首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chemokines and their receptors play important roles in normal physiological functions and the pathogeneses of a wide range of human diseases, including the entry of human immunodeficiency virus type 1 (HIV-1). However, the use of natural chemokines to probe receptor biology or to develop therapeutic drugs is limited by their lack of selectivity and the poor understanding of mechanisms in ligand-receptor recognition. We addressed these issues by combining chemical and structural biology in research into molecular recognition and inhibitor design. Specifically, the concepts of chemical biology were used to develop synthetically and modularly modified (SMM) chemokines that are unnatural and yet have properties improved over those of natural chemokines in terms of receptor selectivity, affinity, and the ability to explore receptor functions. This was followed by using structural biology to determine the structural basis for synthetically perturbed ligand-receptor selectivity. As a proof-of-principle for this combined chemical and structural-biology approach, we report a novel D-amino acid-containing SMM-chemokine designed based on the natural chemokine called viral macrophage inflammatory protein II (vMIP-II). The incorporation of unnatural D-amino acids enhanced the affinity of this molecule for CXCR4 but significantly diminished that for CCR5 or CCR2, thus yielding much more selective recognition of CXCR4 than wild-type vMIP-II. This D-amino acid-containing chemokine also showed more potent and specific inhibitory activity against HIV-1 entry via CXCR4 than natural chemokines. Furthermore, the high-resolution crystal structure of this D-amino acid-containing chemokine and a molecular-modeling study of its complex with CXCR4 provided the structure-based mechanism for the selective interaction between the ligand and chemokine receptors and the potent anti-HIV activity of D-amino acid-containing chemokines.  相似文献   

2.

Background  

CC chemokine receptor proteins (CCR1 through CCR10) are seven-transmembrane G-protein coupled receptors whose signaling pathways are known for their important roles coordinating immune system responses through targeted trafficking of white blood cells. In addition, some of these receptors have been identified as fusion proteins for viral pathogens: for example, HIV-1 strains utilize CCR5, CCR2 and CCR3 proteins to obtain cellular entry in humans. The extracellular domains of these receptor proteins are involved in ligand-binding specificity as well as pathogen recognition interactions.  相似文献   

3.
Chemokines exert their effects through their interaction with seven transmembrane domain receptors coupled to G-proteins, GPCRs. Such receptor ligation leads to the regulation of numerous activities where chemokines play a key role, including hematopoiesis, T-cell activation, angiogenesis, inflammatory diseases or HIV-1 infection. Here we discuss the molecular mechanisms that underlie chemokine receptor activation. As occurs with other GPCRs, chemokines initiate the signaling cascades by inducing receptor dimerization. This dimerization enables the activation of the JAK/STAT pathway which allows the subsequent triggering of G-protein dependent signaling events. This mechanism provides a new context to explain some of the activities exerted by chemokines and introduces new targets for the development of drugs to fight those diseases were chemokines are implicated, such as inflammation and AIDS.  相似文献   

4.
Choi WT  Tian S  Dong CZ  Kumar S  Liu D  Madani N  An J  Sodroski JG  Huang Z 《Journal of virology》2005,79(24):15398-15404
The chemokine receptor CXCR4 plays an important role as the receptor for the normal physiological function of stromal cell-derived factor 1alpha (SDF-1alpha) and the coreceptor for the entry of human immunodeficiency virus type 1 (HIV-1) into the cell. In a recent work (S. Tian et al., J. Virol. 79:12667-12673, 2005), we found that many residues throughout CXCR4 transmembrane (TM) and extracellular loop 2 domains are specifically involved in interaction with HIV-1 gp120, as most of these sites did not play a role in either SDF-1alpha binding or signaling. These results provided direct experimental evidence for the distinct functional sites on CXCR4 for HIV-1 and the normal ligand SDF-1alpha. To further understand the CXCR4-ligand interaction and to develop new CXCR4 inhibitors to block HIV-1 entry, we have recently generated a new family of unnatural chemokines, termed synthetically and modularly modified (SMM) chemokines, derived from the native sequence of SDF-1alpha or viral macrophage inflammatory protein II (vMIP-II). These SMM chemokines contain various de novo-designed sequence replacements and substitutions by d-amino acids and display more enhanced CXCR4 selectivity, binding affinities, and/or anti-HIV activities than natural chemokines. Using these novel CXCR4-targeting SMM chemokines as receptor probes, we conducted ligand binding site mapping experiments on a panel of site-directed mutants of CXCR4. Here, we provide the first experimental evidence demonstrating that SMM chemokines interact with many residues on CXCR4 TM and extracellular domains that are important for HIV-1 entry, but not SDF-1alpha binding or signaling. The preferential overlapping in the CXCR4 binding residues of SMM chemokines with HIV-1 over SDF-1alpha illustrates a mechanism for the potent HIV-1 inhibition by these SMM chemokines. The discovery of distinct functional sites or conformational states influenced by these receptor sites mediating different functions of the natural ligand versus the viral or synthetic ligands has important implications for drug discovery, since the sites shared by SMM chemokines and HIV-1 but not by SDF-1alpha can be targeted for the development of selective HIV-1 inhibitors devoid of interference with normal SDF-1alpha function.  相似文献   

