首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The infectivity of a single stabilate of Trypanosoma vivax Zaria Y486 differed in mice, rats, and cattle. The variable antigen types present in the first bloodstream population of mice and cattle also differed. In rats infected with different isolates of this stock, the same VATs always appeared in the first relapse populations despite antigenic differences in the isolates. The infectivity of certain variable antigen types of T. vivax Zaria Y486 for rodents could be enhanced by either preincubation of the parasites in ruminant serum or simultaneous supplementation of the rodents with ruminant serum. Incubation of variable antigen types, which did not usually infect rats, in rat serum, did not subsequently alter the infectivity of such variable antigen types of T. vivax for mice.  相似文献   

2.
Antigenic variation during the developmental cycle of Trypanosoma brucei   总被引:1,自引:0,他引:1  
During the complex life cycle of Trypanosoma brucei, changes in the exposed surface antigens occur in both the mammalian host and the insect vector (Glossina spp.). These antigenic changes are associated with alterations of the variant surface glycoprotein (VSG) composition or with the loss of the VSG. In the bloodstream of the mammalian host, trypanosomes successfully evade destruction by the host's immune response by continuously expressing alternative VSGs, at low frequency, which are not destroyed by host antibodies. When ingested by the tsetse fly, the bloodstream trypanosomes rapidly lose their surface coat and surface membrane antigens are exposed which are normally covered in the bloodstream. In the salivary glands of the tsetse fly, the trypanosomes differentiate to the metacyclic stage, which reacquires a surface coat. The antigenic composition of the metacyclics is heterogeneous. The same metacyclic types are expressed regardless of the bloodstream antigenic type ingested by the tsetse fly. In the mammal the metacyclics differentiate to long-slender bloodstream forms but continue to express the metacyclic VSG for at least three days. The next VSGs expressed in the mammalian host appear to be influenced by the antigenic type ingested by the tsetse. The ingested antigenic type is often expressed in the first parasitemia following expression of the metacyclic antigenic types.  相似文献   

3.
Trypanosomes from 14 first-peak parasitemias initiated in mice by injection of in vitro-produced metacyclics were stabilated. Strains derived from these stabilates were analyzed for their antigenic composition by cross-agglutination with immune sera produced in rabbits against 12 of the stabilates. The antigenic composition of the 14 stabilates was compared also with two first-peak parasitemias from mice inoculated with fly-derived metacyclics, the variant-specific antigen of the strain used to initiate the cultures that ultimately became infective, and the antigenic variant that was used to infect the flies. One variant-specific, presumably basic, antigen was found, either as the predominant (nine parasitemias) or as a minor (seven parasitemias) antigen, in all first peak-parasitemia strain initiated with culture- or fly-derived metacyclics; it was absent, however, from the strains (not first-peak parasitemias) used to start the cultures or to infect the flies. Only one of the first-peak parasitemias appeared to have the basic antigen alone. The remaining parasitemia populations seemed to have from about two to six antigens, some of which were common to culture- and fly-derived infections. There was very little, if any, antigenic relationship between the foregoing populations and the strains employed for initiation of cultures or for infection of flies. It is evident from the results that much antigenic similarity exists between the culture- and tsetse fly-derived first-peak parasitemias.  相似文献   

4.
East African x Galla goats, when infected with Trypanosoma congolense isolates from the Kilifi area of Kenya by Glossina morsitans centralis, did not develop the characteristic chancre reaction at the bite sites, whereas bites of tsetse infected with the cloned T. congolense IL.1180 from Serengeti, Tanzania, resulted in chancres in the same goats. Histological changes could not be observed in skin biopsies collected 8 or 9 days after infection with Kilifi isolates. However, all goats became parasitemic about 10 days after challenge. It is concluded that the absence of chancre development is a characteristic feature of T. congolense parasites from Kilifi. The isoenzyme analysis of clones of two T. congolense Kilifi isolates and the T. congolense clone IL.1180 indicated that they belong to different zymodemes. Neutralizing antibodies to homologous metacyclic variable antigen types were detected in six out of seven (86%) of the sera from goats infected with a clone or stock of a T. congolense Kilifi isolate, 20 days after infection. Goats primed by tsetse transmitted infection with a stock or clone of T. congolense from Kilifi and treated with Berenil were, in three out of eight cases (37%), not immune to homologous challenge. It is suggested that the reduced immune response to metacyclic variable antigen types could be a result of the absence of cellular infiltration, i.e., chancre development in the skin at the tsetse bite site. It is concluded that the use of the chancre reaction as a marker for serodeme analysis of recently isolated stocks of T. congolense from Kilifi was not feasible.  相似文献   

