首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The potentially negative effects of increased sedimentation on corals are well documented, whereas, the impacts upon early diagenetic processes, such as bioerosion, remain poorly understood. This study examined macroboring through image analysis of coral slabs from two high sedimentation and turbid reefs, Columbus Park and Red Buoy, within Discovery Bay, north Jamaica. Infestation of coral framework by macroborers was significant at both Columbus Park and Red Buoy for all depth zones sampled: 0–8 m (6.5 versus 8.3%), 8–16 m (11.4 versus 10.7%), and 16–25 m (6.2 versus 18.5%), with only the deepest zone significantly different (P<0.001). Bioeroding communities exhibit a shift from mainly sponge-dominated (>90%) assemblages in clear-water settings towards a greater relative importance of worms (up to 17.2%) and bivalves (up to 40.5%) with increasing sedimentation. The high infestation levels of the bivalve Lithophaga spp. offset the reduced sponge bioerosion. As a result, macroboring infestation levels are comparable to those reported from adjacent clear-water reef sites. This study indicates that macroboring of coral framework continues under environmental conditions previously inferred to be detrimental to coral growth and survival.  相似文献   

2.
Reefs in tropical atoll systems have historically been described on a geomorphic basis, and segregated into loosely defined fore-reef, back-reef, and lagoonal reef zones. However, recent oceanographic monitoring data have shown that physical factors within a single geomorphic zone can vary significantly, calling into question whether benthic communities within a single zone are biologically similar. To determine the amount of benthic variability that may occur in a geomorphic zone, percent cover of benthic organisms was determined at the species level for 28 sites in three geomorphic zones at French Frigate Shoals, Northwestern Hawai‘ian Islands. Multivariate statistical analyses found most windward fore-reef and back-reef sites to be statistically similar, but considerable variation to exist among sites within calmer lagoonal areas. Surveys revealed macroalgae to dominate over scleractinian coral species at the majority of sites in this healthy, subtropical reef system, although select lagoonal areas were dominated by dense coral communities.  相似文献   

3.
The notion, previously generated from laboratory experiments, that the local coexistence of spiny lobsters Panulirus guttatus and Panulirus argus on Caribbean reefs may be promoted by a differential use of shelter resources and/or vulnerability to predators was explored in a coral reef in Mexico. Multiple regressions with data collected on 11 occasions on fixed back-reef and fore-reef sites suggested that the densities of the congener, other crevice-dwellers, and predators did not significantly affect the density of P. argus in either reef zone, or of P. guttatus on the back-reef, where coexistence of both lobster species was greatest. In contrast, there was a significant negative relationship between predators and the density of P. guttatus on the fore-reef, where this species was dominant. Congeneric cohabitation in dens was less than expected by chance, but this pattern may reflect a differential use of shelter resources rather than interspecific competition. P. guttatus was more prevalent in dens over the middle and upper third of the reef profile, and P. argus over the lower and middle third of the reef profile. Whether individuals cohabited with conspecifics, congeners, or resided solitarily, P. guttatus was more prevalent at the walls and/or ceiling and P. argus on the floor of dens. This differential use of shelter resources may be related to the differential vulnerability to predators, which may have promoted local coexistence of these congeners in reef habitats.  相似文献   

4.
Sponge populations were surveyed at different depths in three zones of Davies Reef, a large platform reef of the central Great Barrier Reef. Depth is the major discriminatory factor as few sponges are found within the first 10 m depth and maximal populations occur between 15 m and 30 m on fore-reef, lagoon and back-reef slopes. Reef location is another major factor, with the lagoon containing a significantly different sponge population to either the fore-reef or the back-reef slopes. Physical factors are considered to be the major influences behind these patterns. Physical turbulence is strongest within the first 10 m and apparently limits sponge growth within these shallow zones. Insufficient photosynthetic radiation limits the growth of the sponge population below 30 m depth as many of the species are phototrophic with a dependence on cyanobacterial symbionts for nutrition. Sponge populations on the outer (fore- and back-) reef slopes are comparable with each other but different from those on lagoon slopes where currents are reduced and fine sediment loads are higher. The largest populations occur on the back-reef slope where currents are stronger and there are possibly higher concentrations of organic nutrients originating from the more productive shallow parts of the reef. While there are correlations between sponge populations and environmental parameters, data are insufficient to enable more definitive conclusions to be drawn. Most sponge species are distributed widely over the reef, however, some are restricted to a few habitats and, hence, may be used to characterize those habitats.  相似文献   