5.
1型人免疫缺陷病毒(HIV-1)感染靶细胞是一个包含病毒膜蛋白和细胞膜受体相互作用的多极化过程,CCR5和CXCR4作为趋化因子受体参与这一过程,并且是M嗜性和T嗜性HIV-1感染的重要共受体。文章总结了作者在HIV-1共受体方面的工作,对趋化因子受体作为新的治疗HIV-1感染的工具的最新进展做了简要综述。  相似文献   

6.
The Duffy antigen/receptor for chemokine (DARC) is an erythrocyte receptor for malaria parasites (Plasmodium vivax and Plasmodium knowlesi) and for chemokines. In contrast to other chemokine receptors, DARC is a promiscuous receptor that binds chemokines of both CC and CXC classes. The four extracellular domains (ECDs) of DARC are essential for its interaction with chemokines, whilst the first (ECD1) is sufficient for the interaction with malaria erythrocyte-binding protein. In this study, we elaborate and analyze structural models of the DARC. The construction of the 3D models is based on a comparative modeling process and on the use of many procedures to predict transmembrane segments and to detect far homologous proteins with known structures. Threading, ab initio, secondary structure and Protein Blocks approaches are used to build a very large number of models. The conformational exploration of the ECDs is performed with simulated annealing. The second and fourth ECDs are strongly constrained. On the contrary, the ECD1 is highly flexible, but seems composed of three consecutive regions: a small beta-sheet, a linker region and a structured loop. The chosen structural models encompass most of the biochemical features and reflect the known experimental data. They may be used to analyze functional interaction properties.  相似文献   

7.
FPRL1 is a seven-transmembrane (STM), G-protein coupled receptor which was originally identified as a low affinity receptor for the bacterial chemotactic formyl peptide and a high affinity receptor for the lipid metabolite lipoxin A4. We recently discovered that a number of peptides, including several synthetic domains of the HIV-1 envelope proteins and the serum amyloid A, use FPRL1 to induce migration and calcium mobilization in human monocytes and neutrophils. In this study, we report that a synthetic peptide domain of the V3 region of the HIV-1 envelope gp120, activates the FPRL1 receptor in monocytes and neutrophils. Furthermore, monocytes prestimulated with V3 peptide showed reduced response to several chemokines that use multiple cell receptors. This is associated with a rapid phosphorylation of the chemokine receptor CCR5 on the serine residues. Our study suggests that FPRL1, as a classical chemoattractant receptor, may play an important role in modulating monocyte activation in the presence of multiple stimuli.  相似文献   

