首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Experimental data on the relationship between plant patch size and population density of herbivores within fields often deviates from predictions of the theory of island biogeography and the resource concentration hypothesis. Here we argue that basic features of foraging behaviour can explain different responses of specialist herbivores to habitat heterogeneity. In a combination of field and simulation studies, we applied basic knowledge on the foraging strategies of three specialist herbivores: the cabbage aphid (Brevicoryne brassicae), the cabbage butterfly (Pieris rapae L.) and the diamondback moth (Plutella xylostella L.), to explain differences in their responses to small scale fragmentation of their habitat. In our field study, populations of the three species responded to different sizes of host plant patches (9 plants and 100 plants) in different ways. Densities of winged cabbage aphids were independent of patch size. Egg‐densities of the cabbage butterfly were higher in small than in large patches. Densities of diamondback moth adults were higher in large patches than in small patches. When patches in a background of barley were compared with those in grass, densities of the cabbage aphid and the diamondback moth were reduced, but not cabbage butterfly densities. To explore the role of foraging behaviour of herbivores on their response to patch size, a spatially explicit individual‐based simulation framework was used. The sensory abilities of the insects to detect and respond to contact, olfactory or visual cues were varied. Species with a post‐alighting host recognition behaviour (cabbage aphid) could only use contact cues from host plants encountered after landing. In contrast, species capable with a pre‐alighting recognition behaviour, based on visual (cabbage butterfly) or olfactory (diamondback moth) cues, were able to recognise a preferred host plant whilst in flight. These three searching modalities were studied by varying the in flight detection abilities, the displacement speed and the arrestment response to host plants by individuals. Simulated patch size – density relationships were similar to those observed in the field. The importance of pre‐ and post‐ alighting detection in the responses of herbivores to spatial heterogeneity of the habitat is discussed.  相似文献   

2.
1. The movement of adults of the endangered Apollo butterfly, Parnassius apollo, was studied using mark–recapture data, within a population consisting of discrete patches of the species’ host plant (n = 43), which were segregated spatially from patches of the species’ main nectar plants (n = 14). 2. The Apollo routinely moved large distances (median 260 m, maximum 1840 m), and moved frequently between the two types of patches. Only 27% (28/105) of the recaptures were made on the same host plant patch as the release. 3. The population acts as a patchy population where the adults mix over the whole area, but successful reproduction can only take place in the discrete host plant patches. 4. Occurrence on a host plant patch was restricted by the area size of the host plant patch and the spatial configuration of nectar plant patches. Thus, although the Apollo is a good flyer, its movement over the patches is still constrained by the segregation of adult and larval resources.  相似文献   

3.
1. In many populations of the Glanville fritillary butterfly Melitaea cinxia, ovipositing females exhibit a post‐alighting preference for one of the potential host plant species available. The work reported here aimed to establish whether females with different post‐alighting preferences can discriminate between their host plant species prior to alighting, and whether pre‐alighting and post‐alighting preferences are correlated at the population level. 2. Alighting and oviposition events were recorded for groups of females from six populations in greenhouse and field experiments. 3. Landing frequencies did not change with experience, indicating that M. cinxia females did not learn from previous encounters with host plants. 4. Females from populations exhibiting post‐alighting preference searched efficiently for their host plants in the sense that they landed mainly on the species on which they oviposited predominantly. Pre‐alighting and post‐alighting preferences were correlated at the population level. 5. The correlation between pre‐alighting and post‐alighting preferences helps to explain why in nature, where the host plants often occur in distinct patches, females are more likely to colonise habitat patches in which their preferred host plant is abundant.  相似文献   

