首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
E A Ling 《Tissue & cell》1974,6(2):371-381
The subependymal plate of the primate slow loris (Nycticebus coucang coucang) has been studied by electron microscopy. It is composed of a mixed population of several cell types in which the subependymal cells preponderate. Free subependymal cells are found in the ‘border area’ near the corpus callosum or the neuropile of the caudate nucleus. In common with the subependymal cells they show a scanty cytoplasm containing mostly free ribosomes. Typical neuroglial cells namely, microglia, astrocytes and oligodendrocytes are also identified in this region. Among the various cell types mentioned there are present also a few occasional cells which have features bearing a resemblance to the subependymal cell on the one hand and to the microglia on the other. The morphological evidence suggests that in parallel with the macroglia the microglia could be derived by stepwise transformation of the subependymal cells.  相似文献   

2.
Summary The rat corpus striatum was perfused vitally with glutaraldehyde, immersed in OsO4 and then observed under an electron microscope.Numerous small cells in the neostriatum show a simple cytoplasmic structure, while the large cells possess a complicated fine structure. These are differentiated under the elctron microscope into two kinds, which seem to have functional differences. The large pallidal cells containing much pale cytoplasm are covered with many varied axonal boutons from the cell body to the dendritic terminal making numerous axo-somatic or axo-dendritic trunk synapses. Numerous axo-dendritic, or spine synapses are recognized in the neostriatal neuropil.These numerous axon terminals, which belong to striatal nerve cells or other nuclei of the brain, are classified morphologically into several types. At least five types of synaptic vesicles are distinguished by their size or by the presence of fine dense granules on their membranes, and seem to be specific to the neostriatum.Many myelin interruptions and several kinds of glial cells in the corpus striatum are observed. Moreover, the ventricular wall of the caudate nucleus, namely, the ependyma, and two kinds of subependymal cells are described and discussed with reference to the subependymal layer.  相似文献   

3.
Regenerating forelimbs of larval salamanders, Amblystoma punctatum, were fixed in OsO4 at various intervals after amputation and were sectioned for study with the electron microscope. The dedifferentiated cells comprising the early blastema were found to have a fine structure similar to that of other undifferentiated cells and to have lost all of the identifying morphological features of their tissues of origin. The cytoplasm of such cells is characterized by numerous free ribonucleoprotein granules and a discontinuous vesicular endoplasmic reticulum. The cells have more abundant cytoplasm and are in closer contact with each other than was previously realized. The layer of condensed ground substance investing most differentiated cell types is lacking. After a period of rapid cell division, the morphology of the blastema cell changes. Cytoplasm is now sparse and contains a high concentration of free ribonucleoprotein granules, but little endoplasmic reticulum. The differentiating cartilage cell, however, develops an extensive, highly organized endoplasmic reticulum and the Golgi apparatus also appears to become more highly differentiated and more extensive at this time. Small vesicles appear throughout the cytoplasm at the time the new cisternae originate and may contribute to their formation. These and other changes in the cytoplasmic organelles are discussed.  相似文献   

4.
Large cells, generally thought to be associated with neoplastic disorders in bivalve mollusks, were studied with the electron microscope. The atypical cells had an average diameter of 15 μm and a nuclear to cytoplasmic ratio of about 1–1.5. Nuclei were extensively pleomorphic and bizarre shapes were common. Nucleoli were prominent and often multiple. In the cytoplasm of the large cells, there was a wide range of variability in anomalous organelles. Two cell types were originally thought to exist; however, it is now thought that the two cell types represent the two extreme morphological expressions of a single cell line. Their varying appearance is correlated with the density of ribosomes and abundance of cellular organelles. The large Mytilus edulis cells possess many ultrastructural properties that are characteristic of certain malignant vertebrate cells. However, alternative explanations for their structure and function are also possible.  相似文献   

