首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Dye-ligand chromatography using immobilized Cibacron blue F3GA (blue Sepharose CL-6B) and Procion red HE3B (Matrex gel red A) as matrices and general ligand chromatography employing immobilized 2',5'-ADP (2',5'-ADP-Sepharose 4B) and immobilized 3',5'-ADP (3',5'-ADP-Agarose) were employed for purification of NADPH-dependent 2-enoyl-CoA reductase and 2,4-dienoyl-CoA reductase from bovine liver (formerly called 4-enoyl-CoA reductase [Kunau, W. H. and Dommes, P. (1978) Eur. J. Biochem. 91, 533-544], as well as 2,4-dienoyl-CoA reductase from Escherichia coli. 2. The NADPH-dependent 2-enoyl-CoA reductase from bovine liver mitochondria was separated from 2,4-dienoyl-CoA reductase by dye-ligand chromatography (Matrex gel red A/KCl gradient) as well as by general ligand affinity chromatography (2',5'-ADP-Sepharose 4B/NADP gradient). The enzyme was obtained in a highly purified form. 3. The NADPH-dependent 2,4-dienoyl-CoA reductase from bovine liver mitochondria was purified to homogeneity using blue Sepharose CL-6B, Matrex gel red A, and 2',5'-ADP-Sepharose 4B chromatography. 4. The bacterial 2,4-dienoyl-CoA reductase was completely purified by ion-exchange chromatography on DEAE-cellulose followed by a single affinity chromatography step employing 2',5'-ADP-Sepharose 4B and biospecific elution from the column with a substrate, trans,trans-2,4-decadienoyl-CoA. 5. The application of dye-ligand and general ligand affinity chromatography for purification of NADPH-dependent 2,4-dienoyl-CoA reductases taking part in the beta-oxidation of unsaturated fatty acids is discussed. It is concluded that making use of coenzyme specificity for binding and substrate specificity for elution is essential for obtaining homogeneous enzyme preparations.  相似文献   

2.
The mitochondrial metabolism of unsaturated fatty acids with conjugated double bonds at odd-numbered positions, e.g. 9-cis, 11-trans-octadecadienoic acid, was investigated. These fatty acids are substrates of beta-oxidation in isolated rat liver mitochondria and hence are expected to yield 5,7-dienoyl-CoA intermediates. 5, 7-Decadienoyl-CoA was used to study the degradation of these intermediates. After introduction of a 2-trans-double bond by acyl-CoA dehydrogenase or acyl-CoA oxidase, the resultant 2,5, 7-decatrienoyl-CoA can either continue its pass through the beta-oxidation cycle or be converted by Delta3,Delta2-enoyl-CoA isomerase to 3,5,7-decatrienoyl-CoA. The latter compound was isomerized by a novel enzyme, named Delta3,5,7,Delta2,4, 6-trienoyl-CoA isomerase, to 2,4,6-decatrienoyl-CoA, which is a substrate of 2,4-dienoyl-CoA reductase (Wang, H.-Y. and Schulz, H. (1989) Biochem. J. 264, 47-52) and hence can be completely degraded via beta-oxidation. Delta3,5,7,Delta2,4,6-Trienoyl-CoA isomerase was purified from pig heart to apparent homogeneity and found to be a component enzyme of Delta3,5,Delta2,4-dienoyl-CoA isomerase. Although the direct beta-oxidation of 2,5,7-decatrienoyl-CoA seems to be the major pathway, the degradation via 2,4,6-trienoyl-CoA makes a significant contribution to the total beta-oxidation of this intermediate.  相似文献   

3.
2,4-Dienoyl-CoA reductase has been purified to homogeneity from Candida lipolytica cultivated in the presence of linoleic acid. The native enzyme had a molecular weight close to 360,000 as estimated by gel filtration on Sepharose CL-4B, whereas the subunit molecular weight estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis was 33,000. The purified 2,4-dienoyl-CoA reductase from C. lipolytica gave a single precipitin line with antibodies raised against the purified enzyme from C. lipolytica. The general properties of the 2,4-dienyl-CoA reductase from C. lipolytica were examined. The enzyme had optimal pH at 6.5 and was inactivated by heat treatment at 50 degrees C for 10 min. trans-2,trans-4-Octadienoyl-CoA was the most active substrate of the dienoyl-CoA esters examined.  相似文献   

