首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Respiration and mitochondria in Mucor genevensis, a facultatively anaerobic dimorphic mold, have been studied in aerobically and anaerobically grown cells and in anaerobically grown cells adapting to aerobic conditions. Respiration in hyphae continues at a high level during aerobic growth but drops rapidly on exhaustion of glucose. In anaerobically grown yeastlike cells, containing no recognizable aerobic cytochromes, a small cyanide-insensitive respiration occurs. Mitochondria with well defined cristae are visible in negative contrast after KMnO(4) fixation of stringently anaerobic cells containing low amounts of fatty acid of which 10% or less are unsaturated. On aeration of anaerobically grown cells, respiratory capacity and cytochromes develop rapidly, even in the presence of 10% glucose, indicating that glucose does not repress development of respiration. However, mycelium formation by adapting yeastlike cells is repressed by high glucose concentration. In adapting cells, apparent changes in mitochondrial ultrastructure appear to be more related to changes in fixation properties of cells than to changes in the structure of mitochondria.  相似文献   

2.
Based on requirements for acetate or lipoic acid for aerobic (but not anaerobic) growth, Lactococcus lactis subsp. lactis mutants with impaired pyruvate catabolism were isolated following classical mutagenesis. Strains with defects in one or two of the enzymes, pyruvate formate-lyase (PFL), lactate dehydrogenase (LDH) and the pyruvate dehydrogenase complex (PDHC) were obtained. Growth and product formation of these strains were characterized. A PFL-defective strain (requiring acetate for anaerobic growth) displayed a two-fold increase in specific lactate production compared with the corresponding wild-type strain when grown anaerobically. LDH defective strains directed 91-96% of the pyruvate towards alpha-acetolactate, acetoin and diacetyl production when grown aerobically in the presence of acetate and absence of lipoic acid (a similar characteristic was observed in an LDH and PDHC defective strain in the presence of both acetate and lipoic acid) and more than 65% towards formate, acetate and ethanol production under anaerobic conditions. Another strain with defective PFL and LDH was strictly aerobic. However, a variant with strongly enhanced diacetyl reductase activities (NADH/NAD+ dependent diacetyl reductase, acetoin reductase and butanediol dehydrogenase activities) was selected from this strain under anaerobic conditions by supplementing the medium with acetoin. This strain is strictly aerobic, unless supplied with acetoin.  相似文献   

3.
Acetate:succinate CoA-transferases (ASCT) are acetate-producing enzymes in hydrogenosomes, anaerobically functioning mitochondria and in the aerobically functioning mitochondria of trypanosomatids. Although acetate is produced in the hydrogenosomes of a number of anaerobic microbial eukaryotes such as Trichomonas vaginalis, no acetate producing enzyme has ever been identified in these organelles. Acetate production is the last unidentified enzymatic reaction of hydrogenosomal carbohydrate metabolism. We identified a gene encoding an enzyme for acetate production in the genome of the hydrogenosome-containing protozoan parasite T. vaginalis. This gene shows high similarity to Saccharomyces cerevisiae acetyl-CoA hydrolase and Clostridium kluyveri succinyl-CoA:CoA-transferase. Here we demonstrate that this protein is expressed and is present in the hydrogenosomes where it functions as the T. vaginalis acetate:succinate CoA-transferase (TvASCT). Heterologous expression of TvASCT in CHO cells resulted in the expression of an active ASCT. Furthermore, homologous overexpression of the TvASCT gene in T. vaginalis resulted in an equivalent increase in ASCT activity. It was shown that the CoA transferase activity is succinate-dependent. These results demonstrate that this acetyl-CoA hydrolase/transferase homolog functions as the hydrogenosomal ASCT of T. vaginalis. This is the first hydrogenosomal acetate-producing enzyme to be identified. Interestingly, TvASCT does not share any similarity with the mitochondrial ASCT from Trypanosoma brucei, the only other eukaryotic succinate-dependent acetyl-CoA-transferase identified so far. The trichomonad enzyme clearly belongs to a distinct class of acetate:succinate CoA-transferases. Apparently, two completely different enzymes for succinate-dependent acetate production have evolved independently in ATP-generating organelles.  相似文献   