5.
The vir genes are antigenic genes and are considered to be possible vaccine targets. Since India is highly endemic to Plasmodium vivax, we sequenced 5 different vir genes and investigated DNA sequence variations in 93 single-clonal P. vivax isolates. High variability was observed in all the 5 vir genes; the vir 1/9 gene was highly diverged across Indian populations. The patterns of genetic diversity do not follow geographical locations, as geographically distant populations were found to be genetically similar. The results in general present complex genetic diversity patterns in India, requiring further in-depth population genetic and functional studies.  相似文献   

6.
SYNOPSIS. the antigenic types in populations of metacyclic trypanosomes of Trypanosoma brucei isolated from Glossina morsitans head-salivary gland trypanosome cultures and bloodstream forms in the early parasitemias produced from whole culture supernatant fluids containing metacyclic forms, were analyzed by the indirect fluorescent antibody test using clone-specific antisera. Metacyclic trypanosomes in cultures initiated with cloned bloodstream forms were heterogeneous with respect to their variable antigenic type (VAT). Trypanosomes comprising early parasitemias in immunosuppressed mice infected with metacyclics produced in cultures also had a range of VATs. Three of the VATs detected in the early parasitemias in mice have also been identified by other investigators in tsetse fly-transmitted populations of the same stock.  相似文献   

7.
The antigenic types in populations of Metacyclic trypanosomes of Trypanosoma brucei isolated from Glossina morsitans head-salivary gland trypanosome cultures and bloodstream forms in the early parasitemias produced from whole culture supernatant fluids containing metacyclic forms, were analyzed by the indirect fluorescent antibody test using clone-specific antisera. Metacyclic trypanosomes in cultures initiated with cloned bloodstream forms with heterogeneous with respect to their variable antigenic type (VAT). Trypanosomes comprising early parasitemias in immunosuppressed mice infected with metacyclics produced in cultures also had a range of VATs. Three of the VATs detected in the early parasitemias in mice have also been identified by other investigators in tsetse fly-transmitted populations of the same stock.  相似文献   

8.
The possible presence of host serum proteins on the surface of Trypanosoma vivax stock Zaria Y486 was studied. Intact washed bloodstream forms from mice were not lysed or neutralized by antisera against mouse serum proteins. Serum against T. vivax prepared in rabbits against an antigen which was a water-soluble trypanosome extract, failed to cross-react with mouse serum when tested by immunoelectrophoresis and immunodiffusion. The T. vivax antigen failed to cross-react with three different anti-mouse sera when tested by the same techniques.Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analyses of 125I-surface-labeled parasites showed the presence of a cluster of proteins ranging in molecular weights between 57,000 and 45,000 daltons. None of these proteins was precipitated by anti-mouse serum protein sera. The serum against T. vivax precipitated a protein of 50,000 daltons molecular weight.  相似文献   

9.
Trypanosoma congolense: susceptibility of cattle to cyclical challenge   总被引:5,自引:0,他引:5  
Cattle primed by cyclical infection with Glossina morsitans morsitans infected with cloned derivatives of Trypanosoma congolense and treated with the trypanocidal drug Berenil after 3 or 4 weeks were immune to cyclical challenge with homologous clones 3 to 5 weeks later. In these animals, localized skin reactions (chancres) and parasitemia did not develop. The same results were obtained in cattle given a homologous superinfection without prior treatment. On the other hand, cattle subjected to a cyclical challenge with heterologous clones were completely susceptible as demonstrated by the development of chancres. Immunity to homologous challenge was achieved irrespective of the bloodstream variable antigenic types used to infect the tsetse. It was concluded that for a given serodeme the variable antigen composition of the metacyclic population which develops in the tsetse is constant and characteristic. Immunity to cyclical challenge was also obtained with uncloned stocks, providing the same stock was used for challenge. On the other hand, cattle immune to homologous cyclical challenge with cloned material were not always immune to cyclical challenge with parent stock, indicating that certain stocks consist of more than one serodeme. On the basis of these findings, it may be possible to use the chancre as a marker for serodeme analysis.  相似文献   