4.
The mitochondrial 2,4-dienoyl-CoA reductase (EC 1.3.1.34) is an auxiliary enzyme for the beta-oxidation of unsaturated fatty acids. Import of this enzyme into the mitochondria requires a mitochondrial signal sequence at the amino terminus of the polypeptide chain which is processed/removed once inside the mitochondria. The cDNA of the full-length 2,4-dienoyl-CoA reductase was previously cloned as pRDR181. PCR methodologies were used to subclone the gene encoding the functional 2,4-dienoyl-CoA reductase from pRDR181. The PCR product was inserted into a pET15b expression vector and overexpressed in Escherichia coli. The soluble expressed protein can be separated into high- and low-activity fractions. The low-activity fraction can be converted to the high specific activity form by thermal annealing, suggesting it is a metastable misfolded form of the enzyme. Using ion-exchange and affinity chromatography, the enzyme has been purified to homogeneity and exhibits a single band on Coomassie blue-stained SDS-PAGE. The molecular mass of 32,413 Da determined by electrospray ionization-mass spectrometry indicates that the amino-terminal methionine had been removed. The Michaelis constants for trans-2, trans-4-hexadienoyl-CoA and NADPH were determined to be 0.46 and 2.5 microM, respectively; a turnover number of 2.1 s(-1) was calculated.  相似文献   

5.
Mitochondrial 2,4-dienoyl-CoA reductase is a key enzyme for the beta-oxidation of unsaturated fatty acids. Sequence alignment indicates that there are five highly conserved acidic residues, one of which might act as a proton donor. We constructed five mutant expression plasmids of human mitochondrial 2,4-dienoyl-CoA reductase using site-directed mutagenesis. Mutant proteins were overexpressed in Escherichia coli and purified with a nickel metal affinity column. Studies of these mutant proteins were carried out, and the proton donor is likely to be E276. Three substrate analogs were synthesized and characterized. Two analogs, 2-fluoro-2,4-octadienoyl-CoA and 5-methyl-2,4-hexadienoyl-CoA, were substrates of the enzyme. Another analog, 3-furan-2-yl-acrylyl-CoA, was not a substrate, but a competitive inhibitor of the enzyme. These studies increased our understanding of human mitochondrial 2,4-dienoyl-CoA reductase.  相似文献   

6.
2,4-Dienoyl-CoA reductases, enzymes of the beta-oxidation of unsaturated fatty acids which were purified from bovine liver and oleate-induced cells of Escherichia coli, revealed very similar substrate specificities but distinctly different molecular properties. The subunit molecular weights, estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis were 32,000 and 73,000 for the mammalian and the bacterial enzyme, respectively. The native molecular weights, calculated from sedimentation coefficients and Stokes radii yielded 124,000 for the bovine liver and 70,000 for the bacterial enzyme. Thus, bovine liver 2,4-dienoyl-CoA reductase is a tetramer consisting of four identical subunits. The E. coli 2,4-dienoyl-CoA reductase, however, possesses a monomeric structure. The latter enzyme contains 1 mol of FAD/mol of enzyme, whereas the former reductase is not a flavoprotein. The bovine liver reductase reduced 2-trans, 4-cis- and 2-trans,4-trans-decadienoyl-CoA to 3-trans-decenoyl-CoA. The E. coli reductase catalyzed the reduction of the same two substrates but in contrast yielded 2-trans-decenoyl-CoA as reaction product. Certain other properties of the two 2,4-dienoyl-CoA reductases are also presented. The localization of the reductase step within the degradation pathway of 4-cis-decenoyl-CoA, a metabolite of linoleic acid, is discussed.  相似文献   