5.
The interstices of coral rubble, the most common deposits of many reefs, provide extensive surfaces for a variety of sessile and vagile coelobites (cavity-dwellers). In the northern Florida Reef Tract there are at least 80 different sessile coelobites in coral rubble collected from 21 stations from in-shore lagoon to fore-reef, depth 40 meters. Three microzones of coelobites on the undersides of rubble were distinguished on the bases of their dominant community assemblages; algal microzone in the peripheral area, sponge-bryozoan microzone in the transitional area, and foraminiferal microzone in the central area. In the transect that extends some 6–7 km across the reef tract, the biomass is largest in the rubble of the shallow (1–3 m) shelf margin and it decreases shoreward and in deeper water; however, the maximum variety of species comes in the fore-reef at depths of about 20–30 m. Four coelobite zones are recognized in the reef transect based on distribution pattern and relative abundance of diagnostic species; 1) in-shore lagoon zone, 2) lagoon-reef zone, 3) marginal reef zone, and 4) fore-reef zone. Although this paper does not propose a comprehensive explanation for the distribution of coelobites, it does emphasize the importance of two factors that affect coelobite development and distribution: interstitial sediment as a negative (limiting) factor and flushing as a positive factor.  相似文献   

6.
Habitat perturbations play a major role in shaping community structure; however, the elements of disturbance-related habitat change that affect diversity are not always apparent. This study examined the effects of habitat disturbances on species richness of coral reef fish assemblages using annual surveys of habitat and 210 fish species from 10 reefs on the Great Barrier Reef (GBR). Over a period of 11 years, major disturbances, including localised outbreaks of crown-of-thorns sea star (Acanthaster planci), severe storms or coral bleaching, resulted in coral decline of 46–96% in all the 10 reefs. Despite declines in coral cover, structural complexity of the reef framework was retained on five and species richness of coral reef fishes maintained on nine of the disturbed reefs. Extensive loss of coral resulted in localised declines of highly specialised coral-dependent species, but this loss of diversity was more than compensated for by increases in the number of species that feed on the epilithic algal matrix (EAM). A unimodal relationship between areal coral cover and species richness indicated species richness was greatest at approximately 20% coral cover declining by 3–4 species (6–8% of average richness) at higher and lower coral cover. Results revealed that declines in coral cover on reefs may have limited short-term impact on the diversity of coral reef fishes, though there may be fundamental changes in the community structure of fishes.  相似文献   

7.
 Coral reef communities of the western Atlantic have changed over the past two to three decades, but the magnitude and causes of this change remain controversial. Part of the problem is that small-scale patterns observed on individual reefs have been erroneously extrapolated to landscape and geographic scales. Understanding how reef coral assemblages vary through space is an essential prerequisite to devising sampling strategies to track the dynamics of coral reefs through time. In this paper we quantify variation in the cover of hard corals in spur-and-groove habitats (13–19 m depth) at spatial scales spanning five orders of magnitude along the Florida Reef Tract. A videographic sampling program was conducted to estimate variances in coral cover at the following hierarchical levels and corresponding spatial scales: (1) among transects within sites (0.01- to 0.1-km scale), (2) among sites within reefs (0.5- to 2-km scale), (3) among reefs within sectors of the reef tract (10- to 20-km scale), and (4) among sectors of the reef tract (50- to 100-km scale). Coral cover displayed low variability among transects within sites and among sites within reefs. This means that transects from a site adequately represented the variability of the spur-and-groove habitat of the reef as a whole. Variability among reefs within sectors was highly significant, compared with marginally significant variability among sectors. Estimates from an individual reef, therefore, did not adequately characterize nearby reefs, nor did those estimates sufficiently represent variability at the scale of the sector. The structure and composition of coral reef communities is probably determined by the interaction of multiple forcing functions operating on a variety of scales. Hierarchical analyses of coral assemblages from other geographic locations have detected high variability at scales different from those in the present study. A multiscale analysis should, therefore, precede any management decisions regarding large reef systems such as the Florida Reef Tract. Accepted: 19 July 1999  相似文献   