10.
Although progress in the development of an antimalarial vaccine has been mostly obtained through the study of P. falciparum, significant advances have recently been made in the study of P. vivax, the other major human malarial parasite. Antigens which have been shown to be important in P. falciparum have been characterized and in some cases cloned in P. vivax. Other studies have examined some of the more specific biological characteristics of P. vivax. Among these are studies on components present in caveolae-vesicle complexes of the infected erythrocyte, on the occurrence of delayed hepatic development leading to relapse, or on the Duffy erythrocyte antigen as a key receptor for parasite invasion. Although progress has been made in the short-term in vitro maintenance of P. vivax, the inability to maintain the parasite in continuous culture led to the investigation of wild parasite populations in patients; occurrence of extensive antigenic and karyotype polymorphism was detected in this way, as was a double-blocking and enhancing activity of human antibodies on parasite development in the vector. The association of monoclonal antibodies with DNA recombinant technology allowed the characterization of a number of P. vivax antigens to be made. Among these, an antigen shared between sexual and asexual stages was shown to constitute a target for transmission-blocking immunity. The cloning of an antigen involved in transmission-blocking immunity, along with that of the surface antigen of the sporozite (CSP) and of a major surface antigen of the invasive merozoite (PV200) constitutes a significant step towards the development of a multivalent recombinant vaccine against P. vivax.  相似文献   

11.

Background

Diagnosis of African animal trypanosomosis is vital to controlling this severe disease which hampers development across 10 million km2 of Africa endemic to tsetse flies. Diagnosis at the point of treatment is currently dependent on parasite detection which is unreliable, and on clinical signs, which are common to several other prevalent bovine diseases.

Methodology/Principle Findings

the repeat sequence of the GM6 antigen of Trypanosoma vivax (TvGM6), a flagellar-associated protein, was analysed from several isolates of T. vivax and found to be almost identical despite the fact that T. vivax is known to have high genetic variation. The TvGM6 repeat was recombinantly expressed in E. coli and purified. An indirect ELISA for bovine sera based on this antigen was developed. The TvGM6 indirect ELISA had a sensitivity of 91.4% (95% CI: 91.3 to 91.6) in the period following 10 days post experimental infection with T. vivax, which decreased ten-fold to 9.1% (95% CI: 7.3 to 10.9) one month post treatment. With field sera from cattle infected with T. vivax from two locations in East and West Africa, 91.5% (95% CI: 83.2 to 99.5) sensitivity and 91.3% (95% CI: 78.9 to 93.1) specificity was obtained for the TvGM6 ELISA using the whole trypanosome lysate ELISA as a reference. For heterologous T. congolense field infections, the TvGM6 ELISA had a sensitivity of 85.1% (95% CI: 76.8 to 94.4).

Conclusion/Significance

this study is the first to analyse the GM6 antigen of T. vivax and the first to test the GM6 antigen on a large collection of sera from experimentally and naturally infected cattle. This study demonstrates that the TvGM6 is an excellent candidate antigen for the development of a point-of-treatment test for diagnosis of T. vivax, and to a lesser extent T. congolense, African animal trypanosomosis in cattle.  相似文献   

12.

Background

The importance of wildlife as reservoirs of African trypanosomes pathogenic to man and livestock is well recognised. While new species of trypanosomes and their variants have been identified in tsetse populations, our knowledge of trypanosome species that are circulating in wildlife populations and their genetic diversity is limited.

Methodology/Principal Findings

Molecular phylogenetic methods were used to examine the genetic diversity and species composition of trypanosomes circulating in wildlife from two ecosystems that exhibit high host species diversity: the Serengeti in Tanzania and the Luangwa Valley in Zambia. Phylogenetic relationships were assessed by alignment of partial 18S, 5.8S and 28S trypanosomal nuclear ribosomal DNA array sequences within the Trypanosomatidae and using ITS1, 5.8S and ITS2 for more detailed analysis of the T. vivax clade. In addition to Trypanosoma brucei, T. congolense, T. simiae, T. simiae (Tsavo), T. godfreyi and T. theileri, three variants of T. vivax were identified from three different wildlife species within one ecosystem, including sequences from trypanosomes from a giraffe and a waterbuck that differed from all published sequences and from each other, and did not amplify with conventional primers for T. vivax.