7.
Mitochondrial 2,4-dienoyl-CoA reductase is a key enzyme for the beta-oxidation of unsaturated fatty acids. The cDNA of the full-length human mitochondrial 2,4-dienoyl-CoA reductase was previously cloned as pUC18::DECR. PCR methodologies were used to subclone the genes encoding various truncated human mitochondrial 2,4-dienoyl-CoA reductases from pUC18::DECR with primers that were designed to add six continuous histidine codons to the 3' or 5' primer. The PCR products were inserted into pLM1 expression vectors and overexpressed in Escherichia coli. A highly active truncated soluble protein was expressed and purified with a nickel HiTrap chelating metal affinity column to apparent homogeneity based on Coomassie blue-stained SDS-PAGE. The molecular weight of the protein subunit was 34 kDa. The purified protein is highly stable at room temperature, which makes it potentially valuable for protein crystallization. KM of 26.5 +/- 3.8 microM for 2,4-hexadienoyl-CoA, KM of 6.22 +/- 2.0 microM for 2,4-decadienoyl-CoA, and KM of 60.5 +/- 19.7 microM for NADPH, as well as Vmax of 7.78 +/- 1.08 micromol/min/mg for 2,4-hexadienoyl-CoA and Vmax of 0.74 +/- 0.07 micromol/min/mg for 2,4-decadienoyl-CoA were determined on kinetic study of the purified protein. The one-step purification of the highly active human mitochondrial 2,4-dienoyl-CoA reductase will greatly facilitate further investigation of this enzyme through site-directed mutagenesis and enzyme catalyzed reactions with substrate analogs as well as protein crystallization for solving its three-dimensional structure.  相似文献   

8.
2,4-Dienoyl-CoA reductase is an enzyme that is required for the beta-oxidation of unsaturated fatty acids with even-numbered double bonds. The 2,4-dienoyl-CoA reductase from Escherichia coli was studied to explore the catalytic and structural properties that distinguish this enzyme from the corresponding eukaryotic reductases. The E. coli reductase was found to contain 1 mol of flavin mononucleotide and 4 mol each of acid-labile iron and sulfur in addition to 1 mol of flavin adenine dinucleotide per mole of protein. Redox titrations revealed a requirement for 5 mol of electrons to completely reduce 1 mol of enzyme and provided evidence for the formation of a red semiquinone intermediate. The reductase caused a significant polarization of the substrate carbonyl group as indicated by an enzyme-induced red shift of 38 nm in the spectrum of 5-phenyl-2,4-pentadienoyl-CoA. However, suspected cis --> trans isomerase and Delta(3),Delta(2)-enoyl-CoA isomerase activities were not detected in this enzyme. It is concluded that the 2, 4-dienoyl-CoA reductases from E. coli and eukaryotic organisms are structurally and mechanistically unrelated enzymes that catalyze the same type of reaction with similar efficiencies.  相似文献   

9.
The beta-oxidation of saturated fatty acids in Saccharomyces cerevisiae is confined exclusively to the peroxisomal compartment of the cell. Processing of mono- and polyunsaturated fatty acids with the double bond at an even position requires, in addition to the basic beta-oxidation machinery, the contribution of the NADPH-dependent enzyme 2,4-dienoyl-CoA reductase. Here we show by biochemical cell fractionation studies that this enzyme is a typical constituent of peroxisomes. As a consequence, the beta-oxidation of mono- and polyunsaturated fatty acids with double bonds at even positions requires stoichiometric amounts of intraperoxisomal NADPH. We suggest that NADP-dependent isocitrate dehydrogenase isoenzymes function in an NADP redox shuttle across the peroxisomal membrane to keep intraperoxisomal NADP reduced. This is based on the finding of a third NADP-dependent isocitrate dehydrogenase isoenzyme, Idp3p, next to the already known mitochondrial and cytosolic isoenzymes, which turned out to be present in the peroxisomal matrix. Our proposal is strongly supported by the observation that peroxisomal Idp3p is essential for growth on the unsaturated fatty acids arachidonic, linoleic and petroselinic acid, which require 2, 4-dienoyl-CoA reductase activity. On the other hand, growth on oleate which does not require 2,4-dienoyl-CoA reductase, and NADPH is completely normal in Deltaidp3 cells.  相似文献   

10.
11.
The mitochondrial beta-oxidation of octa-2,4,6-trienoic acid was studied with the aim of elucidating the degradation of unsaturated fatty acids with conjugated double bonds. Octa-2,4,6-trienoic acid was found to be a respiratory substrate of coupled rat liver mitochondria, but not of rat heart mitochondria. Octa-2,4,6-trienoyl-CoA, the product of the inner-mitochondrial activation of the acid, was chemically synthesized and its degradation by purified enzymes of beta-oxidation was studied spectrophotometrically and by use of h.p.l.c. This compound is a substrate of NADPH-dependent 2,4-dienoyl-CoA reductase or 4-enoyl-CoA reductase (EC 1.3.1.34), which facilitates its further beta-oxidation. The product obtained after the NADPH-dependent reduction of octa-2,4,6-trienoyl-CoA and one round of beta-oxidation was hex-4-enoyl-CoA, which can be completely degraded via beta-oxidation. It is concluded that polyunsaturated fatty acids with two conjugated double bonds extending from even-numbered carbon atoms can be completely degraded via beta-oxidation because their presumed 2,4,6-trienoyl-CoA intermediates are substrates of 2,4-dienoyl-CoA reductase.  相似文献   