8.
The distribution and abundance of the dominant initial macroborers of dead coral substrate, sipunculans and polychaetes were investigated over time at seven sites within French Polynesia. Sites were located in the lagoon of high islands and atolls, and varied from highly eutrophic to oligotrophic. Significant differences occurred between sites and patterns of recruitment varied over time and between sites. With increasing exposure, the densities of polychaetes increased but not the number of species present, whereas both the densities and number of species of sipunculans increased. The atoll sites tended to be dominated by suspension feeding polychaetes and the high island sites by deposit feeding polychaetes. Sipunculans tended to dominate the high island sites in comparison to the atoll sites and they all fed by scraping algae and detritus from the substrate. We suggest that this distribution of feeding types is related to water quality and to land run off. In the atolls, the lagoonal waters are oligotrophic and little land run off occurs, whereas at the high island sites, high rates of land run off occur during the wet season with high levels of suspended material in the water column.These variations in densities of boring species, affect rates of bioerosion and have the potential to alter the equilibrium between reef growth and reef destruction. We suggest that it is critical for reef managers to try to maintain water quality and limit land-based terrestrial run off and associated nutrients into coastal waters. This is especially important if the reefs have been affected by bleaching events or Crown of Thorns plagues, resulting in extensive death of coral colonies and with it, the potential for a massive increase in the rate of bioerosion. The long-term maintenance of the reef structure is critical if coral recruitment and recovery of the reef are to occur.  相似文献   

9.
Summary The roles of Permian colonial corals in forming organic reefs have not been adequately assessed, although they are common fossils in the Permian strata. It is now known that colonial corals were important contributors to reef framework during the middle and late Permian such as those in South China, northeast Japan, Oman and Thailand. A coral reef occurs in Kanjia-ping, Cili County, Hunan, South China. It is formed by erect and unscathed colonies ofWaagenophyllum growing on top of one anotherin situ to form a baffle and framework. Paleontological data of the Cili coral reef indicates a middle to late Changhsing age (Late Permian), corresponding to thePalaeofusulina zone. The coral reef exposure extends along the inner platform margin striking in E-S direction for nearly 4 km laterally and generally 35 to 57 m thick. The Cili coral reef exhibits a lateral differentiation into three main reef facies; reef core facies, fore-reef facies, and marginal slope facies. The major reef-core facies is well exposed in Shenxian-wan and Guanyin-an sections where it rests on the marginal slope facies. Colonial corals are dispersed and preserved in non-living position easward. Sponges become major stabilizing organisms in the eastern part of Changhsing limestone outcrop in Kanjia-ping, but no read sponge reefs were formed. Coral reefs at Cili County in Human are different distinctly from calcisponge reefs in South China in their palaeogeography, lithofacies development, organic constitutuents, palaeoecology and diagenesis. The Cili coral reef also shows differences in age, depositional facies association, reef organisms and diagenesis from coral reefs in South Kitakami of Japan, Khorat Plateau of Thailand, and Saih Hatat of Oman. Although some sponge reefs and mounds can reach up to the unconformable Permian/Triassic boundary, coral reef at Kanjia-ping, Cili County, is the latest Permian reef known. This reef appears to had been formed in a palaeoenvironment that is different from that of the sponge reefs and provides an example of new and unique Permian reef type in South China, and could help us to: 1) understand the significance of colonial corals in Permian carbonate buildups; 2) evaluate the importance of coral community evolution prior to the collapse of reef ecosystems at the Permian/Triassic boundary; 3) better understand the effects of the biotic extinction events in Palaeotethys realm; 4) look for environmental factors that may have controlled reefs through time and space, and 5) provide valuable data for the study of Permian palaeoclimate and global evolutionary changes of Permian reefs and reef community.  相似文献   