4.
1. The spatial structure of plant patches has been shown to affect host–parasitoid interactions, but its influence on parasitoid diversity remains largely ignored. Here we tested the prediction that parasitoid species richness of the specialist leafminer Liriomyza commelinae increases in larger and less isolated patches of its host plant Commelina erecta. We also explored whether parasitoid abundance and body size affected the occurrence of parasitoid species in local assemblages. 2. A total of 893 naturally established C. erecta patches were sampled on 18 sites around Córdoba city (Argentina). Also, two experiments were performed by creating patches differing in the number of plants and the distance from a parasitoid source. For these tests, plants were infected with the miner in the laboratory prior to placement in the field. 3. Plant patch size, independently of host abundance, positively affected the number of parasitoid species in both survey observations and experimental data. However, plant patch isolation did not influence parasitoid species richness. 4. The probability of finding rare parasitoid species increased with patch size, whereas occupation of isolated patches was independent of dispersal abilities (body size) of parasitoid species. 5. Overall, the results highlight the importance of considering spatial aspects such as the size of plant patches in the study of parasitoid communities.  相似文献   

5.
Summary The effects of host plant patch size on the abundances of two specialist herbivores (the chrysomelid beetle, Acalymma innubum and the pentatomid bug, Piezosternum subulatum) were investigated in a natural forest community in the Virgin Islands. Abundances were compared early and late in the season in different sized patches of the cucurbit host plant (Cayaponia americana) growing in open habitat (with no surrounding plant community) and forest habitat (with diverse surrounding plant community). For both herbivore species, adult abundances per patch were positively correlated with patch leaf area, but there was a significant patch size effect (i.e., correlation between herbivore density per unit plant and patch leaf area) only for beetles in the forest habitat. Both herbivore species were significantly affected by surrounding plant diversity, but in opposite ways: beetles were more abundant in open patches whereas bugs were more abundant in forest patches. Relationships between abundance and patch size in open and forest patches changed through the season for both herbivore species. These changing abundance patterns are discussed with respect to (1) increases in the diversity of the plant community surrounding host plant patches, and (2) differences in herbivore movement patterns.  相似文献   

6.
Fragmentation, deterioration, and loss of habitat patches threaten the survival of many insect species. Depending on their trophic level, species may be differently affected by these factors. However, studies investigating more than one trophic level on a landscape scale are still rare. In the present study we analyzed the effects of habitat size, isolation, and quality for the occurrence and population density of the endangered leaf beetle Cassida canaliculata Laich. (Coleoptera: Chrysomelidae) and its egg parasitoid, the hymenopteran wasp Foersterella reptans Nees (Hymenoptera: Tetracampidae). C. canaliculata is strictly monophagous on meadow sage (Salvia pratensis), while F. reptans can also parasitize other hosts. Both size and isolation of habitat patches strongly determined the occurrence of the beetle. However, population density increased to a much greater extent with increasing host plant density ( = habitat quality) than with habitat size. The occurrence probability of the egg parasitoid increased with increasing population density of C. canaliculata. In conclusion, although maintaining large, well-connected patches with high host plant density is surely the major conservation goal for the specialized herbivore C. canaliculata, also small patches with high host plant densities can support viable populations and should thus be conserved. The less specialized parasitoid F. reptans is more likely to be found on patches with high beetle density, while patch size and isolation seem to be less important.  相似文献   

7.
Habitat size, habitat isolation and habitat quality are regarded as the main determinants of butterfly occurrence in fragmented landscapes. To analyze the relationship between the occurrence of the butterfly Cupido minimus and these factors, patch occupancy of the immature stages in patches of its host plant Anthyllis vulneraria was studied in the nature reserve Hohe Wann in Bavaria (Germany). In 2001 and 2002, 82 A. vulneraria patches were surveyed for the presence of C. minimus larvae. The occurrence was largely affected by the size of the food plant patches. In a habitat model that uses multiple logistic regression, the type of management and habitat connectivity are further determinants of species distribution. Internal and temporal validation demonstrate the stability and robustness of the developed habitat models. Additionally, it was proved that the colonization rate of C. minimus was significantly influenced by the distance to the next occupied Anthyllis patch. Concerning long-term survival of (meta-) populations in fragmented landscapes, the results show that lower habitat quality may be compensated by higher connectivity between host plant patches. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
Marko Nieminen 《Oecologia》1996,108(4):643-651
Rapidly increasing fragmentation of natural landscapes decreases the ability of many species to reach the smaller and more isolated patches of habitat in a metapopulation. The densities of local populations of several moth species and the butterfly Hipparchia semele in a network of small islands, and the rates of inter-island movement and movement patterns, were investigated, to determine the factors affecting the rate and pattern of movements. The estimated population densities ranged from 0.001 to 0.2 individuals/m2. The observed emigration and immigration rates depended on island isolation and various traits of the species, with great variability in migration rates among species. Thin-bodied, slow-flying species did not move among the islands, whereas many robust, fast-flying species moved among the islands relatively frequently. Migration rate increased significantly with body size and was significantly higher in oligophagous than in polyphagous species, suggesting that these factors are important determinants of the migration rate of the species. Migration rate was low when the surface temperature of the sea was low, and a greater proportion of individuals emigrated from small than large patches of habitat. The migration distances of female noctuids were shorter than those of males and those of both sexes of the butterfly H. semele. The observed movement patterns are consistent with a metapopulation structure in most of the moth species.  相似文献   