12.
Peroxisomal 2,4-dienoyl-CoA reductase was purified from rat liver to homogeneity. The subunit molecular weight of 33,000 was determined by sodium dodecyl sulfatepolyacrylamide gel electrophoresis. The native molecular weight close to 120,000 was estimated by gel filtration on Sephacryl S-300 Superfine. trans-2, trans-4-Decadienoyl-CoA was the most active substrate among the dienoyl-CoA's of various chain lengths. The total activity of peroxisomal 2,4-dienoyl-CoA reductase exceeded that of the mitochondrial one even in the livers of rats fed with a standard diet. Furthermore both reductases were remarkably and coordinately induced in the livers of clofibrate-treated rats.  相似文献   

13.
For the purpose of assessing in vivo the importance of 2,4-dienoyl-CoA reductase (EC 1.3.1.34) in the beta-oxidation of unsaturated fatty acids, reductase mutants of Escherichia coli were isolated by selecting cells that were able to grow on oleate but not on petroselinic acid (6-cis-octadecenoic acid). One mutant (fadH) exhibited 12% of the 2,4-dienoyl-CoA reductase activity present in the parental strain with other beta-oxidation enzymes being essentially unaffected. Antireductase antibodies were used to show that the mutant contains a fadH gene product at a level similar to that observed in the parental strain. Thus, the mutation seems to have resulted in the synthesis of a fadH gene product with lower specific activity. The mutation was mapped in the 71-75-min region of the E. coli chromosome where no other gene for beta-oxidation enzymes has so far been located. Complementation of the mutation by F'141, which carries the 67-75.5-min region of the E. coli genome, resulted in an increase in the 2,4-dienoyl-CoA reductase activity to 80% of the level found in the parental strain. Measurements of respiration with petroselinic acid as the substrate showed rates to be linearly dependent on the 2,4-dienoyl-CoA reductase activity up to levels found in wild-type E. coli. 2,4-Dienoyl-CoA reductase, like other enzymes of beta-oxidation, was induced when E. coli was grown on a long chain fatty acid as the sole carbon source. It is concluded that 2,4-dienoyl-CoA reductase is required in vivo for the beta-oxidation of unsaturated fatty acids with double bonds extending from even-numbered carbon atoms.  相似文献   

14.
The degradation of fatty acids having cis- or trans-unsaturated bond at an even carbon was analyzed in Saccharomyces cerevisiae by monitoring polyhydroxyalkanoate production in the peroxisome. Polyhydroxyalkanaote is synthesized by the polymerization of the beta-oxidation intermediates 3-hydroxy-acyl-CoAs via a bacterial polyhydroxyalkanoate synthase targeted to the peroxisome. The synthesis of polyhydroxyalkanoate in cells grown in media containing 10-cis-heptadecenoic acid was dependent on the presence of 2,4-dienoyl-CoA reductase activity as well as on Delta3,Delta2-enoyl-CoA isomerase activity. The synthesis of polyhydroxyalkanoate from 10-trans-heptadecenoic acid in mutants devoid of 2,4-dienoyl-CoA reductase revealed degradation of the trans fatty acid directly via the enoyl-CoA hydratase II activity of the multifunctional enzyme (MFE), although the level of polyhydroxyalkanoate was 10-25% to that of wild type cells. Polyhydroxyalkanoate produced from 10-trans-heptadecenoic acid in wild type cells showed substantial carbon flux through both a reductase-dependent and a direct MFE-dependent pathway. Flux through beta-oxidation was more severely reduced in mutants devoid of Delta3,Delta2-enoyl-CoA isomerase compared to mutants devoid of 2,4-dienoyl-CoA reductase. It is concluded that the intermediate 2-trans,4-trans-dienoyl-CoA is metabolized in vivo in yeast by both the enoyl-CoA hydratase II activity of the multifunctional protein and the 2,4-dienoyl-CoA reductase, and that the synthesis of the intermediate 3-trans-enoyl-CoA in the absence of the Delta3,Delta2-enoyl-CoA isomerase leads to the blockage of the direct MFE-dependent pathway in vivo.  相似文献   