10.
Srinivasan M 《Oecologia》2003,137(1):76-84
Many coral reef fishes have restricted depth ranges that are established at settlement or soon after, but the factors limiting these distributions are largely unknown. This study examines whether the availability of microhabitats (reef substrata) explains depth limits, and evaluates whether juvenile growth and survival are lower beyond these limits. Depth-stratified surveys of reef fishes at Kimbe Bay (Papua New Guinea) showed that the abundance of new settlers and the cover of coral substrata differed significantly among depths. A field experiment investigated whether settling coral reef fishes preferred particular depths, and whether these depth preferences were dependent on microhabitat. Small patch reefs composed of identical coral substrata were set up at five depths (3, 6, 10, 15 and 20 m), and settlement patterns were compared to those on unmanipulated reef habitat at the same five depths. For all species, settlement on patch reefs differed significantly among depths despite uniform substratum composition. For four of the six species tested, depth-related settlement patterns on unmanipulated habitat and on patch reefs did not differ, while for the other two, depth ranges were greater on the patch reefs than on unmanipulated habitat. A second experiment examined whether depth preferences reflected variation in growth and survival when microhabitat was similar. Newly settled individuals of Chrysiptera parasema and Dascyllus melanurus were placed, separately, on patch reefs at five depths (as above) and their survival and growth monitored. D. melanurus, which is restricted to shallow depths, had highest survival and growth at the shallowest depth. Depth did not affect either survival or growth of C. parasema, which has a broader depth range than D. melanurus (between 6 and 15 m). This suggests that the fitness costs potentially incurred by settling outside a preferred depth range may depend on the strength of the depth preference.  相似文献   

11.
In the Madang Lagoon, on the northern coast of Papua New Guinea (PNG), distinct groups of foraminifera, defined by numerical Q-mode cluster analysis of foraminiferal species occurrences, occupy four major environments and sedimentary regimes, generally aligned parallel to the coast: (1) the harbor and bay inlets, which have large fresh-water runoff and organic detrital inputs; (2) the fringing reefs along the west side of the lagoon which are influenced by coastal factors such as overhanging mangroves or fresh-water runoff; (3) the central lagoon floor which is over 50 m deep and covered with fine sand and patch reefs rising from it; and (4) the reef barrier with adjacent live coral-covered fore-reef slope and generally sandy back-reef slope. The four clusters are also mirrored in both species richness and Fisher alpha diversity analysis. Cluster 4 includes 79 species of large, thick-shelled miliolids, robust agglutinated species, calcarinids, and amphisteginids (Fisher α ≥20) that occur on the coral-rich barrier reef and back-reef. Cluster 3 has 50 species (Fisher α=8–20) and occupies the central lagoon floor. Cluster 2 has 25 or fewer species (Fisher α=2–6) and occurs on the shallow fringing reefs. Cluster 1 is the least diverse (≤7 species, Fisher α ≤2) and occurs in the harbors and bays in the mouths of larger rivers and streams. The larger, endosymbiont-bearing foraminifera (alveolinellids, soritids, amphisteginids, nummulitids, and calcarinids) generally live on the back- and fore-reef slopes and in the lagoon, avoid the organic-rich coastal and harbor habitats, and preferentially dwell in well-lit environments to the bottom of the lagoon. The river mouths and bays are unusual for reef systems because of their high organic content, which creates low-oxygen and nutrient-rich conditions. Here the foraminiferal fauna is dominated by only a few and, for the most part, particularly thin-shelled and highly fragile species. Each faunal group contains a number of numerically abundant indicator species that do not occur in other faunal clusters. This implies low horizontal transport rates within the reef and lagoon complex and signifies that faunal mixing among the cluster groups is limited. Foraminiferal death assemblages may thus be autochthonous and retain information regarding the original community structure. They may also preserve environmental information useful in paleoecological studies and they are good ecological indicators of reef and lagoon habitats.  相似文献   

