human umbilical venous endothelial cells (HUVEC). The aim of this study is to examine the involvement of c‐Jun NH2‐terminal kinase (JNK) in the TB‐induced increase of p21 protein level and DNA synthesis inhibition. Western blot analysis and kinase assay demonstrated that TB treatment increased both the protein level and the kinase activity of JNK1/2 in HUVEC. Transfection of HUVEC with JNK1 dominant negative (DN‐JNK1) prevented the TB‐induced increases of p21 and p53 protein level and decrease of DNA synthesis, suggesting that JNK1/2 activation is involved in the TB‐induced cell cycle arrest in HUVEC. Moreover, over‐expression of mitogen‐activated protein kinase (MEK)‐1 prevented the TB‐induced increase of JNK1/2 protein levels, suggesting that MEK‐1 is an upstream inhibitor of JNK. Transfection of HUVEC with DN‐JNK1 prevented the TB‐induced inhibition of ERK phosphorylation, suggesting that JNK1/2 might serve as a negative regulator of ERK. Taken together, our results suggest that JNK activation is involved in the TB‐induced inhibition of ERK phosphorylation, p53 and p21 up‐regulation and DNA synthesis inhibition in HUVEC. J. Cell. Biochem. 108: 860–866, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

15.
Proatrial natriuretic factor (proANF) is phosphorylated in primary cultures of neonatal rat cardiocytes. Rittenhouse et al. (Rittenhouse, J., Moberly, L., O'Donnell, M. E., Owen, N. E., and Marcus, F. (1986) J. Biol. Chem. 261, 7607-7610) observed that cyclic AMP-dependent protein kinase phosphorylated synthetic peptides related to atrial natriuretic factor (ANF) and that phosphorylated ANF peptides were more effective in stimulating Na/K/Cl cotransport in smooth muscle cells than nonphosphorylated forms. In our studies, rat cardiocytes in culture were incubated with [32P]orthophosphoric acid, and ANF-related peptides in cell extracts and culture media were isolated using antisera to ANF. Both atrial and ventricular cardiocytes contained and secreted phosphorylated proANF, a 126-amino acid precursor of ANF. Phosphorylated and nonphosphorylated isoforms of proANF were resolved by isoelectric focusing; approximately 35% of the proANF secreted by cardiocytes was phosphorylated. proANF is phosphorylated on a serine residue localized to a 42-amino acid tryptic fragment (proANF residues 26-67). We conclude that proANF is phosphorylated by rat cardiocytes but not within the portion of the molecule destined to become ANF (proANF residues 99-126). Phosphorylation may have a role in the cellular mechanisms of proANF storage and secretion or in the modulation of potential biological activities of the circulating amino-terminal portion of proANF.  相似文献   

16.
Antiapoptotic effect of ouabain on human umbilical vein endothelial cells   总被引:2,自引:0,他引:2  
The present study investigates the effect of ouabain on caspase-3 activation in human umbilical vein endothelial cells (HUVEC). Ouabain (EC(50) 20 nM) reduced caspase-3 activity in HUVEC treated for 24h in a medium deprived of fibroblast growth factor (FGF). Incubation for 5h in the absence of both FGF and serum produced an increase in caspase-3 activity that was completely abolished by 100 nM ouabain. Pretreatment with the phosphatidylinositol 3 kinase (PI-3K) inhibitor, wortmannin, prevented the protective effect of ouabain against serum deprivation. Furthermore, Western blotting analysis revealed an increase in phosphorylation of extracellular signal-regulated kinases (ERK-1 and ERK-2) induced by 100nM ouabain in serum-deprived cells. In accord, pretreatment of HUVEC with PD98059, inhibitor of the ERK pathway, abrogated the effect of ouabain. Our results show that ouabain has an antiapoptotic effect on HUVEC through the activation of PI-3K and ERK dependent pathways.  相似文献   

17.
Phosphorylation of the acetylcholine receptor (AChR) seems to be responsible for triggering several effects including its desensitization and aggregation at the postsynaptic membrane and probably initiates a signal transduction pathway at the postsynaptic membrane. To study the structural and functional role of the tyrosine phosphorylation site of the AChR beta-subunit and contribute to the in-depth understanding of the structural basis of the ion channel function, we synthesized four peptides containing the phosphorylated and nonphosphorylated sequences (380-391) of the human and Torpedo AChR beta-subunits and studied their interaction with a monoclonal antibody (mAb 148) that is known to bind to this region and that is capable of blocking ion channel function. All four peptides were efficient inhibitors of mAb 148 binding to AChR, although the nonphosphorylated human peptide was considerably less effective than the three others. We then investigated the conformation acquired by all four peptides in their antibody-bound state, which possibly illustrates the local conformation of the corresponding sites on the intact AChR molecule. The phosphorylated human and Torpedo peptides adopted a distorted 3(10) helix conformation. The nonphosphorylated Torpedo peptide, which is also an efficient inhibitor, was also folded. In contrast, the nonphosphorylated human peptide (a less efficient inhibitor) presented an extended structure. It is concluded that the phosphorylation of the AChR at its beta-subunit Tyr site leads to a significant change in its conformation, which may affect several functions of the AChR.  相似文献   