9.
Butterfly community structure in fragmented habitats   总被引:12,自引:0,他引:12  
We analysed effects of habitat fragmentation on the diversity, abundance, and life history traits of butterflies on 33 calcareous grasslands. Diversity of butterflies was positively correlated with habitat area (as was plant diversity), but not with habitat isolation. In contrast to expectations, butterfly densities of polyphagous and oligophagous species declined with habitat area whereas densities of monophagous species increased. The z -values, i.e. the slope of species–area relationships, increased with food plant specialization, from 0.07 in polyphagous, 0.11 in oligophagous, 0.16 in strongly oligophagous to 0.22 in monophagous species, and were 0.14 in plant species. Significant z -values were not only found for total species richness, based on a sample size adjusted to fragment area ( z  = 0.12), but also for the local density of butterfly species richness, based on equal sample size across all habitat fragments ( z  = 0.06). To our knowledge, this is the first study to show differential responses of monophagous, oligophagous and polyphagous species to area with respect to species richness and population density.  相似文献   

10.
栖息地质量对两种网蛱蝶集合种群结构和分布的影响   总被引:7,自引:0,他引:7  
在河北省赤城县研究了栖息地质量对大网蛱蝶Melitaea phoebe和金堇蛱蝶Euphydryas aurinia两种网蛱蝶集合种群结构和分布的影响。这两种网蛱蝶在约10 km2的区域内共存,成虫期的蜜源植物几乎相同,大网蛱蝶的发生峰期比金堇蛱蝶晚约一个月,两者只有不到一周左右的时间重叠。大网蛱蝶和金堇蛱蝶幼虫的寄主植物分别是: 祁州漏芦(菊科)和华北蓝盆花(川续断科)。蜜源植物的丰度与两种网蛱蝶的局域种群大小呈正相关;祁州漏芦的密度对大网蛱蝶的局域种群大小影响很大,金堇蛱蝶的局域种群大小则与其寄主植物华北蓝盆花的高度正相关;斑块内平均植被高度与两种网蛱蝶的局域种群大小均呈正相关,植物多样性、植物均匀性和植被盖度均与金堇蛱蝶的局域种群大小负相关,与大网蛱蝶的关系不大。同时分析了其他因子如斑块的坡向、坡度等的影响。主要结论是:1)幼虫寄主植物的不同和成蝶飞行峰期的分离允许两种网蛱蝶在这样一个小的斑块区域内共存;2)蜜源是重要的限制因子,并且受气候随机性的影响很大,蜜源的波动可以很好地解释网蛱蝶集合种群在年度间的动态变化;3)大网蛱蝶和金堇蛱蝶的飞行、食物搜寻能力的不同以及各自寄主植物的生物学特性、空间分布的不同决定了它们具有不同的集合种群结构: 金堇蛱蝶是经典的集合种群,大网蛱蝶是源-汇集合种群;4)斑块质量和昆虫行为共同决定了两种网蛱蝶的集合种群结构和分布。  相似文献   