12.
The importance of studying coral communities at different spatial scales is acknowledged in a growing volume of scientific literature, and principles of landscape ecology were thus used to elucidate the patterns in coral community structure on the high-latitude reefs in South Africa. These reefs are at the southernmost distribution of this fauna in Africa, are surprisingly species rich, and represent a biodiversity peak in this fauna south of the equator, regardless of the marginal nature of the environment. Coral community patterns were identified on and between the reefs at Sodwana Bay, justifying the grouping of reef areas in distinct zones. A number of landscape components were identified, ranging from the entire reef complex (10 km scale), individual reefs (1 km scales) and reef zones, to components that were separated using multivariate statistical analysis of transect data. These components transcended spatial similarities, e.g. the fore-reef on Five-mile Reef was not similar to the fore-reef on Seven-mile Reef, but was rather grouped with the reef flat on Two-mile Reef. This information was “translated” into an index of management intervention, based on risk assessment, and was generated using parameters that measure susceptibility to crown-of-thorns feeding, bleaching, diver-related damage and swell-induced breakage. We also assessed was the time elapsed since the last major disturbance and the proximity to the only boat launch site, a proxy measure of continuous disturbance. The risk assessment suggested that conservation management is most needed in the stable and “climax” coral communities that are usually characterised by a near-equal mix of hard and soft corals at maximal coral species diversity.  相似文献   

13.
The study examined the effects of coastal embankment building on fish recruitment in three habitat types (beach-rock, white sand and muddy sand) in the near shore and fringing reef habitats of Moorea lagoon (French Polynesia). The results showed a positive relationship between the presence of embankments and the density and species richness of juvenile fish along the shoreline (whatever the habitat types). However, embankments deteriorated adjacent fringing reefs (decrease of live coral), which led to a decrease of fish density on beach-rock and white sand sites, and a decrease of fish species richness on muddy sand sites.  相似文献   

14.
The complexity and heterogeneity of shallow coastal waters over small spatial scales provides a challenging environment for mapping and monitoring benthic habitats using remote sensing imagery. Additionally, changes in coral reef community structure are occurring on unprecedented temporal scales that require large-scale synoptic coverage and monitoring of coral reefs. A variety of sensors and analyses have been employed for monitoring coral reefs: this study applied a spectrum-matching and look-up-table methodology to the analysis of hyperspectral imagery of a shallow coral reef in the Bahamas. In unconstrained retrievals the retrieved bathymetry was on average within 5% of that measured acoustically, and 92% of pixels had retrieved depths within 25% of the acoustic depth. Retrieved absorption coefficients had less than 20% errors observed at blue wavelengths. The reef scale benthic classification derived by analysis of the imagery was consistent with the percent cover of specific coral reef habitat classes obtained by conventional line transects over the reef, and the inversions were robust as the results were similar when the benthic classification retrieval was constrained by measurements of bathymetry or water column optical properties. These results support the use of calibrated hyperspectral imagery for the rapid determination of bathymetry, water optical properties, and the classification of important habitat classes common to coral reefs.  相似文献   

15.
We quantify the relative importance of multi‐scale drivers of reef fish assemblage structure on isolated coral reefs at the intersection of the Indian and Indo‐Pacific biogeographical provinces. Large (>30 cm), functionally‐important and commonly targeted species of fish, were surveyed on the outer reef crest/front at 38 coral reef sites spread across three oceanic coral reef systems (i.e. Christmas Island, Cocos (Keeling) Islands and the Rowley Shoals), in the tropical Indian Ocean (c. 1.126 x 106 km2). The effects of coral cover, exposure, fishing pressure, lagoon size and geographical context, on observed patterns of fish assemblage structure were modelled using Multivariate Regression Trees. Reef fish assemblages were clearly separated in space with geographical location explaining ~53 % of the observed variation. Lagoon size, within each isolated reef system was an equally effective proxy for explaining fish assemblage structure. Among local‐scale variables, ‘distance from port’, a proxy for the influence of fishing, explained 5.2% of total variation and separated the four most isolated reefs from Cocos (Keeling) Island, from reefs with closer boating access. Other factors were not significant. Major divisions in assemblage structure were driven by sister taxa that displayed little geographical overlap between reef systems and low abundances of several species on Christmas Island corresponding to small lagoon habitats. Exclusion of geographical context from the analysis resulted in local processes explaining 47.3% of the variation, highlighting the importance of controlling for spatial correlation to understand the drivers of fish assemblage structure. Our results suggest reef fish assemblage structure on remote coral reef systems in the tropical eastern Indian Ocean reflects a biogeographical legacy of isolation between Indian and Pacific fish faunas and geomorphological variation within the region, more than local fishing pressure or reef condition. Our findings re‐emphasise the importance that historical processes play in structuring contemporary biotic communities.  相似文献   

