首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Peptide inhibitors of insulin-regulated aminopeptidase (IRAP) accelerate spatial learning and facilitate memory retention and retrieval by binding competitively to the catalytic site of the enzyme and inhibiting its catalytic activity. IRAP belongs to the M1 family of Zn2+-dependent aminopeptidases characterized by a catalytic domain that contains two conserved motifs, the HEXXH(X)18E Zn2+-binding motif and the GXMEN exopeptidase motif. To elucidate the role of GXMEN in binding peptide substrates and competitive inhibitors, site-directed mutagenesis was performed on the motif. Non-conserved mutations of residues G428, A429 and N432 resulted in mutant enzymes with altered catalytic activity, as well as divergent changes in kinetic properties towards the synthetic substrate leucine beta-naphthylamide. The affinities of the IRAP inhibitors angiotensin IV, Nle1-angiotensin IV, and LVV-hemorphin-7 were selectively decreased. Substrate degradation studies using the in vitro substrates vasopressin and Leu-enkephalin showed that replacement of G428 by either D, E or Q selectively abolished the catalysis of Leu-enkephalin, while [A429G]IRAP and [N432A]IRAP mutants were incapable of cleaving both substrates. These mutational studies indicate that G428, A429 and N432 are important for binding of both peptide substrates and inhibitors, and confirm previous results demonstrating that peptide IRAP inhibitors competitively bind to its catalytic site.  相似文献   

2.
3.
Laeverin/aminopeptidase Q (APQ) is a cell surface protein specifically expressed on human embryo-derived extravillous trophoblasts that invades the uterus during placentation. The cDNA cloning of Laeverin/APQ revealed that the sequence encodes a protein with 990 amino acid residues, and Laeverin/APQ contains the HEXXHX(18)E gluzincin motif, which is characteristic of the M1 family of aminopeptidases, although the exopeptidase motif of the family, GAMEN, is uniquely substituted for the HAMEN sequence. In this study, we expressed a recombinant human Laeverin/APQ using a baculovirus expression system, purified to homogeneity, and characterized its enzymatic properties. It was found that Laeverin/APQ had a broad substrate specificity toward synthetic substrate, although it showed a preference for Leu-4-methylcoumaryl-7-amide. Searching natural substrates, we found that Laeverin/APQ was able to cleave the N-terminal amino acid of several peptides such as angiotensin III, kisspeptin-10, and endokinin C, which are abundantly expressed in the placenta. In contrast to the case with other M1 aminopeptidases, bestatin inhibited the aminopeptidase activity of Laeverin/APQ much more effectively than other known aminopeptidase inhibitors. These results indicate that Laeverin/APQ is a novel bestatin-sensitive leucine aminopeptidase and suggest that the enzyme plays important roles in human placentation by regulating biological activity of key peptides at the embryo-maternal interface.  相似文献   

4.
The cloning, expression in vitro, and characterization of two aminopeptidase Ns (APN5s and APN2s) isolated from the midgut of Cry1Ac-resistant (R) and susceptible (S) strains of Plutella xylostella larvae are presented in this paper. The deduced amino acid sequences of APN5s included C-terminal GPI-modification sites, the gluzincin aminopeptidase motif GATEN, and three N-glycosylated sites; those of APN2s had no GPI-modification sites, had gluzincin aminopeptidase motif GAMEN, and had four N-glycosylated sites. O-glycosylated sites were not predicted for either APN. Because APN2R and APN2S cDNAs contained the same nucleotides, only full-length cDNAs encoding APN5R and APN5S were expressed in Trichoplusia ni cells. Far-Western blotting showed that the expressed receptor APN5 bound to the Cry1Ac toxin. An enzyme-specific activity experiment also showed that APN5 genes were expressed in T. ni cells. ELISA revealed no differences in the binding of expression proteins from the resistant and susceptible strain with Cry1Ac.  相似文献   