Conclusions/Significance

Wildlife carries a wide range of trypanosome species. The failure of the diverse T. vivax in this study to amplify with conventional primers suggests that T. vivax may have been under-diagnosed in Tanzania. Since conventional species-specific primers may not amplify all trypanosomes of interest, the use of ITS PCR primers followed by sequencing is a valuable approach to investigate diversity of trypanosome infections in wildlife; amplification of sequences outside the T. brucei clade raises concerns regarding ITS primer specificity for wildlife samples if sequence confirmation is not also undertaken.  相似文献   

13.
Trypanosomes are protozoan parasites of class Kinetoplastida. Trypanosoma vivax is one of the organisms that can cause Nagana and Trypanosoma evansi can cause Surra. In Africa, Trypanosoma vivax is mainly transmitted by Glossina spp. (tsetse fly) but it can be transmitted mechanically by other blood-feeding dipters. Trypanosoma evansi is transmitted mechanically and non-dependent to tsetse fly. In this research, T. vivax and T. evansi among camels (Camelus dromedarius) in Yazd, Iran were identified by microscopy and molecular examinations but the sensitivity of microscopy was lower than molecular examinations. Trypanosoma vivax and T. evansi were observed in 4 out of 134 blood film samples (2.98%). The prevalence of Trypanosoma spp. among 134 male camels (C. dromedarius) based on molecular examinations was 30.6% (22.76–38.44% with 95% confidence interval), 25 out of 134 (18.65%) had co-infection of T. evansi and T. vivax, and 16 out of 134 (11.94%) had an infection of T. vivax alone. We provided the first confirmation of infection with T. vivax among camels in Iran, and also in Asia, which has important implications on our knowledge of the occurrence and possible spread of this pathogen at the global level. Investigations in other species such as cattle and sheep are strongly recommended.  相似文献   

14.
Two Trypanosoma vivax stocks from East Africa have been adapted to rats and mice. Adaptation was induced by rapid passage at two- to four-day intervals in sublethally irradiated rats. After 200 such passages, the two stocks gave rise to parasitemias of 109–1010 trypanosomes/ml in peripheral blood, and the infection was fatal in 90% of the rats. By passaging the rat-adapted T. vivax into normal mice at two- to three-day intervals for over 200 passages, the two stocks also became pathogenic to mice. One of the stocks was also capable of maintenance in non-irradiated rats. The two stocks displayed a marked degree of pleomorphism in irradiated and non-irradiated rats and mice. In the early rising parasitemia, the organisms were predominantly short, with a well formed undulating membrane, a pointed posterior end, and a large terminal kinetoplast. As parasitemia approached its peak, the organisms transformed into long, slender forms with an inconspicuous undulating membrane, an elongated posterior end, and a sub-terminal kinetoplast. The short forms associated with the early, rising parasitemia were more infective for mice than the long forms encountered at peak parasitemia. Although the two rodent-adapted stocks retained their pathogenicity for goats, neither the original stocks nor their corresponding rodent-adapted stocks could be cyclically transmitted by tsetse flies. The availability of these stocks will greatly facilitate investigations on East African T. vivax which would otherwise be difficult to carry out in experimental rodents.  相似文献   