16.
Holocene coral reef rubble and its binding agents   总被引:1,自引:0,他引:1  
A literature review regarding reef rubble (defined as mechanically or chemically abraded parts of framebuilders or reef rock larger than sand fraction) and its binding agents is presented. Rubble is produced by natural and man-made events such as storms, wave agitation, earthquakes, bioerosion, ship groundings, and dynamite fisheries. The regeneration of reefs after rubble-forming processes requires rigid rubble binding, which is always preceded by preliminary stabilization. Preliminary stabilization can be achieved by a decline in hydrodynamic energy, interlocking of components, seagrass, and overgrowth by sponges or algae. Rigid binding is primarily achieved by diagenetic cementation. The literature indicates that binding by coralline algae or other organisms (corals, worms, bryozoans) is only of subordinate importance. Highest rates of rigid rubble binding are known from fore-reef areas with low sloping angles above fair-weather wave base; rigid rubble binding is particularly rare in deeper fore-reef environments and not described from the reef crest. Rigid binding by diagenetic cementation is generally known from inter- and supratidal near-shore ramparts as well as back-reef, reef-flat, and shallow fore-reef rubble accumulations, while coralline algae rigidly bind rubble only in very shallow fore-reef environments. Rubble binding does not appear to be easily achieved and fewer reports of bound rubble were found than of loose rubble.  相似文献   

17.
Fisheries exploitation represents a considerable threat to coral reef fish resources because even modest levels of extraction can alter ecological dynamics via shifts of stock size, species composition, and size-structure of the fish assemblage. Although species occupying higher trophic groups are known to suffer the majority of exploitative effects, changes in composition among lower trophic groups may be major, though are not frequently explored. Using size-based biomass spectrum analysis, we investigate the effects of fishing on the size-structure of coral reef fish assemblages spanning four geopolitical regions and determine if patterns of exploitation vary across trophic groups. Our analyses reveal striking evidence for the variety of effects fisheries exploitation can have on coral reef fish assemblages. When examining biomass spectra across the entire fish assemblage we found consistent evidence of size-specific exploitation, in which large-bodied individuals experience disproportionate reductions. The pattern was paralleled by and likely driven by, strongly size-specific reductions among top predators. In contrast, evidence of exploitation patterns was variable among lower trophic groups, in many cases including evidence of reductions across all size classes. The breadth of size classes and trophic groups that showed evidence of exploitation related positively to local human population density and diversity of fishing methods employed. Our findings highlight the complexity of coral reef fisheries and that the effects of exploitation on coral reefs can be realized throughout the entire fish assemblage, across multiple trophic groups and not solely restricted to large-bodied top-predators. Size-specific changes among fishes of lower trophic groups likely lead to altered ecological functioning of heavily exploited coral reefs. Together these findings reinforce the value of taking a multi-trophic group approach to monitoring and managing coral reef fisheries.  相似文献   