8.
Chemokine receptors (CRs) are 7-helix membrane proteins from the family of G-protein coupled receptors (GPCRs). A few human CRs act as cofactors for macrophage-tropic (M-tropic) human immunodeficiency virus type-1 (HIV-1) entry into cells, while others do not. In this study, we describe an application of molecular modeling techniques to delineate common molecular determinants that might be related to coreceptor activity, and the use of the data to identify other GPCRs as putative cofactors for M-tropic HIV-1 entry. Subsequently, the results were confirmed by an experimental approach. The sequences of extracellular domains (ECDs) of CRs were employed in a compatibility search against a database of environmental profiles derived for proteins with known spatial structure. The best-scoring sequence-profile alignments obtained for each ECD were compared in pairs to check for common patterns in residue environments, and consensus sequence-profile fits for ECDs were also derived. Similar hydrophobicity motifs were found in the first extracellular loops of the CRs CCR5, CCR3, and CCR2B, and are all used by M-tropic HIV-1 for cell entry. In contrast, other CRs did not reveal common motifs. However, the same environmental pattern was also delineated in the first extracellular loop of some human GPCRs showing either high (group 1) or low (group 2) degree of similarity of their polarity patterns with those in HIV-1 coreceptors. To address the question of whether the delineated molecular determinant plays a critical role in the receptor-virus binding, three of the identified GPCRs, bradykinin receptor (BRB2) and G-protein receptor (GPR)-CY6 from group 1, and GPR8 from group 2, were cloned and transfected into HeLa-CD4 cells, which are nonpermissive to M-tropic HIV-1 infection. We demonstrate that, similar to CCR5, the two selected GPCRs from group 1 were capable of mediating M-tropic HIV-1 entry, whereas GPR8 from group 2 did not serve as HIV-1 coreceptor. The potential biological significance of the identified structural motif shared by the human CCR5, CCR3, CCR2B and other GPCRs is discussed.  相似文献   

9.
Chemokines are small proteins, promoting directional migration and activation of different cells through binding to specific receptors. Most chemokines also bind to heparan sulfate (HS), a family of complex and highly sulfated glycosaminoglycan (GAG) found at the cell surface and in the extracellular matrix. This class of molecules has recently emerged as critical regulators of many events involving cell response to the external environment. Binding to HS is thought to be functionally important. Current models suggested that HS ensures the correct positioning of chemokines within tissues and maintains haptotactic gradients of the proteins along cell surfaces, thus providing directional cues for migrating cells. On the chemokine surface, the GAG binding epitopes can be displayed on different areas, some of which overlap the receptor binding domain, while others are clearly separated. We review here some structural aspects of the interaction between GAGs or receptors and chemokines. In particular, we will address the case of CXCL12, a chemokine whose receptor binding site is distinct from the GAG binding site and whose different isoforms display different GAG binding abilities. This chemokine system thus offers an unprecedented opportunity to ascertain the importance of chemokine/GAG interaction in the regulation of cell migration.  相似文献   

10.
The chemokines and their receptors have been receiving exceptional attention in recent years following the discoveries that some chemokines could specifically block human immunodeficiency virus type 1 (HIV-1) infection and that certain chemokine receptors were the long-sought coreceptors which, along with CD4, are required for the productive entry of HIV-1 and HIV-2 isolates. Several chemokine receptors or orphan chemokine receptor-like molecules can support the entry of various viral strains, but the clinical significance of the CXCR4 and CCR5 coreceptors appear to overshadow a critical role for any of the other coreceptors and all HIV-1 and HIV-2 strains best employ one or both of these coreceptors. Binding of the HIV-1 envelope glycoprotein gp120 subunit to CD4 and/or an appropriate chemokine receptor triggers conformational changes in the envelope glycoprotein oligomer that allow it to facilitate the fusion of the viral and host cell membranes. During these interactions, gp120 appears to be capable of inducing a variety of signaling events, all of which are still not defined in detail. In addition, the more recently observed dichotomous effects, of both inhibition and enhancement, that chemokines and their receptor signaling events elicit on the HIV-1 entry and replication processes has once again highlighted the intricate and complex balance of factors that govern the pathogenic process. Here, we will review and discuss these new observations summarizing the potential significance these processes may have in HIV-1 infection. Understanding the complexities and significance of the signaling processes that the chemokines and viral products induce may substantially enhance our understanding of HIV-1 pathogenesis, and perhaps facilitate the discovery of new ways for the prevention and treatment of HIV-1 disease.  相似文献   