15.
African trypanosomes are digenetic parasites that undergo part of their developmental cycle in mammals and part in tsetse flies. We established a novel technique to monitor the population dynamics of Trypanosoma brucei throughout its life cycle while minimising the confounding factors of strain differences or variation in fitness. Clones derived from a single trypanosome were tagged with short synthetic DNA sequences in a non-transcribed region of the genome. Infections were initiated with mixtures of tagged parasites and a combination of polymerase chain reaction and deep sequencing were used to monitor the composition of populations throughout the life cycle. This revealed that a minimum of several hundred parasites survived transmission from a tsetse fly to a mouse, or vice versa, and contributed to the infection in the new host. In contrast, the parasites experienced a pronounced bottleneck during differentiation and migration from the midgut to the salivary glands of tsetse. In two cases a single tag accounted for ≥99% of the population in the glands, although minor tags could be also detected. Minor tags were transmitted to mice together with the dominant tag(s), persisted during a chronic infection, and survived transmission to a new insect host. An important outcome of the bottleneck within the tsetse is that rare variants can be amplified in individual flies and disseminated by them. This is compatible with the epidemic population structure of T. brucei, in which clonal expansion of a few genotypes in a region occurs against a background of frequent recombination between strains.  相似文献   

16.
African trypanosomiasis (AT) is a neglected disease of both humans and animals caused by Trypanosoma parasites, which are transmitted by obligate hematophagous tsetse flies (Glossina spp.). Knowledge on tsetse fly vertebrate hosts and the influence of tsetse endosymbionts on trypanosome presence, especially in wildlife-human-livestock interfaces, is limited. We identified tsetse species, their blood-meal sources, and correlations between endosymbionts and trypanosome presence in tsetse flies from the trypanosome-endemic Maasai Mara National Reserve (MMNR) in Kenya. Among 1167 tsetse flies (1136 Glossina pallidipes, 31 Glossina swynnertoni) collected from 10 sampling sites, 28 (2.4%) were positive by PCR for trypanosome DNA, most (17/28) being of Trypanosoma vivax species. Blood-meal analyses based on high-resolution melting analysis of vertebrate cytochrome c oxidase 1 and cytochrome b gene PCR products (n = 354) identified humans as the most common vertebrate host (37%), followed by hippopotamus (29.1%), African buffalo (26.3%), elephant (3.39%), and giraffe (0.84%). Flies positive for trypanosome DNA had fed on hippopotamus and buffalo. Tsetse flies were more likely to be positive for trypanosomes if they had the Sodalis glossinidius endosymbiont (P = 0.0002). These findings point to complex interactions of tsetse flies with trypanosomes, endosymbionts, and diverse vertebrate hosts in wildlife ecosystems such as in the MMNR, which should be considered in control programs. These interactions may contribute to the maintenance of tsetse populations and/or persistent circulation of African trypanosomes. Although the African buffalo is a key reservoir of AT, the higher proportion of hippopotamus blood-meals in flies with trypanosome DNA indicates that other wildlife species may be important in AT transmission. No trypanosomes associated with human disease were identified, but the high proportion of human blood-meals identified are indicative of human African trypanosomiasis risk. Our results add to existing data suggesting that Sodalis endosymbionts are associated with increased trypanosome presence in tsetse flies.  相似文献   

17.

Background

In Uganda, Rhodesian sleeping sickness, caused by Trypanosoma brucei rhodesiense, and animal trypanosomiasis caused by T. vivax and T. congolense, are being controlled by treating cattle with trypanocides and/or insecticides. We used a mathematical model to identify treatment coverages required to break transmission when host populations consisted of various proportions of wild and domestic mammals, and reptiles.

Methodology/Principal Findings

An Ro model for trypanosomiasis was generalized to allow tsetse to feed off multiple host species. Assuming populations of cattle and humans only, pre-intervention Ro values for T. vivax, T. congolense, and T. brucei were 388, 64 and 3, respectively. Treating cattle with trypanocides reduced R 0 for T. brucei to <1 if >65% of cattle were treated, vs 100% coverage necessary for T. vivax and T. congolense. The presence of wild mammalian hosts increased the coverage required and made control of T. vivax and T. congolense impossible. When tsetse fed only on cattle or humans, R 0 for T. brucei was <1 if 20% of cattle were treated with insecticide, compared to 55% for T. congolense. If wild mammalian hosts were also present, control of the two species was impossible if proportions of non-human bloodmeals from cattle were <40% or <70%, respectively. R 0 was <1 for T. vivax only when insecticide treatment led to reductions in the tsetse population. Under such circumstances R 0<1 for T. brucei and T. congolense if cattle make up 30% and 55%, respectively of the non-human tsetse bloodmeals, as long as all cattle are treated with insecticide.