11.
Understanding butterfly response to landscape context can inform conservation management and planning. We tested whether local-scale resources (host and nectar plants, canopy cover) or landscape context, measured at two scales, better explained the densities of four butterfly species. The density of Coenonympha tullia, which has host plants strongly associated with grassland habitats, was positively correlated with the amount of grassland in 0.5- and 1-km radius landscapes and only occurred in forests when they bordered grasslands. For the other species, Celastrina ladon, Cupido amyntula, and Vanessa cardui, local-scale resources better explained butterfly densities, emphasizing the importance of local habitat quality for butterflies. These three species also used host plants that were distributed more heterogeneously within and among habitat types. Our findings demonstrate the importance of host plant spatial distributions when determining the scale at which butterfly density relates to resources, and we recommend that both these distributions and landscape context be evaluated when developing butterfly monitoring programs, managing for species of concern, or modeling potential habitat.  相似文献   

12.
Abstract. 1. To determine whether rarity and decline is linked to organism ecology, associations have been examined between butterfly larval host‐plant competitive, stress‐tolerant, ruderal (C‐S‐R) strategies and butterfly biology. 2. Associations have been sought between mean C‐S‐R scores for larval host plants with butterfly life history, morphology and physiology variables, resource use, population attributes, geography, and conservation status. Comparisons are carried out across species and controlled for phylogenetic patterning. 3. Butterfly biology is linked to host‐plant strategies. An increasing tendency of a butterfly's host plants to a particular strategy biases that butterfly species to functionally linked life‐history attributes and resource breadth and type. In turn, population attributes and geography are significantly and substantially affected by host choice and the strategies of these host plants. 4. The greatest contrast is between butterfly species whose host plants are labelled C and R strategists and those whose host plants are labelled S strategists. Increasingly high host‐plant C and R strategy scores bias butterflies to rapid development, short early stages, multivoltinism, long flight periods, early seasonal emergence, higher mobility, polyphagy, wide resource availability and biotope occupancy, open, areally expansive, patchy population structures, denser distributions, wider geographical ranges, resistance to range retractions as well as to increasing rarity in the face of environmental changes. Increasing host‐plant S strategy scores have reversed tendencies, biasing those butterfly species to extended development times, fewer broods, short flight periods, smaller wing expanse and lower mobility, monophagy, restricted resource exploitation and biotope occupancy, closed, areally limited populations with typical metapopulation structures, sparse distributions, and limited geographical ranges, range retractions, and increased rarity. 5. Species with S strategy host plants are species vulnerable to current environmental changes and species of conservation concern.  相似文献   

13.
An insect species that shows variation in host species association across its geographical range may do so either because of local adaptation in host plant preference of the insect or through environmentally or genetically induced differences in the plants, causing variation in host plant suitability between regions. In the present study, we experimentally investigate the host plant preference of Anthocharis cardamines (orange tip butterfly) in two populations from the UK and two from Sweden. Previous reports indicate that A. cardamines larvae are found on different host plant species in different regions of the UK, and some variation has been reported in Sweden. Host plant choice trials showed that females prefer to oviposit on plants in an earlier phenological stage, as well as on larger plants. When controlling for plant phenological stage and size, the host species had no statistically significant effect on the choice of the females. Moreover, there were no differences in host plant species preference among the four butterfly populations. Based on our experiment, the oviposition choice by A. cardamines mainly depends on the phenological stage and the size of the host plant. This finding supports the idea that the geographical patterns of host–plant association of A. cardamines in the UK and Sweden are consequences of the phenology and availability of the local hosts, rather than regional genetic differences in the host species preference of the butterfly.  相似文献   