11.
Analysis of CCR5 variants in human immunodeficiency virus, type 1 (HIV-1), high risk cohorts led to the identification of multiple single amino acid substitutions in the amino-terminal third of the HIV-1 co-receptor CCR5 suggesting the possibility of protective and permissive genotypes; unfortunately, the low frequency of these mutations did not led to correlation with function. Therefore, we used analytical methods to assess the functional and structural significance of six of these variant receptors in vitro. These studies showed three categories of effects on CCR5 function. 1) Mutations in the first extracellular domain of CCR5 severely reduce specific ligand binding and chemokine-induced chemotaxis. 2) An extracellular domain variant, A29S, when co-expressed with CD4, supported HIV-1 infection whereas the others do not. 3) The transmembrane region variants of CCR5 support monotropic HIV-1 infection that is blocked by addition of some receptor agonists. Mutations in the first and second transmembrane domains increase RANTES (regulated on activation normal T-cell expressed) binding affinity but did not affect MIP1beta binding affinity presumably based on differences in ligand-receptor interaction sites. Furthermore, the CCR5 transmembrane mutants do not respond to RANTES with the classical bell-shaped chemotactic response curve, suggesting that they are resistant to RANTES-induced desensitization. These data demonstrate that single amino acid changes in the extracellular domains of CCR5 can have profound effects on both HIV-1 co-receptor and specific ligand-induced functions, whereas mutations in the transmembrane domain only affect the response to chemokine ligands.  相似文献   

12.
CCR5 is a G protein-coupled receptor responding to four natural agonists, the chemokines RANTES (regulated on activation normal T cell expressed and secreted), macrophage inflammatory protein (MIP)-1 alpha, MIP-1 beta, and monocyte chemotactic protein (MCP)-2, and is the main co-receptor for the macrophage-tropic human immunodeficiency virus strains. We have previously identified a structural motif in the second transmembrane helix of CCR5, which plays a crucial role in the mechanism of receptor activation. We now report the specific role of aromatic residues in helices 2 and 3 of CCR5 in this mechanism. Using site-directed mutagenesis and molecular modeling in a combined approach, we demonstrate that a cluster of aromatic residues at the extracellular border of these two helices are involved in chemokine-induced activation. These aromatic residues are involved in interhelical interactions that are key for the conformation of the helices and govern the functional response to chemokines in a ligand-specific manner. We therefore suggest that transmembrane helices 2 and 3 contain important structural elements for the activation mechanism of chemokine receptors, and possibly other related receptors as well.  相似文献   

13.
CXCR3 is a G-protein-coupled seven-transmembrane domain chemokine receptor that plays an important role in effector T-cell and NK cell trafficking. Three gamma interferon-inducible chemokines activate CXCR3: CXCL9 (Mig), CXCL10 (IP-10), and CXCL11 (I-TAC). Here, we identify extracellular domains of CXCR3 that are required for ligand binding and activation. We found that CXCR3 is sulfated on its N terminus and that sulfation is required for binding and activation by all three ligands. We also found that the proximal 16 amino acid residues of the N terminus are required for CXCL10 and CXCL11 binding and activation but not CXCL9 activation. In addition, we found that residue R216 in the second extracellular loop is required for CXCR3-mediated chemotaxis and calcium mobilization but is not required for ligand binding or ligand-induced CXCR3 internalization. Finally, charged residues in the extracellular loops contribute to the receptor-ligand interaction. These findings demonstrate that chemokine activation of CXCR3 involves both high-affinity ligand-binding interactions with negatively charged residues in the extracellular domains of CXCR3 and a lower-affinity receptor-activating interaction in the second extracellular loop. This lower-affinity interaction is necessary to induce chemotaxis but not ligand-induced CXCR3 internalization, further suggesting that different domains of CXCR3 mediate distinct functions.  相似文献   

14.
The entry of human immunodeficiency virus (HIV) into cells depends on a sequential interaction of the gp120 envelope glycoprotein with the cellular receptors CD4 and members of the chemokine receptor family. The CC chemokine receptor CCR5 is such a receptor for several chemokines and a major coreceptor for the entry of R5 HIV type-1 (HIV-1) into cells. Although many studies focus on the interaction of CCR5 with HIV-1, the corresponding interaction sites in CCR5 and gp120 have not been matched. Here we used an approach combining protein structure modeling, docking and molecular dynamics simulation to build a series of structural models of the CCR5 in complexes with gp120 and CD4. Interactions such as hydrogen bonds, salt bridges and van der Waals contacts between CCR5 and gp120 were investigated. Three snapshots of CCR5-gp120-CD4 models revealed that the initial interactions of CCR5 with gp120 are involved in the negatively charged N-terminus (Nt) region of CCR5 and positively charged bridging sheet region of gp120. Further interactions occurred between extracellular loop2 (ECL2) of CCR5 and the base of V3 loop regions of gp120. These interactions may induce the conformational changes in gp120 and lead to the final entry of HIV into the cell. These results not only strongly support the two-step gp120-CCR5 binding mechanism, but also rationalize extensive biological data about the role of CCR5 in HIV-1 gp120 binding and entry, and may guide efforts to design novel inhibitors.  相似文献   