Conclusions/Significance

In settled areas of Uganda with few wild hosts, control of Rhodesian sleeping sickness is likely to be much more effectively controlled by treating cattle with insecticide than with trypanocides.  相似文献   

18.
The cyclical transmission of a West African stock of Trypanosoma vivax by Glossina morsitans morsitans and G. m. centralis was studied. It was possible to transmit this parasite amongst rabbits, rats, mice and goats. Whereas goats and mice succumbed to the disease very rapidly, rats and rabbits showed scant and transient parasitaemia and frequently suppressed the infection. A trypanosome challenge using single infected tsetse showed that goats became infected much more readily than mice. The infected vector can transmit the infection throughout its life but not at every feed.  相似文献   

19.
BackgroundAfrican trypanosomes are parasites mainly transmitted by tsetse flies. They cause trypanosomiasis in humans (HAT) and animals (AAT). In Chad, HAT/AAT are endemic. This study investigates the diversity and distribution of trypanosomes in Mandoul, an isolated area where a tsetse control campaign is ongoing, and Maro, an area bordering the Central African Republic (CAR) where the control had not started.Methods717 human and 540 cattle blood samples were collected, and 177 tsetse flies were caught. Trypanosomal DNA was detected using PCR targeting internal transcribed spacer 1 (ITS1) and glycosomal glyceraldehyde-3 phosphate dehydrogenase (gGAPDH), followed by amplicon sequencing.ResultsTrypanosomal DNA was identified in 14 human samples, 227 cattle samples, and in tsetse. Besides T. b. gambiense, T. congolense was detected in human in Maro. In Mandoul, DNA from an unknown Trypanosoma sp.-129-H was detected in a human with a history of a cured HAT infection and persisting symptoms. In cattle and tsetse samples from Maro, T. godfreyi and T. grayi were detected besides the known animal pathogens, in addition to T. theileri (in cattle) and T. simiae (in tsetse). Furthermore, in Maro, evidence for additional unknown trypanosomes was obtained in tsetse. In contrast, in the Mandoul area, only T. theileri, T. simiae, and T. vivax DNA was identified in cattle. Genetic diversity was most prominent in T. vivax and T. theileri.ConclusionTsetse control activities in Mandoul reduced the tsetse population and thus the pathogenic parasites. Nevertheless, T. theileri, T. vivax, and T. simiae are frequent in cattle suggesting transmission by other insect vectors. In contrast, in Maro, transhumance to/from Central African Republic and no tsetse control may have led to the high diversity and frequency of trypanosomes observed including HAT/AAT pathogenic species. Active HAT infections stress the need to enforce monitoring and control campaigns. Additionally, the diverse trypanosome species in humans and cattle indicate the necessity to investigate the infectivity of the unknown trypanosomes regarding their zoonotic potential. Finally, this study should be widened to other trypanosome hosts to capture the whole diversity of circulating trypanosomes.  相似文献   

20.
Feeding behaviour of Glossina palpalis gambiensis Vanderplank infected with Trypanosoma vivax Ziemann was studied and compared with that of uninfected control tsetse. The parameters measured were: total number of probes into the ear-skin of rabbits; rate of bloodmeal engorgement; weight of freshly ingested blood; survival; and mean weight of pupae. The results showed that the rosettes of T.vivax parasites in the labrum did not interfere with the feeding behaviour of the vectors. Furthermore, mean survival of T. vivax-infected males was significantly higher (82.2 +/- 4.2 days) compared with that of uninfected ones (70.5 +/- 3.1 days). However, with the female tsetse, mean survival of those infected was lower (98.8 +/- 4.0 days) compared to the uninfected controls (102.2 +/- 5.6 days), but the difference was not significant. A few infected males and females lived a little longer than the uninfected ones. Fecundity of the female tsetse remained unaffected by the infection, and furthermore the mean weight of pupae from the infected females was not significantly different from that of pupae from the uninfected control group. Thus the physiology of pregnant female tsetse in terms of nourishment of intra-uterine larva was unaffected by T.vivax infection. Two successive probes into the skin of two different goats followed by feeding on a third goat by each of four infected tsetse resulted in successful transmission of the infection to eleven out of twelve goats. Thus probing alone into the skin of this host can result in the transmission of T.vivax infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号