15.
An enzyme with 6-pyruvoyl tetrahydropterin (6PPH4) (2'-oxo)reductase activity was purified to near homogeneity from whole rat brains by a rapid method involving affinity chromatography on Cibacron blue F3Ga-agarose followed by high performance ion exchange chromatography and high performance gel filtration. The enzyme has a single subunit of Mr 37,000 and has a similar amino acid composition to previously described aldoketo reductases. The reductase activity is absolutely dependent on NADPH, will only catalyze the reduction of the C-2'-oxo group of 6PPH4, and is inactive towards the C-1'-oxo group. However, the enzyme also shows high activity towards nonspecific substrates, such as 4-nitrobenzaldehyde, phenanthrenequinone, and menadione. The role of this 6PPH4 reductase in the formation of tetrahydrobiopterin (BH4) was investigated. Measurements were made of the rate of conversion of 6PPH4, generated from dihydroneopterin triphosphate with purified 6PPH4 synthase, to BH4 in the presence of mixtures of pure sepiapterin reductase and the 6PPH4 (2'-oxo)reductase purified from rat brains. The results suggest that when sepiapterin reductase activity is limiting, a large proportion of BH4 synthesis proceeds through the 6-lactoyl intermediate. However, when sepiapterin reductase is not limiting, most of the BH4 is probably formed via reduction of the other mono-reduced intermediate which is produced from 6PPH4 by sepiapterin reductase alone.  相似文献   

16.
2-Methylacetoacetyl-CoA and 3-keto-2-methyl pentanoyl-CoA have been proposed to be intermediates in the synthesis of 2-methylbutyrate and 2-methylvalerate, respectively, by Ascaris lumbricoides muscle. These volatile acids are major fermentation products of Ascaris metabolism. 2-Methylacetoacetyl-CoA reductase has been purified 532-fold from Ascaris muscle to yield a homogeneous preparation which contained a single protein species as observed on discontinuous polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. The purification procedure utilized subcellular fractionation, affinity chromatography on NAD+ agarose, and ion-exchange chromatography on DEAE-cellulose. A constant activity ratio for ethyl 2-methylacetoacetate and acetoacetyl-CoA was observed during purification, indicating that the same enzyme catalyzed both reactions. In addition, the purified protein catalyzed the NADH-dependent reduction of ethyl-3-keto-2-methyl pentanoate at essentially the same rate as it did ethyl 2-methylacetoacetate. The purified enzyme is a basic protein with an isoelectric point of 8.45 at 4 degrees C. The molecular weight of the native protein (Mr = 64,000 by exclusion chromatography) and the size of the subunit (Mr = 30,000 by dodecyl sulfate-polyacrylamide electrophoresis) indicate that the enzyme is composed of two subunits of the same molecular weight. Substrate-specificity studies, undertaken with the purified protein, demonstrated that the ethyl esters can substitute for the coenzyme A derivatives but this substitution results in an active substrate only when a branched 2-methyl group is present. The straight-chain ethyl ester is inactive. Kinetic constants for the substrates and nucleotides were determined. The role of the CoA esters as the physiological substrates for the Ascaris enzyme is substantiated. When assayed in the reductive direction with ethyl 2-methylacetoacetate as substrate, the activity of the purified enzyme was inhibited not only by coenzyme A as previously reported, but also by acetyl-CoA. The physiological implications of these inhibitions are discussed.  相似文献   

17.
cDNA cloning of rat liver 2,4-dienoyl-CoA reductase   总被引:3,自引:0,他引:3  
cDNA clones of 2,4-dienoyl-CoA reductase were isolated from rat liver cDNA libraries constructed in phages lambda gt11 and lambda gt10. Hybrid selected translation analysis revealed that 2,4-dienoyl-CoA reductase was translated as a polypeptide with a molecular weight of about 36,000, which was about 3,000 molecular weight units larger than mature reductase. Sequencing analysis revealed that the open reading frame encoded a polypeptide consisting of 335 amino acid residues (predicted molecular weight = 36,132), which contained an N-terminal extension peptide of 34 amino acid residues (presequence) in addition to the mature enzyme. Thus, 2,4-dienoyl-CoA reductase is synthesized as a larger precursor polypeptide, and the N-terminal extension peptide may be acting as the mitochondrial import signal.  相似文献   