18.
Hurricanes occur in belts 7° to 25° north and south of the equator. Reefs growing in these belts suffer periodic damage from hurricane-generated waves and storm surge. Corals down to 20m depth may be broken and removed, branching colonies being much more susceptible to breakage than upright massive forms. Sand cays may be washed away and former storm ridges may migrate to leeward across reef flats to link with islands. Reef crest and reef front coral debris accumulate as talus at the foot of the fore-reef slope, on submarine terraces and grooves, on the intertidal reef flat as storm ridges of shingle or boulders and isolated blocks of reef framework, as accreting beach ridges of leeward migrating shingle, as lobes and wedges of debris in back-reef lagoons, as drapes of carbonate sand and mud in deep off-reef locations in the fore-reef and lagoonal areas. In addition to the coarse debris deposited, other features may aid the recognition of former hurricane events, including the assemblage of reef biota, its species composition and the structure of the skeletons; graded internal sediments in framework cavities; characteristic sequences of encrusting organisms; characteristic shapes of reef flat microatoll corals; and submarine cement crusts over truncated reef surfaces. The abundance of reef flat storm deposits whose ages cluster around 3000–4000 y BP in certain parts of the world most likely relate to a slight fall in relative sea level rather than an increase in storminess during that period. A higher frequency of storms need not result in more reef flat storm deposits. The violence of the storm relative to normal fair-weather conditions influences the extent of damage; the length of time since the previous major storm influences the amount of coral debris created; the length of time after the hurricane, and before a subsequent storm influences the degree of stabilization of reef-top storm deposits and hence their chances of preservation.  相似文献   

19.
 The temporal and spatial variability of inorganic nutrient concentrations in overlying- and interstitial-seawater in Checker Reef, Oahu was examined for response to incident wave magnitude and direction. Well-point samplers were used to profile interstitial nutrient concentrations across oxic-suboxic-anoxic transition zones in the upper meter of the reef framework at four sites aligned across the patch reef. Samples were acquired over February, 1992, during which time dominant E-NE trade winds directed waves across the reef from the fore-reef to back-reef. However, W-SW “Kona” winds periodically interrupted this pattern and directed waves in the reverse direction. The interstitial microbial habitats of fore- and back-reef framework were distinct from those within the mid-reef framework. Maximum concentrations of PO4, Si, and NH4 in interstitial waters occurred at framework depths of 1–2 m, with the highest concentrations occuring within the mid-reef framework. Maximum concentrations of NO3 and NO2, which were used to delineate the core of the suboxic zone, occurred at framework depths of 5–10 cm at all stations and attained 2–4 fold higher peak concentrations within the mid-reef and back-reef than within the fore-reef. Variability in interstitial nutrient concentrations was greatest within the back-reef and is consistent with reversals of wave-direction, with the resultant increases in mixing between interstitial and overlying seawater due to flushing caused by the S-SW Kona wind events. The ratio of molar concentrations of total inorganic nitrogen to phosphate (TIN : PO4) for the fore-reef was 5 : 1; while ratios for the mid- and back-reef were 13–15 : 1, reflecting that the dominant source of particulate organic matter to the fore-reef framework is plankton, while that of the mid- and back-reef is benthic reef plants. Accepted: 4 May 1999  相似文献   

20.
The South China Sea (SCS) includes large areas of extensive coral reef development but its reefs are still poorly known. Yongle atoll is the biggest typical atoll in the Xisha Islands, central of SCS. Lingyang Reef is an isolated small atoll within the whole big Yongle atoll. A total of 144 and 119 coral species were recorded at big Yongle atoll and small Lingyang Reef, respectively. The real coral richness might be higher because species accumulation curve did not saturate. The coral diversity pattern was similar between big Yongle atoll and small Lingyang Reef. Coral communities fell into three clusters, consistent with their habitats on reef slope, reef flat and lagoon slope. The highest coral diversity was observed on reef slopes and the lowest coral diversity was found on lagoon slope. Genera richness was a better proxy for representing coral species diversity on both the big and small atoll but percent live coral cover was not a robust proxy on the small atoll, which only explained 24% of species diversity. This study demonstrated high coral diversity with consistent pattern along habitat types, as has been shown from many other reefs. While far from exhaustive, the study allows first glimpses on how much biodiversity is contained on SCS coral reefs, and hopes to give an impetus to their conservation. The study also suggests that simplified surveys at a small scale and the use of genera richness as an effective proxy for overall diversity can indeed provide important information to rapidly monitor and evaluate the coral diversity in remote locations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号