5.
Toxins produced by the fungus Metarrhizium anisopliae and the bacterium Pseudomonas aeruginosa in the ecdysial space of a molting wireworm are absorbed through the thin new cuticle and ultrastructurally change the epidermal cells into two distinct types. One is a rounded, degenerative type characterized by a “light” cytoplasm with vesiculated rough endoplasmic reticulum, rounded mitochondria with degenerated cristae, little ground plasm, and a rounded nucleus with little nucleoplasm and large globules of condensed chromatin from which chromatin fibrils separate in loose folds or granulelike tight folds. The other type has very irregular outlines and is characterized by a “dark” cytoplasm with abundant, whorled laminae of rough endoplasmic reticulum and abundant free ribosomes in a dense ground plasm, large rounded clear vacuoles, and apparently normal mitochondria and nuclei. The fungal toxins are believed to be primarily responsible for the formation of the light cells, and the bacterial toxins, for the separation of the chromatin into fibrils in the light cells, the fusion of their nuclei into large nuclear bodies, and the changes in the cytoplasmic contents of the dark cells. The dark cells, although abnormal, appear to retain a limited secretory activity.  相似文献   

6.
Five hemocyte types were identified in the hemolymph of Panstrongylus megistus by phase contrast and common light microscopy using some histochemical methods. These are: Prohemocytes, small cells presenting a great nucleus/cytoplasm ratio; Plasmatocytes, the most numerous hemocytes, are polymorphic cells mainly characterized by a large amount of lysosomes; Granulocytes, hemocytes very similar to plasmatocytes which contain cytoplasmic granules and are especially rich in polysaccharides; Oenocytoids, cells presenting a small nucleus and a thick cytoplasm; they show many small round vacuoles when observed in Giemsa smears and many cytoplasmic granules under phase microscopy; Adipohemocytes, very large hemocytes, presenting many fat droplet inclusions which could correspond to free fat bodies which entered the hemolymph. Only prohemocytes and plasmatocytes can be clearly classified; all the other hemocyte types have a more ambiguous classification.  相似文献   

7.
The structure of the granulosa in reptilian sauropsids varies between groups. We investigated the follicle development in the desert lizard Scincus mitranus. In the germinal bed, oogonia, and primary oocytes were identified and found to be interspersed between the epithelial cells. Previtellogenesis was divided into three stages: early, transitional, and late previtellogenic stages. During the early previtellogenic stage (diplotene), the oocyte is invested by small epithelia cells that formed a complete single layer, which may be considered as a young follicle. The transitional previtellogenic stage was marked by proliferation and differentiation of the granulosa layer from a homogenous layer consisting of only small cells to a heterogeneous layer containing three cell types: small, intermediate, and large cells. The late previtellogenic stage was marked by high-synthetic activity of large cells and the initiation of cytoplasmic bridges between large granulosa cells and the oocyte. Small cells were the only type of granulosa cells that underwent division. Thus, these cells may be stem cells for the granulosa cell population and may develop into intermediate and subsequently large cells. The intermediate cells may be precursors of large cells, as suggested by their ultrastructure. The ultrastructure of the large granulosa was indicative of their high synthetic activity. Histochemical analysis indicated the presence of cholesterol and phospholipids in the cytoplasm of large cells, the zona pellucida, among the microvilli, in the bridges region, and in the cortical region of the oocyte cytoplasm. These materials may be transferred from large cells into the oocyte through cytoplasmic bridges and provide nutritive function to large cells rather than functioning in steroidogenesis or vitellogenesis.  相似文献   