15.
Chemokine receptors are essential for triggering chemotaxis to immune cells; however, a number of them can also mediate death when engaged by nonchemokine ligands. When the chemokine receptor CXCR4 is engaged by stromal cell-derived factor (SDF1)alpha, it triggers cells to chemotax, and in some cell types such as neurons, causes cell death. To elucidate this dual and opposing receptor function, we have investigated whether CXCR4 activation by its chemokine SDF1alpha could lead to the simultaneous activation of both anti- and proapoptotic signaling pathways; the balance ultimately influencing cell survival. CXCR4 activation in CD4 T cells by SDF1alpha led to the activation of the prosurvival second messengers, Akt and extracellular signal-regulated protein kinase. Selective inhibition of each signal demonstrated that extracellular signal-regulated protein kinase is essential for mediating SDF1alpha-triggered chemotaxis but does not confer an antiapoptotic state. In contrast, Akt activation through CXCR4 by SDF1alpha interactions is necessary to confer resistance to apoptosis. The proapoptotic signaling pathway triggered by SDF1alpha-CXCR4 interaction involves the G(ialpha) protein-independent activation of the proapoptotic MAPK (p38). Furthermore, other chemokines and chemokine receptors also signal chemotaxis and proapoptotic effects via similar pathways. Thus, G(ialpha) protein-coupled chemokine receptors can function as death prone receptors and the balance between the above signaling pathways will ultimately mandate the fate of the activated cell.  相似文献   

16.
Chemokines are small peptides involved in the recruitment of various cell types into inflammatory sites. They are divided into four sub-families depending on the presence of amino acids separating the cysteine residues in their N-terminal region. These are the alpha (CXC), beta (CC), gamma (C) and delta (CX)C) chemokines. In addition, five CXC chemokine (CXCR1-5), nine CC chemokine (CCR1-9), one C chemokine (XCR1) and one C-X3C chemokine (CX3CR1) receptors have been identified. These receptors belong to the seven transmembrane spanning domain family, and are coupled to the heterotrimeric guanine nucleotide binding (G) proteins. Chemokines activate various immune cells, and in particular the anti-viral/anti-tumour effectors, the natural killer (NK) cells by activating members of the heterotrimeric G proteins. The importance of the family of chemokines is highlighted by the ability of its members to inhibit the replication of HIV-1 strains in CD4+ cells, where chemokine receptors act as HIV-1 co-receptors. This review discusses the intracellular signalling pathways induced by chemokines in NK and other cell types, and the relationships to HIV-1 signalling in these cells.  相似文献   

17.
Law PY  Wong YH  Loh HH 《Biopolymers》1999,51(6):440-455
The cloning of the opioid receptors allows the investigation of receptor domains involved in the peptidic and nonpeptidic ligand interaction and activation of the opioid receptors. Receptor chimera studies and mutational analysis of the primary sequences of the opioid receptors have provided insights into the structural domains required for the ligand recognition and receptor activation. In the current review, we examine the current reports on the possible involvement of extracellular domains and transmembrane domains in the high-affinity binding of peptidic and nonpeptidic ligands to the opioid receptor. The structural requirement for the receptors' selectivity toward different ligands is discussed. The receptor domains involved in the activation and subsequent cellular regulation of the receptors' activities as determined by mutational analysis will also be discussed. Finally, the validity of the conclusions based on single amino acid mutations is examined.  相似文献   