18.
Angiogenesis is an important process in atherosclerosis. ErbB2 was proved to have an important role in vascular development, but it is still unclear whether Erbin expresses in vessels as well as its location and function in the vessels. In the current study, we investigated the location and function of Erbin in human umbilical veins. The human umbilical veins were prepared, and immunofluorescent analysis was performed to determine the expression of Erbin. Human umbilical vein endothelial cells (HUVECs) were cultured and the lentivirus (LV) containing Erbin RNAi was also prepared. After transfection with the lentivirus, CCK-8 assay and Annexin V-PI assay were used for cell proliferation and apoptosis, respectively. Cell migration was studied using the scratch wound healing assay and the transwell assay. The capillary-like tube formation assay was performed to illustrate the effect of Erbin on HUVEC tube formation. Expression of signaling pathway molecules was assessed with Western blot. The immunofluorescent analysis suggested that Erbin expressed in human umbilical veins and the majority of the Erbin is strongly colocalized in endothelial cells. Although knockdown of Erbin did not affect HUVEC proliferation and apoptosis, it significantly suppressed HUVEC migration and tubular structure formation. Erbin knockdown showed no effect on the ERK1/2 and Smad2/3 signaling pathways but significantly promoted Smad1/5 phosphorylation and nuclear translocation. Ablation of the Smad1/5 pathway decreased the effects of Erbin on endothelial cells. Erbin is mainly localized in endothelial cells in human umbilical veins and plays a critical role in endothelial cell migration and tubular formation via the Smad1/5 pathway.  相似文献   

19.
We have previously demonstrated temporal gradients in shear stress stimulate endothelial cell proliferation, whereas spatial gradients do not. In the present study, the extracellular signal-regulated kinases 1 and 2 (ERK1/2) pathway was investigated as a possible mediator for the promitogenic effect of temporal gradients. The sudden expansion flow chamber (SEFC) model was used to differentiate the effect of temporal gradients in shear from that of spatial gradients on ERK1/2 activation in human umbilical vein endothelial cells (HUVEC). ERK1/2 activation in the SEFC was not significantly different from control when HUVEC were exposed to spatial gradients alone. When a single temporal impulse was superimposed on spatial gradients, ERK1/2 activation was stimulated 330% (relative to spatial alone) within the region of spatial gradients. Inhibition of the ERK1/2 pathway with U-0126 abolished all effects of temporal gradients. To further separate temporal and spatial gradients, a conventional parallel plate flow chamber was utilized. Acute exposure to oscillations in flow at a frequency of 1 Hz stimulated ERK1/2 activation 620 +/- 88% relative to control, whereas a single impulse of flow increased ERK1/2 activation 166 +/- 19%. Flow without the temporal component did not significantly activate ERK1/2. These results suggest that the ERK1/2 pathway directly mediates the promitogenic effects of temporal gradients in shear stress.  相似文献   

20.
Asymmetric dimethylarginine (ADMA), an endogenous inhibitor of nitric oxide synthase, is emerging as a key contributor for endothelial dysfunction associated with inflammation. Statins can inhibit vascular inflammatory reaction and improve endothelial function. The aim of this study was to investigate in human endothelial cells the signaling pathways of ADMA-induced inflammatory reaction and potential inhibitory effects of simvastatin. Endothelial cells were cultured and used for all of the studies. Tumor necrosis factor-alpha(TNF-alpha) and soluble intercellular adhesion molecule-1 (sICAM-1) were determined by enzyme-linked immunosorbent assay. Nuclear factor-kappaB (NF-kappaB) was assayed by electrophoretic mobility shift assay. The activation of mitogen-activated protein kinases (MAPKs), including p38 MAPK and extracellular signal-related kinase (ERK(1/2)), were characterized by Western blot analysis. Treatment with ADMA (3-30 micromol/L) increased the concentration of sICAM-1 in a dose-dependent manner. ADMA (30 micromol/L) significantly enhanced the concentrations of TNF-alpha and sICAM-1, the activity of NF-kappaB and the phosphorylation of p38 MAPK and ERK(1/2). The increased secretion of TNF-alpha and sICAM-1 and the increased activity of NF-kappaB by ADMA were altered by SB203580 (5 micromol/L) or PD98059 (20 micromol/L), but not by LY294002 (20 micromol/L). Simvastatin (0.1, 0.5, or 2.5 micromol/L) markedly inhibited the elevated concentrations of TNF-alpha and sICAM-1, the activity of NF-kappaB, and the phosphorylation of p38 MAPK and ERK(1/2) induced by ADMA. Simvastatin inhibited ADMA-induced inflammatory reaction by p38 MAPK and ERK(1/2) pathways in cultured endothelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号