18.
The degradation of fatty acids having cis- or trans-unsaturated bond at an even carbon was analyzed in Saccharomyces cerevisiae by monitoring polyhydroxyalkanoate production in the peroxisome. Polyhydroxyalkanaote is synthesized by the polymerization of the β-oxidation intermediates 3-hydroxy-acyl-CoAs via a bacterial polyhydroxyalkanoate synthase targeted to the peroxisome. The synthesis of polyhydroxyalkanoate in cells grown in media containing 10-cis-heptadecenoic acid was dependent on the presence of 2,4-dienoyl-CoA reductase activity as well as on Δ32-enoyl-CoA isomerase activity. The synthesis of polyhydroxyalkanoate from 10-trans-heptadecenoic acid in mutants devoid of 2,4-dienoyl-CoA reductase revealed degradation of the trans fatty acid directly via the enoyl-CoA hydratase II activity of the multifunctional enzyme (MFE), although the level of polyhydroxyalkanoate was 10–25% to that of wild type cells. Polyhydroxyalkanoate produced from 10-trans-heptadecenoic acid in wild type cells showed substantial carbon flux through both a reductase-dependent and a direct MFE-dependent pathway. Flux through β-oxidation was more severely reduced in mutants devoid of Δ32-enoyl-CoA isomerase compared to mutants devoid of 2,4-dienoyl-CoA reductase. It is concluded that the intermediate 2-trans,4-trans-dienoyl-CoA is metabolized in vivo in yeast by both the enoyl-CoA hydratase II activity of the multifunctional protein and the 2,4-dienoyl-CoA reductase, and that the synthesis of the intermediate 3-trans-enoyl-CoA in the absence of the Δ32-enoyl-CoA isomerase leads to the blockage of the direct MFE-dependent pathway in vivo.  相似文献   

19.
Fatty acid catabolism by beta-oxidation mainly occurs in mitochondria and to a lesser degree in peroxisomes. Poly-unsaturated fatty acids are problematic for beta-oxidation, because the enzymes directly involved are unable to process all the different double bond conformations and combinations that occur naturally. In mammals, three accessory proteins circumvent this problem by catalyzing specific isomerization and reduction reactions. Central to this process is the NADPH-dependent 2,4-dienoyl-CoA reductase. We present high resolution crystal structures of human mitochondrial 2,4-dienoyl-CoA reductase in binary complex with cofactor, and the ternary complex with NADP(+) and substrate trans-2,trans-4-dienoyl-CoA at 2.1 and 1.75 A resolution, respectively. The enzyme, a homotetramer, is a short-chain dehydrogenase/reductase with a distinctive catalytic center. Close structural similarity between the binary and ternary complexes suggests an absence of large conformational changes during binding and processing of substrate. The site of catalysis is relatively open and placed beside a flexible loop thereby allowing the enzyme to accommodate and process a wide range of fatty acids. Seven single mutants were constructed, by site-directed mutagenesis, to investigate the function of selected residues in the active site thought likely to either contribute to the architecture of the active site or to catalysis. The mutant proteins were overexpressed, purified to homogeneity, and then characterized. The structural and kinetic data are consistent and support a mechanism that derives one reducing equivalent from the cofactor, and one from solvent. Key to the acquisition of a solvent-derived proton is the orientation of substrate and stabilization of a dienolate intermediate by Tyr-199, Asn-148, and the oxidized nicotinamide.  相似文献   

20.
Fat-degrading cotyledons from cucumber seedlings were investigated with respect to the enzymes metabolizing cis-unsaturated fatty acids. Isolated glyoxysomes degrade linoleic acid, the dominating fatty acid in the storage tissue of the seed. Glyoxysomes were shown to be the sole intracellular site of enzymes responsible for the degradation of unsaturated fatty acids. All three auxiliary enzyme activities discussed for the degradation of polyunsaturated fatty acids, 2,4-dienoyl-CoA reductase, enoyl-CoA isomerase, and 3-hydroxyacyl-CoA epimerase were localized within the matrix of glyoxysomes. They were not found in mitochondria. Separation of glyoxysomal matrix proteins on CM-cellulose revealed that epimerase activity was attributable to the multifunctional protein and also to another protein which apparently exhibited no other beta-oxidation activity. Furthermore, on the basis of the high epimerase activity present in glyoxysomes compared to a much lower 2,4-dienoyl-CoA reductase activity, the metabolism of unsaturated fatty acids via delta 2-cis-enoyl-CoA is considered as alternative to the reductase-dependent pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号