8.
9.
Summary Electron microscopic studies have been made of the epithelial reticular cells of the thymus in mice of both sexes ranging in age from 5 to 8 weeks. The epithelial cells generally have long cytoplasmic processes by which they are interconnected and form a network throughout the organ. The processes adhere tightly to one another by desmosomes. At the surface of the organ the processes constitute a thin sheet, and a basement membrane is discernible close and parallel to the free surface of the epithelial sheet. In the cortex the meshes of the epithelial reticulum are filled with numerous lymphoid cells and relatively few mesenchymal reticular cells. The epithelial cells in the cortex are characterized by their slender cytoplasmic processes and by the presence of large round vesicles which contain coarsely granulated, dense material. By the presence of the vesicles as well as desmosomes at junctions of the cytoplasmic processes the epithelial cells can be distinguished from other cells. For comparison the cytological characteristics of the mesenchymal reticular cells are also described. In the medulla two types — reticular and hypertrophic — of epithelial cells are recognized. The cells of reticular type are irregularly stellated in shape with extended cytoplasmic processes. Their cytoplasm often contains considerable amounts of fine filaments in bundles. Due to the relative abundance of free ribonucleoprotein particles and other cytoplasmic components, the cytoplasm appears relatively electronopaque as compared with that of the cells of the other type. The plasma membrane of the cells of reticular type sometimes invaginates into the cytoplasm to enclose a lumen which contains substance of low density and sometimes fine filaments. A basement membrane-like layer is discernible close to the infolded plasma membrane in the lumen. The cells of hypertrophic type are relatively large and round with a few shorter cytoplasmic processes. They are characterized by the abundance of the smooth endoplasmic reticulum which appears as vesicle or sac of small size. These cells often possess peculiar vesicles the wall of which is provided with microvilli projecting into the lumen. Some of these vesicles carry cilia on their wall in addition to the microvilli. The cells of hypertrophic type often undergo degeneration. The degenerating cells are concentrically surrounded by a few neighboring cells of both hypertrophic and reticular types, and Hassall's corpuscles are formed.  相似文献   

10.
Summary An ultrastructual study of hemocytes from 9 different insect orders has led to the identification of 8 cell types: (1) Plasmatocytes, whose cytoplasm is filled with small dense lysosomes and large heterogeneous structures, are phagocytic cells. (2) Granulocytes, filled with uniformly electron dense granules, are involved in capsule formation. (3) Coagulocytes, which contain granules and structured globules and which possess a well developed RER, are involved in phagocytosis. (4) Spherule cells are filled with large spherical inclusions. (5) Oenocytoids are large cells with few cytoplasmic organelles. These 5 hemocyte types represent the majority of insect blood cells. (6) Prohemocytes, blastic cells which are one of the stem cells of hemocytes, are very few in number in each species investigated. (7) Thrombocytoids and (8) Prodocytes are restricted to a small number of insect species.The ultrastructural characteristics of these hemocyte types are discussed.  相似文献   

11.
In cultivated in vitro interphase animal cells, microtubules form a network whose density is highest in the central cell area, in the region of centrosome, and decreases towards the cell periphery. Since identification of individual microtubules in the central cell area is significantly difficult and more often is impossible, there are several approaches to studying microtubules in the internal cell cytoplasm. These approaches are based on a decrease of microtubule density—both real, due to their partial depolymerization (by the action of cold temperatures or cytostatics), or apparent, due to a decrease of cell thickness (by photobleaching of preexisting microtubules and analysis of newly formed ones). In the present work, we propose a method based on the determination of optical density which allows evaluation of the state of the cytoplasmic microtubule system as a whole. The method consists of a comparison of the dependences describing changes of the microtubule optical density from the cell center to the periphery in controls and in experiments. Analysis of living cells by the proposed method has shown that the character of curves describing the decrease of optical density from the cell center to its periphery is different for various cell types; the dependence can be described both as an exponential regression (the CHO cell line) and as a linear regression (the NIH-3T3 and REF cell lines). Our previous studies have allowed the suggestion that the character of the dependence is determined by the ratio of free and centrosome-attached microtubules and by the position of their ends in the cell cytoplasm. To test this hypothesis, we considered model systems with all microtubules assumed to be in a straight orientation and divergent radially from the centrosome, but with different arrangements of plus-and minus-ends. In the model system, in which all the microtubule minus-ends are attached to the centrosome while the plus-ends are at different distances from it, the microtubule density is described by the exponential (f(x) = ae ?bx ). Introduction of free microtubules into the system leads to a change of the character of this dependence, and the system in which the concentration of free microtubules with minus ends located at different distances from the cytoplasm is 5 times higher than that of the centrosome-attached microtubules is described by the linear regression equation (f(x) = k * x + b), which corresponds to the experimentally obtained dependences for 3T3 and REF cells. Thus, we believe that even in cells with a radial microtubule system, free microtubules may constitute the majority.  相似文献   