5.
Insulin-regulated aminopeptidase (IRAP), a transmembrane aminopeptidase, is dynamically retained within the endosomal compartment of fibroblasts. The characteristics of this dynamic retention are rapid internalization from the plasma membrane and slow recycling back to the cell surface. These specialized trafficking kinetics result in <15% of IRAP on the cell surface at steady state, compared with 35% of the transferrin receptor, another transmembrane protein that traffics between endosomes and the cell surface. Here we demonstrate that a 29-amino acid region of IRAP's cytoplasmic domain (residues 56--84) is necessary and sufficient to promote trafficking characteristic of IRAP. A di-leucine sequence and a cluster of acidic amino acids within this region are essential elements of the motif that slows IRAP recycling. Rapid internalization requires any two of three distinct motifs: M(15,16), DED(64--66), and LL(76,77). The DED and LL sequences are part of the motif that regulates recycling, demonstrating that this motif is bifunctional. In this study we used horseradish peroxidase quenching of fluorescence to demonstrate that IRAP is dynamically retained within the transferrin receptor-containing general endosomal recycling compartment. Therefore, our data demonstrate that motifs similar to those that determine targeting among distinct membrane compartments can also regulate the rate of transport of proteins from endosomal compartments. We propose a model for dynamic retention in which IRAP is transported from the general endosomal recycling compartment in specialized, slowly budding recycling vesicles that are distinct from those that mediate rapid recycling back to the surface (e.g., transferrin receptor-containing transport vesicles). It is likely that the dynamic retention of IRAP is an example of a general mechanism for regulating the distribution of proteins between the surface and interior of cells.  相似文献   

6.
7.
The tricorn interacting factor F3 is an 89 kDa zinc aminopeptidase from the archaeon Thermoplasma acidophilum. Together with the tricorn interacting factors F1 and F2, F3 degrades the tricorn protease products and thus completes the proteasomal degradation pathway by generating free amino acids. Here, we present the crystal structures of F3 in three different conformations at 2.3 A resolution. The zinc aminopeptidase is composed of four domains: an N-terminal saddle-like beta-structure domain; a thermolysin-like catalytic domain; a small barrel-like beta-structure domain; and an alpha-helical C-terminal domain, the latter forming a deep cavity at the active site. Three crystal forms provide snapshots of the molecular dynamics of F3 where the C-terminal domain can adapt to form an open, an intermediate and a nearly closed cavity, respectively. With the conserved Zn(2+)-binding motifs HEXXH and NEXFA as well as the N-terminal substrate-anchoring glutamate residues, F3 together with the leukotriene A4 hydrolase, represents a novel gluzincin subfamily of aminoproteases. We discuss the functional implications of these structures with respect to the underlying catalytic mechanism, substrate recognition and processing, and possible component interactions.  相似文献   

8.
苏建亚  沈晋良 《昆虫学报》2005,48(3):444-449
通过对棉铃虫Helicoverpa armigera (Hübner)幼虫中肠氨肽酶N的克隆和测序,鉴定了1个氨肽酶N基因APN1,其cDNA序列具有3 220个核苷酸,具有3 042 bp的开放阅读框,编码产生1 014个氨基酸的蛋白质。其推定的氨基酸序列具有氨肽酶N所共有的锌结合模体HEXXHX18E和N末端20个氨基酸的疏水性信号序列,但C末端没有糖基磷酯酰肌醇(glycosylphosphatidylinositol,GPI)锚添加信号序列。该氨肽酶N的cDNA序列已提交GenBank,登录号为AY358034。  相似文献   

9.
LytM, an autolysin from Staphylococcus aureus, is a Zn(2+)-dependent glycyl-glycine endopeptidase with a characteristic HxH motif that belongs to the lysostaphin-type (MEROPS M23/37) of metallopeptidases. Here, we present the 1.3A crystal structure of LytM, the first structure of a lysostaphin-type peptidase. In the LytM structure, the Zn(2+) is tetrahedrally coordinated by the side-chains of N117, H210, D214 and H293, the second histidine of the HxH motif. Although close to the active-site, H291, the first histidine of the HxH motif, is not directly involved in Zn(2+)-coordination, and there is no water molecule in the coordination sphere of the Zn(2+), suggesting that the crystal structure shows a latent form of the enzyme. Although LytM has not previously been considered as a proenzyme, we show that a truncated version of LytM that lacks the N-terminal part with the poorly conserved Zn(2+) ligand N117 has much higher specific activity than full-length enzyme. This observation is consistent with the known removal of profragments in other lysostaphin-type proteins and with a prior observation of an active LytM degradation fragment in S.aureus supernatant. The "asparagine switch" in LytM is analogous to the "cysteine switch" in pro-matrix metalloproteases.  相似文献   

10.
The leucine aminopeptidase of Aeromonas proteolytica (EC 3.4.11.10) is a monomeric metalloenzyme having the capacity to bind two Zn2+ atoms in the active site. Structural information of this relatively small aminopeptidase that could illuminate the catalytic mechanism of the metal ions is lacking; hence, we have obtained sequences from the purified enzyme, cloned the corresponding gene, and expressed the recombinant protein in Escherichia coli. The deduced primary amino acid sequence of this secreted protease suggests a potential signal peptide at the NH2 terminus. Expression of the recombinant and native proteins in E. coli and in extracts of culture media of A. proteolytica indicates that the aminopeptidase is secreted as an active and thermosensitive 43-kDa protein that is rapidly transformed to thermostable forms of 30 and 32 kDa. Comparison of the deduced amino acid sequence of the A. proteolytica leucine aminopeptidase with other Zn(2+)-binding metalloenzymes failed to show homologies to the consensus binding sequence His-Glu-X-X-His for the metal ion.  相似文献   