4.
Mitochondria are multifunctional eukaryotic organelles that provide cells with energy via oxidative phosphorylation. They participate in the formation of Fe-S clusters, oxidation of fatty acids, and synthesis of certain amino acids and play an important role in apoptosis. Mitochondria have their own genome and are able to transcribe and translate it. However, most macromolecules functioning in mitochondria, such as proteins and some small RNAs, are imported from the cytoplasm. Protein import into mitochondria is a universal process, and its mechanism is very similar in all eukaryotic cells. Today this mechanism is known in detail. At the same time, the RNA import was discovered only in several eukaryotic groups. Nevertheless, it is proposed that this process is typical for most species. A set of imported RNA molecules varies in different organisms. Although the knowledge about the mechanisms of RNA import is less extensive than that of protein import, it becomes clear that these mechanisms greatly differ between different species. The review summarizes information about the import of such macromolecules into mitochondria.  相似文献   

5.
In order to investigate the possible relations between the anionic permeability and the functions (or the structure ) of the inner mitochondrial membrane, three types of organelles isolated from S. cerevisiae were tested: mitochondria (aerobic culture), promitochondria (anaerobic culture) and CAP-mitochondria (aerobic culture with chloramphenicol added). By using the technique of swelling in isoosmotic potassium salts, after a derermination of the isotonic conditions, it was possible to discriminate between an electrogenic (valinomycin induced) or an electroneutral (both valinomycin and uncoupler induced) translocation. 1) Mitochondria: The permeability properties of mitochondria are energy dependent: a) Respiring mitochondria are permeable to Cl-; Mg2+, however, inhibits this translocation. Phosphate transport seems to be exclusively electrogenic and mersalyl sensitive, but swelling inhibition by that thiol reagent is restored by Mg2+. b) Non respiring mitochondria are impermeable to Cl-, but ATP addition restores the permeability. Thiocyanate permeates as the anionic form and acetate as the undissociated form. The phosphate transport, sensitive to mersalyl, seems to be partially electrogenic. 2) Promitochondria: Deficient of respiratory enzymes but containing an oligomycin sensitive ATPase, they are impermeable to Cl- only when Mg2+ is added. In these conditions, an electrogenic phosphate transport, sensitive to mersalyl, is observed. 3) CAP-mitochondria: Although CAP-mitochondria are cytochrome deficient and contain an oligomycin insensitive ATPase, they are also impermeable to Cl- in presence of Mg2+. As in fully differenciated mitochondria, an electroneutral phosphate entry is observed; Mg2+ is required for mersalyl sensitivity.  相似文献   

6.
Acetyl:succinate CoA-transferase (ASCT) is an acetate-producing enzyme shared by hydrogenosomes, mitochondria of trypanosomatids, and anaerobically functioning mitochondria. The gene encoding ASCT in the protozoan parasite Trypanosoma brucei was identified as a new member of the CoA transferase family. Its assignment to ASCT activity was confirmed by 1) a quantitative correlation of protein expression and activity upon RNA interference-mediated repression, 2) the absence of activity in homozygous Deltaasct/Deltaasct knock out cells, 3) mitochondrial colocalization of protein and activity, 4) increased activity and acetate excretion upon transgenic overexpression, and 5) depletion of ASCT activity from lysates upon immunoprecipitation. Genetic ablation of ASCT produced a severe growth phenotype, increased glucose consumption, and excretion of beta-hydroxybutyrate and pyruvate, indicating accumulation of acetyl-CoA. Analysis of the excreted end products of (13)C-enriched and (14)C-labeled glucose metabolism showed that acetate excretion was only slightly reduced. Adaptation to ASCT deficiency, however, was an infrequent event at the population level, indicating the importance of this enzyme. These studies show that ASCT is indeed involved in acetate production, but is not essential, as apparently it is not the only enzyme that produces acetate in T. brucei.  相似文献   