12.
Two basic cell types occur in the hemolymph of Bulinus truncatus rohlfsi: granulocytes and hyalinocytes. Granulocytes are divided into three subtypes: (1) Granulocytes I, which account for 19% of the hemocytes, are small, young amoebocytes with 1–20 filopodia and small numbers of cytoplasmic granules, including some lysosomes; (2) granulocytes II, which account for 78% of the cells, are large, fully developed amoebocytes that possess 1–20 filopodia and many granules, both acidophilic and basophilic, including numerous lysosomes, phagosomes, and mitochondria; and (3) spent granulocytes, which are rare, have few filopodia, large accumulations of glycogen granules and prominent vacuoles in addition to lysosomes in the cytoplasm. These three subtypes of granulocytes probably represent ontogenetic stages within a single cell line. In addition, granulocytes with 40 or more filopodia and little ectoplasm, found in only 1 of 45 snails examined, probably reflect a pathologic condition. Hyalinocytes, which account for 3% of all hemocytes, are similar in size to mature granulocytes, but have few or no cytoplasmic granules and lack filopodia and glycogen granules. Total hemocyte concentration in hemolymph is 328,000 ± 188,000 cells/ml.  相似文献   

13.
Summary Electron microscopical studies were made of the thyroid gland of an adult lamprey, Lampetra japonica, in the upstream migration period.The thyroid consists of many usual follicles containing the colloid in their lumina, and a large parafollicle without colloid. The paper concerns only the usual follicle.The follicle cells found in the usual follicle wall are classified into three types; 1. a non-ciliated taller cell, 2. a ciliated taller one, and 3. a non-ciliated cuboidal one. From their cytoplasmic fine structure, it is considered that all these cells are essentially identical and differences among them are due to their functional state.All these type cells are characterized by irregularly developed interdigitations and aggregates of tonofilaments throughout the cytoplasm, especially in the perinuclear region. Although the rough-surfaced endoplasmic reticulum and the Golgi apparatus are fairly well developed in the first and second type cells, the cisternae are not so large-vacuolated but flattened, and the cytoplasm is more compact as compared with that of the higher vertebrate. In the third type cell, the cytomembranes are poorly developed.Large dense inclusion-bodies consisting of heterogeneously dense materials, of lamellar structures, and of less dense vacuoles, which are found often in taller follicle cells, are also characteristic for the lamprey thyroid. The body which might be intimately related to the Golgi apparatus is considered to be a kind of lysosomes and it perhaps corresponds to the yellow pigment observed by light microscopy.In the apical part of the cytoplasm in taller cells, there are three kinds of granules or vesicles; numerous small vesicles considered to be derived from the Golgi apparatus, a few small dense granules which seem to originate from the Golgi region, and a few large less-dense granules.In the third type cell, the cytomembranes are not so well developed as those of the first and second type cells. The large heterogeneously dense bodies and the cytoplasmic granules are very few in number.Around the follicle of the lamprey thyroid, there are a dense basement membrane and a relatively compact connective tissue with few blood capillaries. Characteristic fat cells are found in the connective tissue.  相似文献   