11.
The placental leucine aminopeptidase (P-LAP), adipocyte-derived leucine aminopeptidase (A-LAP) and leukocyte-derived aminopeptidase (L-RAP) belong to one distinct group of the M1 family of amimopeptidases, which we term the "Oxytocinase subfamily". They share HEXXH(X)18E Zn-binding and GAMEN motifs essential for the enzymatic activities. Intracellular localization is the characteristic feature of the subfamily members. While P-LAP is translocated from intracellular vesicles to plasma membrane in a stimulus-dependent manner, both A-LAP and L-RAP are retained in the endoplasmic reticulum. They contain sequences necessary for the specific localization in the cell. It is getting evident that the subfamily members play important roles in the maintenance of homeostasis including maintenance of normal pregnancy, memory retention, blood pressure regulation and antigen presentation. In this review, current situation of this newly identified subfamily is summarized.  相似文献   

12.
Three cDNAs encoding aminopeptidases HpAPN1, HpAPN2 and HpAPN3, were isolated from a 5th instar larval midgut cDNA library from Helicoverpa punctigera, the Australian native budworm. The sequences recovered contain open reading frames encoding proteins of 1011, 952, and 1013 amino acids, respectively. All three proteins share the consensus zinc binding/gluzincin motif HEXXHX(18)E and the sequence GAMEN common to gluzincin aminopeptidases. Furthermore, signal peptide sequences and C-terminal hydrophobic regions preceded by three small amino acids qualifying for cleavage and GPI anchor attachment are present in all three protein sequences. Northern blotting results indicate differences in the levels of expression and developmental regulation of all three aminopeptidases. HpAPN1, HpAPN2, and HpAPN3 are more closely related to APNs from other lepidopterans than they are to each other. This report of three different aminopeptidases N in Helicoverpa punctigera adds support to a recent suggestion that at least one gene duplication has taken place in ancestral lepidopterans. The full sequences of the aminopeptidases are available at GENBANK with the following accession numbers: HpAPN1: AF217248, HpAPN2: AF217249, HpAPN3: AF217250.  相似文献   

13.
Protein phosphatase-1 (PP1) catalytic subunit isoforms interact with diverse proteins, typically containing a canonical (R/K)(V/I)XF motif. Despite sharing approximately 90% amino acid sequence identity, PP1beta and PP1gamma1 have distinct subcellular localizations that may be determined by selective interactions with PP1-binding proteins. Immunoprecipitation studies from brain and muscle extracts demonstrated that PP1gamma1 selectively interacts with spinophilin and neurabin, F-actin-targeting proteins, whereas PP1beta selectively interacted with G(M)/R(GL), the striated-muscle glycogen-targeting subunit. Glutathione S-transferase (GST) fusion proteins containing residues 146-493 of neurabin (GST-Nb-(146-493)) or residues 1-240 of G(M)/R(GL) (GST-G(M)-(1-240)) recapitulated these isoform selectivities in binding and phosphatase activity inhibition assays. Site-directed mutagenesis indicated that this isoform selectivity was not due to sequence differences between the canonical PP1-binding motifs (neurabin, (457)KIKF(460); G(M)/R(GL), (65)RVSF(68)). A chimeric GST fusion protein containing residues 1-64 of G(M)/R(GL) fused to residues 457-493 of neurabin (GST-G(M)/Nb) selectively bound to and inhibited PP1gamma1, whereas a GST-Nb/G(M) chimera containing Nb-(146-460) fused to G(M)-(69-240) selectively interacted with and weakly inhibited PP1beta, implicating domain(s) C-terminal to the (R/K)(V/I)XF motif as determinants of PP1 isoform selectivity. Deletion of Pro(464) and Ile(465) in neurabin (deltaPI) to equally space a conserved cluster of amino acids from the (R/K)(V/I)XF motif as in G(M)/R(GL) severely compromised the ability of neurabin to bind and inhibit both isoforms but did not affect PP1gamma1 selectivity. Further analysis of a series of C-terminal truncated GST-Nb-(146-493) proteins identified residues 473-479 of neurabin as containing a crucial PP1gamma1-selectivity determinant. In combination, these data identify a novel PP1gamma1-selective interaction domain in neurabin that may allow for selective regulation and/or subcellular targeting of PP1 isoforms.  相似文献   