14.
New interactions with non-native species can alter selection pressures on native species. Here, we examined the effect of the spatial distribution of a non-native species, a factor that determines ecological and evolutionary outcomes but that is poorly understood, particularly on a fine scale. Specifically, we explored a native butterfly population and a non-native plant on which the butterfly oviposits despite the plant’s toxicity to larvae. We developed an individual-based model to describe movement and oviposition behaviors of each butterfly, which were determined by plant distribution and the butterfly''s host preference genotype. We estimated the parameter values of the model from rich field data. We simulated various patterns of plant distributions and compared the rates of butterfly population growth and changes in the allele frequency of oviposition preference. Neither the number nor mean area of patches of non-native species affected the butterfly population, whereas plant abundance, patch shape, and distance to the nearest native and non-native patches altered both the population dynamics and genetics. Furthermore, we found a dramatic decrease in population growth rates when we reduced the distance to the nearest native patch from 147 m to 136 m. Thus changes in the non-native resource distribution that are critical to the fate of the native herbivore could only be detected at a fine-grained scale that matched the scale of a female butterfly’s movement. In addition, we found that the native butterfly population was unlikely to be rescued by the exclusion of the allele for acceptance of the non-native plant as a host. This study thus highlights the importance of including both ecological and evolutionary dynamics in analyses of the outcome of species interactions and provides insights into habitat management for non-native species.  相似文献   

15.
The mobility of butterflies determines their ability to find host plant species, and thus their potential host plant range, as well as their ability to maintain meta-populations in fragmented habitats. While butterfly movement has been extensively studied for temperate species, very little is known for tropical forest species. A mark-release-recapture study of the three most common butterfly species in the understory of a lowland primary rainforest in Papua New Guinea included 3,705, 394 and 317 marked individuals of Danis danis, Taenaris sp. and Parthenos aspila respectively, with 1,031, 78 and 40 butterfly individuals recaptured at least once. Over a period of 6 weeks there were almost 22,000 individuals belonging to these three species hatching within or entering our four study plots totaling 14.58 ha in area. The most abundant species, D. danis, with 20,000 individuals, showed highly variable population densities during the study. The residency time in the studied plots was highest for P. aspila (84 days), as individual butterflies stayed mostly in a single gap; we estimated that less than 1 % of individuals disperse 1 km or more. Similar movement probability was found in D. danis whilst in Taenaris sp., 10 % of the population disperses ≥1 km. Movement distances of D. danis were more than sufficient to locate its host plant, Derris elliptica, which occurred in 61 % of the 20 × 20 m subplots within a 50 ha plot. Compared with temperate species, our three species have much longer life spans, but their movement patterns remain within the known mobility estimates of temperate species. The mobility of D. danis is close to the average for temperate Lycaenidae, while Taenaris sp. is more mobile and P. aspila less mobile than the mean for all temperate species.  相似文献   

16.
This study aims to analyse larval habitat preferences and landscape level population structure of the threatened Marsh Fritillary butterfly, Euphydryas aurinia, and discusses implications for the conservation and management of this strongly declining species in central Europe. Whereas current management strategies are mainly based on studies of habitat requirements of adult individuals, we intend to emphasise larval habitat quality and population processes at the landscape level as additional key factors. Microhabitat preference analysis of egg-laying females showed that eggs were predominantly laid on prominent large-sized host plant individuals. Additionally, when Succisa pratensis was used as a host plant (as opposed to Gentiana asclepiadea), host individuals in open vegetation structure were preferred. Optimal oviposition conditions were present in recently abandoned calcareous fen meadows and at the edges of such meadows currently in use. A two-year patch-occupancy study in the northern pre-alpine region of south-west Germany indicated that E. aurinia lives in a metapopulation. In a logistic-regression model, patch size, isolation, and habitat quality explained 82% of the observed patch-occupancy pattern in 2001. Our data suggest that a suitable conservation strategy must incorporate both the conservation of a network of suitable habitat patches, and efforts to maximise local habitat quality by ensuring that host plants can grow to a large size and are surrounded by sparse and low vegetation cover.  相似文献   

17.
Theory predicts that habitat fragmentation, including reduced area and connectivity of suitable habitat, changes multitrophic interactions. Species at the bottom of trophic cascades (host plants) are expected to be less negatively affected than higher trophic levels, such as herbivores and their parasitoids or predators. Here we test this hypothesis regarding the effects of habitat area and connectivity in a trophic system with three levels: first with the population size of the larval food plant Hippocrepis comosa, next with the population density of the monophagous butterfly species Polyommatus coridon and finally with its larval parasitism rate. Our results show no evidence for negative effects of habitat fragmentation on the food plant or on parasitism rates, but population density of adult P. coridon was reduced with decreasing connectivity. We conclude that the highly specialized butterfly species is more affected by habitat fragmentation than its larval food plant because of its higher trophic position. However, the butterfly host species was also more affected than its parasitoids, presumably because of lower resource specialization of local parasitoids which also frequently occur in alternative hosts. Therefore, conservation efforts should focus first on the most specialized species of interaction networks and second on higher trophic levels.  相似文献   