14.
A morphological basis for transcellular potassium transport in the midgut of the mature fifth instar larvae of Hyalophora cecropia has been established through studies with the light and electron microscopes. The single-layered epithelium consists of two distinct cell types, the columnar cell and the goblet cell. No regenerative cells are present. Both columnar and goblet cells rest on a well developed basement lamina. The basal portion of the columnar cell is incompletely divided into compartments by deep infoldings of the plasma membrane, whereas the apical end consists of numerous cytoplasmic projections, each of which is covered with a fine fuzzy or filamentous material. The cytoplasm of this cell contains large amounts of rough endoplasmic reticulum, microtubules, and mitochondria. In the basal region of the cell the mitochondria are oriented parallel to the long axes of the folded plasma-lemma, but in the intermediate and apical portions they are randomly scattered within the cytoplasmic matrix. Compared to the columnar cell, the goblet cell has relatively little endoplasmic reticulum. On the other hand, the plications of the plasma membrane of the goblet cell greatly exceed those of the columnar cell. One can distinguish at least four characteristic types of folding: (a) basal podocytelike extensions, (b) lateral evaginations, (c) apical microvilli, and (d) specialized cytoplasmic projections which line the goblet chamber. Apically, the projections are large and branch to form villus-like units, whereas in the major portion of the cavity each projection appears to contain an elongate mitochondrion. Junctional complexes of similar kind and position appear between neighboring columnar cells and between adjacent columnar and goblet cells as follows: a zonula adherens is found near the luminal surface and is followed by one or more zonulae occludentes. The morphological data obtained in this study and the physiological information on ion transport through the midgut epithelium have encouraged us to suggest that the goblet cell may be the principal unit of active potassium transport from the hemolymph to the lumen of the midgut. We have postulated that ion accumulation by mitochondria in close association with plicated plasma membranes may play a role in the active movement of potassium across the midgut.  相似文献   

15.
《Comptes rendus biologies》2019,342(1-2):27-34
The goal of this study was to evaluate for the first time the expression of the androgen receptors (AR) in Harderian glands (HG) of the male Meriones lybicus in relation to the reproductive cycle. Six male Harderian glands of the resting period and 6 of the breeding period were collected. The animals were trapped in the desert of Béni Abbès (Algeria). The morphology of the Harderian glands was studied by light microscopy and morphometry, whereas the expression of the androgen receptors was assessed and quantified based on immunohistochemistry techniques. We have shown that the Harderian glands of Meriones libycus are tubuloalveolar glands with wide lumen. The glandular epithelium is composed of two types of cells (types I and II) in the resting season and three types of cells (types I, II and III) in the breeding season. These three types of cells differ in size and shape. Type-I cells have a prismatic shape, an acidophilic cytoplasm, and small lipidic vacuoles, whereas type-II ones are pyramidal in shape, with basophilic cytoplasm. Type-III cells resemble those of type I, and so they are prismatic in shape and have an acidophilic cytoplasm with larger lipidic vacuoles. The immunoreactivity of type-I and type-III cells was mainly cytoplasmic and the intensity of the immunostaining was significantly higher during the breeding season. Among other functions, the Harderian gland seems to be involved in the production of pheromones under the effect of androgens.  相似文献   

16.
Changes caused by a carcinogen generally vary from one cell to another even among similar types of cells. The following work investigates the degree to which damage (inhibition of division, lethality, or inherited cellular changes) caused by N-methyl-N-nitroso urethane (MNU) alters at different times during the cell cycle, and relates fluctuations in the sensitivity of cells to changes in their DNA and RNA synthetic activities—possibly in the configuration of their DNA—at the time of treatment.Studies on amoebae exposed to MNU for short periods at 50 different times in their cell cycle led to the following conclusions: amoebae are sensitive to MNU at all ages, but the dose needed to produce lethal damage to young and old cells varies by a factor of 3. Cells are most sensitive at the time of division and during the peak of DNA synthesis. Smaller changes are found during the G2 phase, some of which occur at times of intensive RNA synthesis. Transfer of nuclei between treated and control cells proved that the changing sensitivity of the cells, as shown by both inherited changes and lethal damage, was dependent on changes in their nuclei. Though the cytoplasm could be affected directly by MNU, i.e. in the absence of a nucleus, supralethal doses 2–6 times whole cell dose were required to either kill the cell or to cause a recognizable change in the offspring of viable cells. Experiments with cells having altered nuclear/cytoplasmic ratios showed that the relative insensitivity of older cells was not due to the increased volume of their cytoplasm. However, a possible involvement of cytoplasm in the repair of nuclear damage is suggested by the ability of control cytoplasm to alleviate some nuclear damage, particularly in S phase cells.  相似文献   