14.
15.
Escherichia coli aminopeptidase N (ePepN) belongs to the gluzincin family of M1 class metalloproteases that share a common primary structure with consensus zinc binding motif (HEXXH-(X18)-E) and an exopeptidase motif (GXMEN) in the active site. There is one amino acid, E121 in Domain I that blocks the extended active site grove of the thermolysin like catalytic domain (Domain II) limiting the substrate to S1 pocket. E121 forms a part of the S1 pocket, while making critical contact with the amino-terminus of the substrate. In addition, the carboxylate of E121 forms a salt bridge with K319 in Domain II. Both these residues are absolutely conserved in ePepN homologs. Analogous Glu-Asn pair in tricon interacting factor F3 (F3) and Gln-Asn pair in human leukotriene A(4) hydrolase (LTA(4) H) are also conserved in respective homologs. Mutation of either of these residues individually or together substantially reduced or entirely eliminated enzymatic activity. In addition, thermal denaturation studies suggest that the mutation at K319 destabilizes the protein as much as by 3.7 °C, while E121 mutants were insensitive. Crystal structure of E121Q mutant reveals that the enzyme is inactive due to the reduced S1 subsite volume. Together, data presented here suggests that ePepN, F3, and LTA(4) H homologs adopted a divergent evolution that includes E121-K319 or its analogous pairs, and these cannot be interchanged.  相似文献   

16.
Publication of the rhodopsin X-ray structure has facilitated the development of homology models of other G protein-coupled receptors. However, possible shifts of transmembrane (TM) alpha helices, expected variations in helical distortions, and differences in loop size necessitate experimental verification of these comparative models. To refine a rhodopsin-based homology model of the mu-opioid receptor (MOR), we experimentally determined structural-distance constraints from intrinsic and engineered metal-binding sites in the rat MOR. Investigating the relatively high intrinsic affinity of MOR for Zn(2+) (IC(50) approximately 30microM), we observed that mutation of His(319) (TM7) abolished Zn(2+) inhibition of ligand binding, while mutation of Asp(216) (extracellular loop 2) decreased the effect of Zn(2+), suggesting these residues participate in the intrinsic Zn(2+)-binding center of MOR. To verify the relative orientation of TM5 and TM6 and to examine whether a rhodopsin-like alpha aneurism is present in TM5, we engineered Zn(2+)-binding centers by mutating residues of TM5 and TM6 to Cys or His, making use of the native His(297) in TM6 as an additional Zn(2+)-coordination site. Inhibition of opioid ligand binding by Zn(2+) suggests that residues Ile(234) and Phe(237) in TM5 face the binding-site crevice and form a metal-binding center with His(297) and Val(300) in TM6. This observation is inconsistent with a rhodopsin-like structure, which would locate Ile(234) on the lipid-exposed side of TM5, too distant from other residues making up the Zn(2+)-binding site. Subsequent distance geometry refinement of the MOR model indicates that the rhodopsin-like alpha aneurism is likely absent in TM2 but present in TM5.  相似文献   

17.
The Glut4 glucose transporter undergoes complex insulin-regulated subcellular trafficking in adipocytes. Much effort has been expended in an attempt to identify targeting motifs within Glut4 that direct its subcellular trafficking, but an amino acid motif responsible for the targeting of the transporter to insulin-responsive intracellular compartments in the basal state or that is directly responsible for its insulin-stimulated redistribution to the plasma membrane has not yet been delineated. In this study we define amino acid residues within the C-terminal cytoplasmic tail of Glut4 that are essential for its insulin-stimulated translocation to the plasma membrane. The residues were identified based on sequence similarity (LXXLXPDEXD) between cytoplasmic domains of Glut4 and the insulin-responsive aminopeptidase (IRAP). Alteration of this putative targeting motif (IRM, insulin-responsive motif) resulted in the targeting of the bulk of the mutant Glut4 molecules to dispersed membrane vesicles that lacked detectable levels of wild-type Glut4 in either the basal or insulin-stimulated states and completely abolished the insulin-stimulated translocation of the mutant Glut4 to the plasma membrane in 3T3L1 adipocytes. The bulk of the dispersed membrane vesicles containing the IRM mutant did not contain detectable levels of any subcellular marker tested. A fraction of the total IRM mutant was also detected in a wild-type Glut4/Syntaxin 6-containing perinuclear compartment. Interestingly, mutation of the IRM sequence did not appreciably alter the subcellular trafficking of IRAP. We conclude that residues within the IRM are critical for the targeting of Glut4, but not of IRAP, to insulin-responsive intracellular membrane compartments in 3T3-L1 adipocytes.  相似文献   