18.
The first line of a host''s response to various pathogens is triggered by their engagement of cellular pattern recognition receptors (PRRs). Binding of microbial ligands to these receptors leads to the induction of a variety of cellular factors that alter intracellular and extracellular environment and interfere directly or indirectly with the life cycle of the triggering pathogen. Such changes may also affect any coinfecting microbe. Using ligands to Toll-like receptors (TLRs) 5 and 9, we examined their effect on human immunodeficiency virus (HIV)-1 replication in lymphoid tissue ex vivo. We found marked differences in the outcomes of such treatment. While flagellin (TLR5 agonist) treatment enhanced replication of CC chemokine receptor 5 (CCR 5)-tropic and CXC chemokine receptor 4 (CXCR4)-tropic HIV-1, treatment with oligodeoxynucleotide (ODN) M362 (TLR9 agonist) suppressed both viral variants. The differential effects of these TLR ligands on HIV-1 replication correlated with changes in production of CC chemokines CCL3, CCL4, CCL5, and of CXC chemokines CXCL10, and CXCL12 in the ligand-treated HIV-1-infected tissues. The nature and/or magnitude of these changes were dependent on the ligand as well as on the HIV-1 viral strain. Moreover, the tested ligands differed in their ability to induce cellular activation as evaluated by the expression of the cluster of differentiation markers (CD) 25, CD38, CD39, CD69, CD154, and human leukocyte antigen D related (HLA)-DR as well as of a cell proliferation marker, Ki67, and of CCR5. No significant effect of the ligand treatment was observed on apoptosis and cell death/loss in the treated lymphoid tissue ex vivo. Our results suggest that binding of microbial ligands to TLRs is one of the mechanisms that mediate interactions between coinfected microbes and HIV-1 in human tissues. Thus, the engagement of appropriate TLRs by microbial molecules or their mimetic might become a new strategy for HIV therapy or prevention.  相似文献   

19.
SDF-1-induced activation of ERK enhances HIV-1 expression   总被引:1,自引:0,他引:1  
Chemokine receptors are not only able to bind chemokines but, together with CD4, they serve as an entry door for the human immunodeficiency virus type 1 (HIV-1). The signalling capacity of chemokine receptors, which is of fundamental importance for chemokine-induced chemotaxis, is not used by HIV-1 to enter a target cell, nor by chemokines or chemokine-derived ligands to inhibit viral entry. In addition, an ill-defined signal triggered by chemokines can, under some circumstances, lead to an increase in HIV-1 expression. We show here that, in infected cells, exposure to SDF-1 leads to an increased expression of a X4 strain of HIV-1. A similar increase can be induced by an N-terminal peptide of SDF-1 which had previously been shown to elicit an intracellular calcium response and to inhibit the entry of X4 strains of HIV-1. We demonstrate the involvement of extracellular signal-regulated kinases (ERK) in this phenomenon. SDF-1 activates ERK-1 and ERK-2 in Jurkat cells. In HeLa cells, ERK-2 only is activated by SDF-1 or by a SDF-derived peptide. This ERK activation can be blocked by pertussis toxin and by the MEK inhibitor U0126. Most importantly, SDF-1-dependent HIV-1 expression is abolished by pretreating the cells with pertussis toxin or with U0126. The consequences of this SDF-1-induced, ERK-dependent modulation of HIV-1 expression in infected cells may have a clinical relevance for eradicating latent viruses.  相似文献   

20.
The G-protein coupled receptor CCR5 is the main co-receptor for macrophage-tropic HIV-1 strains. I have built a structural model of the chemokine receptor CCR5 and used it to explain the binding and selectivity of the antagonist TAK779. Models of the extracellular (EC) domains of CCR5 have been constructed and used to rationalize current biological data on the binding of HIV-1 and chemokines. Residues spanning the transmembrane region of CCR5 have been modeled after rhodopsin, and their functional significance examined using the evolutionary trace method. The receptor cavity shares six residues with CC-chemokine receptors CCR1 through CCR4, while seven residues are unique to CCR5. The contribution of these residues to ligand binding and selectivity is tested by molecular docking simulations of TAK779 to CCR1, CCR2, and CCR5. TAK779 binds to CCR5 in the cavity formed by helices 1, 2, 3, and 7 with additional interactions with helices 5 and 6. TAK779 did not dock to either CCR1 or CCR2. The results are consistent with current site-directed mutagenesis data and with the observed selectivity of TAK779 for CCR5 over CCR1 and CCR2. The specific residues responsible for the observed selectivity are identified. The four EC regions of CCR5 have been modeled using constrained simulated annealing simulations. Applied dihedral angle constraints are representative of the secondary structure propensities of these regions. Tertiary interactions, in the form of distance constraints, are generated from available epitope mapping data. Analysis of the 250 simulated structures provides new insights to the design of experiments aimed at determining residue-residue contacts across the EC domains and for mapping CC-chemokines on the surface of the EC domains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号