17.
In situ hybridization coupled with electron microscopy has been used to locate mRNAs for the small and large subunits of ribulose 1,5-bisphosphate carboxlase in young leaf tissue of tobacco (Nicotiana tabacum L.) plants. The endogeneous mRNAs were hybridized with either a biotinylated DNA probe for the small subunit or large subunit and subsequently visualized using avidin-ferritin conjugates at the electron microscope level. In the tissue incubated with the small subunit cDNA probe, the cytoplasm was uniformly labeled with ferritin indicating the presence of the target mRNA; this was particularly visible in cells which had under-gone some structural damage. In the case of the LSU probe, the ferritin marker was shown to be exclusively associated with the plastid stroma in intact leaf cells. The compartmentation of cytoplasmic small subunit mRNA versus plastid large subunit mRNA has been confirmed by direct visualization of in situ hybridization.  相似文献   

18.
The hemolymph cells of Mercenaria mercenaria were studied with the transmission electron microscope. Three morphological types of cells, granulocytes, hyalinocytes, and fibrocytes, are distinguishable and their fine structural characteristics are described. However, as a result of analyzing the fine structural features of the so-called fibrocytes of M. mercenaria, i.e., the inclusion of large aggregates of glycogen granules in their cytoplasm and the occurrence of primary phagosomes enclosing partially degraded exogenous material and digestive lamellae, it is suggested that fibrocytes are actually granulocytes which are at the terminal phase of their physiologic cycle relative to the degradation of phagocytized nonself materials. The cytoplasmic granules of M. mercenaria granulocytes are structurally different from those of Crassostrea virginica in that they are delimited by a unit membrane, rather than by a complex wall, and include a homogenously electron-dense material. Lipidlike droplets are reported from both granulocytes and hyalinocytes of M. mercenaria for the first time.  相似文献   

19.
A study of the ‘antecubital organ’ of the slow loris (Nycticebus coucang coucang), was undertaken in light and electron microscopes. As distinct from other prosimian primates there is a complete absence of interstitial cells in the gland suggesting its different functional role. The acinar cells in the ‘antecubital organ’ of slow loris contain large number of smooth ER and electron-dense secretory granules. The granules are seen both in the apical region of the cells as well as in their basal cytoplasmic processes. Some of these processes appear to terminate close to a blood capillary. The structural features of the ‘antecubital organ’ of slow loris suggest that it is a mixed gland of both exocrine and endocrine nature.  相似文献   

20.
E Fehér  K Csányi  J Vajda 《Acta anatomica》1979,103(1):109-118
The nerve elements in the urinary bladder of the cat were studied by electron microscopy. According to their ultrastructure, nerve cell somata can be classified into three types: the large cells with a cytoplasm rich in organelles, several processes and numerous synaptic contacts on their surface; the cytoplasm contained 80- 120-nm granulated vesicles. The second type is poor in cytoplasmic organelles and has very few processes and virtually no synaptic contacts on the soma. The third type contains numerous large 160- to 220-nm 'neurosecretory' vesicles in the cytoplasm. According to the morphology of the vesicle population, four types of nerve processes could be distinguished: Type a, with a dominant population of small (40-60 nm) agranular vesicles. These are thought to be sacral parasympathetic fibres. Type b, with small (40-60 nm) granular vesicles, which may be the noradrenergic sympathetic fibres. Type c, with 80- to 120-nm granulated vesicles, probably of local origin. Typed d, with large 160- to 220-nm 'neurosecretory' vesicles also of local origin. Different types of nerve fibres are converging on the local nerve cells. This suggests that the local circuits can play an important role in coordinating the function of the bladder. Therefore, ganglia may be considered as an elementary functional unit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号