18.
The EF-hand protein with a helix-loop-helix Ca(2+) binding motif constitutes one of the largest protein families and is involved in numerous biological processes. To facilitate the understanding of the role of Ca(2+) in biological systems using genomic information, we report, herein, our improvement on the pattern search method for the identification of EF-hand and EF-like Ca(2+)-binding proteins. The canonical EF-hand patterns are modified to cater to different flanking structural elements. In addition, on the basis of the conserved sequence of both the N- and C-terminal EF-hands within S100 and S100-like proteins, a new signature profile has been established to allow for the identification of pseudo EF-hand and S100 proteins from genomic information. The new patterns have a positive predictive value of 99% and a sensitivity of 96% for pseudo EF-hands. Furthermore, using the developed patterns, we have identified zero pseudo EF-hand motif and 467 canonical EF-hand Ca(2+) binding motifs with diverse cellular functions in the bacteria genome. The prediction results imply that pseudo EF-hand motifs are phylogenetically younger than canonical EF-hand motifs. Our prediction of Ca(2+) binding motifs provides not only an insight into the role of Ca(2+) and Ca(2+)-binding proteins in bacterial systems, but also a way to explore and define the role of Ca(2+) in other biological systems (calciomics).  相似文献   

19.
We have determined the solution structure of calmodulin (CaM) from yeast (Saccharomyces cerevisiae) (yCaM) in the apo state by using NMR spectroscopy. yCaM is 60% identical in its amino acid sequence with other CaMs, and exhibits its unique biological features. yCaM consists of two similar globular domains (N- and C-domain) containing three Ca(2+)-binding motifs, EF-hands, in accordance with the observed 3 mol of Ca(2+) binding. In the solution structure of yCaM, the conformation of the N-domain conforms well to the one of the expressed N-terminal half-domains of yCaM [Ishida, H., et al. (2000) Biochemistry 39, 13660-13668]. The conformation of the C-domain basically consists of a pair of helix-loop-helix motifs, though a segment corresponding to the forth Ca(2+)-binding site of CaM deviates in its primary structure from a typical EF-hand motif and loses the ability to bind Ca(2+). Thus, the resulting conformation of each domain is essentially identical to the corresponding domain of CaM in the apo state. A flexible linker connects the two domains as observed for CaM. Any evidence for the previously reported interdomain interaction in yCaM was not observed in the solution structure of the apo state. Hence, the interdomain interaction possibly occurs in the course of Ca(2+) binding and generates a cooperative Ca(2+) binding among all three sites. Preliminary studies on a mutant protein of yCaM, E104Q, revealed that the Ca(2+)-bound N-domain interacts with the apo C-domain and induces a large conformational change in the C-domain.  相似文献   

20.
M Ikura  L E Kay  M Krinks  A Bax 《Biochemistry》1991,30(22):5498-5504
Heteronuclear 3D and 4D NMR experiments have been used to obtain 1H, 13C, and 15N backbone chemical shift assignments in Ca(2+)-loaded calmodulin complexed with a 26-residue synthetic peptide (M13) corresponding to the calmodulin-binding domain (residues 577-602) of rabbit skeletal muscle myosin light-chain kinase. Comparison of the chemical shift values with those observed in peptide-free calmodulin [Ikura, M., Kay, L. E., & Bax, A. (1990) Biochemistry 29, 4659-4667] shows that binding of M13 peptide induces substantial chemical shift changes that are not localized in one particular region of the protein. The largest changes are found in the first helix of the Ca(2+)-binding site I (E11-E14), the N-terminal portion of the central helix (M72-D78), and the second helix of the Ca(2+)-binding site IV (F141-M145). Analysis of backbone NOE connectivities indicates a change from alpha-helical to an extended conformation for residues 75-77 upon complexation with M13. This conformational change is supported by upfield changes in the C alpha and carbonyl chemical shifts of these residues relative to M13-free calmodulin and by hydrogen-exchange experiments that indicate that the amide protons of residues 75-82 are in fast exchange (kexch greater than 10 s-1 at pH 7, 35 degrees C) with the solvent. No changes in secondary structure are observed for the first helix of site I or the C-terminal helix of site IV. Upon complexation with M13, a significant decrease in the amide exchange rate is observed for residues T110, L112, G113, and E114 at the end of the second helix of site III.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号