18.
Corresponding to theory, the persistence of metapopulations in fragmented landscapes depends on the area of suitable habitat patches and their degree of isolation, mediating the individual exchange between habitats. More recently, habitat quality has been highlighted as being equally important. We therefore assess the role of habitat area, isolation and quality for the occupancy of larval stages of the regionally threatened butterfly Euphydryas desfontainii occurring in grassland habitats comprising the host plant Dipsascus comosus. We put a special focus on habitat quality which was determined on two spatial scales: the landscape (among patches) and the within-patch level. On the landscape level, occupancy of caterpillars was determined by a presence-absence analysis at 28 host plant patches. On the within-patch level, oviposition site selection was studied by comparing 159 host plants with egg clutches to a random sample of 253 unoccupied host plants within six habitat patches. The occupancy of caterpillars and presence of egg clutches on host plants was then related to several predictors such as patch size and isolation on the landscape level and host plant characteristics and immediate surroundings on the within patch level. On the landscape level, only host plant abundance was related to the presence of caterpillars, while size and isolation did not differ between occupied and unoccupied patches. However, the weak discrimination of larval stages among patches changed on the within-patch level: here, several microclimatic predictors such as sunshine hours and topography, host plant morphology and phenology as well as further potential host plants in the immediate surroundings of the plant chosen for oviposition strongly determined the presence of egg clutches. We strongly suggest promoting the presence of the host plant in topographically and structurally rich habitat patches to offer potential for microclimatic compensation for a species considered threatened by climate change.  相似文献   

19.
  • 1 The sweet potato butterfly Acraea acerata is an indigenous species in Ethiopia that has become a major pest on the introduced sweet potato Ipomoea batatas. To assess the role of wild Ethiopian Ipomoea species as host plants, the presence of larvae on wild ipomoeas was studied, and female oviposition choice and larval performance were tested on five wild ipomoeas, as well as on sweet potato.
  • 2 In laboratory tests, oviposition and larval development were successful on two wild ipomoeas (Ipomoea tenuirostris and Ipomoea cairica) but no oviposition occurred on the remaining three species. Of the latter, larvae did not feed on Ipomoea hochstetteri and Ipomoea indica, and survival rates were extremely low on Ipomoea purpurea.
  • 3 Sweet potato was a better host plant than I. tenuirostris and I. cairica in terms of oviposition preference, larval survival and pupal size; pupae were larger, resulting in more fecund female butterflies.
  • 4 In the wild butterfly populations were abundant on I. tenuirostris but absent on I. cairica. Females also tended to prefer I. tenuirostris to I. cairica in oviposition choice experiments. However, no significant differences in performance were found between larvae raised on I. tenuirostris and I. cairica in the laboratory.
  • 5 Wild populations of A. acerata also existed on Ipomoea obscura, a plant not investigated in the present study.
  • 6 The abundance of A. acerata on wild ipomoeas is too low to likely affect butterfly population densities on sweet potato. However, wild populations may act as reservoirs subsequent to butterfly population bottlenecks on sweet potato.
  相似文献   

20.
Summary Mortality estimates for the immature stages of two butterfly species, Danaus plexippus and D. chrysippus, were obtained by observing the survival of egg cohorts on different sized patches of food plants (Asclepias spp.), over a one-year period. Losses were variable (0–100%) but usually high (90% and over) throughout the year for both species. Most of the losses in both species occurred in the early stages. The mortality by the third instar accounts for 86–100% of the total losses by instar V. Accordingly both species fall into Price's (1975) type A survivorship category. The size of patches of host plants affected losses. The trend was for increasing losses with increasing patch size. A full life-budget is presented for D. plexippus and implications of the observed mortality levels for competition between the two butterfly species is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号