7.
Aerobic mitochondria serve as the power sources of eukaryotes by producing ATP through oxidative phosphorylation (OXPHOS). The enzymes involved in OXPHOS are multisubunit complexes encoded by both nuclear and mitochondrial DNA. Thus, regulation of respiration is necessarily a highly coordinated process that must organize production, assembly and function of mitochondria to meet an organism's energetic needs. Here I review the role of OXPHOS in metabolic adaptation and diversification of higher animals. On a physiological timescale, endocrine-initiated signaling pathways allow organisms to modulate respiratory enzyme concentration and function under changing environmental conditions. On an evolutionary timescale, mitochondrial enzymes are targets of natural selection, balancing cytonuclear coevolutionary constraints against physiological innovation. By synthesizing our knowledge of biochemistry, physiology and evolution of respiratory regulation, I propose that we can now explore questions at the interface of these fields, from molecular translation of environmental cues to selection on mitochondrial haplotype variation.  相似文献   

8.
9.
The main processes involved in enhanced biological phosphorus removal (EBPR) under anaerobic and subsequently aerobic conditions are widely described in the literature. Polyphosphate accumulating organisms (PAO) are the organisms responsible for this process. However, the mechanisms of PAO are not fully established yet under conditions that differ from the classical anaerobic/aerobic conditions. In this work, we made a comparison between the behavior of PAO under classical EBPR conditions and its behavior when consuming substrate under only aerobic conditions. In addition, oxygen uptake rate (OUR) was measured in the set of experiments under aerobic conditions to improve the characterization of the process. A kinetic and stoichiometric model based on Activated Sludge Model No.2 (ASM2) and including glycogen economy (AnOx model), calibrated for classical anaerobic/aerobic conditions, was not able to describe the experimental data since it underestimated the acetate consumption, the PHB storage, and the OUR. Two different hypotheses for describing the experimental measurements were proposed and modeled. Both hypotheses considered that PAO, under aerobic conditions, uptake acetate coupled to PHB storage, glycogen degradation, and phosphorus release as in anaerobic conditions. Moreover, the first hypothesis (PAO-hypothesis) considered that PAO were able to store acetate as PHB linked to oxygen consumption and the second one (OHO hypothesis) considered that this storage was due to ordinary heterotrophic organisms (OHO). Both hypotheses were evaluated by simulation extending the AnOx model with additional equations. The main differences observed were the predictions for PHB degradation during the famine phase and the OUR profile during both feast and famine phases. The OHO hypothesis described the experimental profiles more accurately than the PAO hypothesis.  相似文献   

10.
N.J. Jacobs  J.M. Jacobs 《BBA》1976,449(1):1-9
Nitrate can serve as anaerobic electron acceptor for the oxidation of protoporphyrinogen to protoporphyrin in cell-free extracts of Escherichia coli grown anaerobically in the presence of nitrate. Two kinds of experiments indicated this: anaerobic protoporphyrin formation from protoporphyrinogen, followed spectrophotometrically, was markedly stimulated by addition of nitrate; and anaerobic protoheme formation from protoporphyrinogen, determined by extraction procedures, was markedly stimulated by addition of nitrate. In contrast, anaerobic protoheme formation from protoporphyrin was not dependent upon addition of nitrate. This was the first demonstration of the ability of nitrate to serve as electron acceptor for this late step of heme synthesis. Previous studies with mammalian and yeast mitochondria had indicated an obligatory requirement for molecular oxygen at this step.In confirmation of our previous preliminary report, fumarate was also shown to be an electron acceptor for anaerobic protoporphyrinogen oxidation in extracts of E. coli grown anaerobically on fumarate. For the first time, anaerobic protoheme formation from protoporphyrinogen, but not from protoporphyrin, was shown to be dependent upon the addition of fumarate.The importance of these findings is 2-fold. First, they establish that enzymatic protoporphyrinogen oxidation can occur in the absence of molecular oxygen, in contrast to previous observations using mammalian and yeast mitochondria. Secondly, these findings help explain the ability of some facultative and anaerobic bacteria to form very large amounts of heme compounds, such as cytochrome pigments, when grown anaerobically in the presence of nitrate or fumarate. In fact, denitrifying bacteria are known to form more cytochromes when grown anaerobically than during aerobic growth.An unexpected finding was that extracts of another bacterium, Staphylococcus epidermidis, exhibited very little ability to oxidize protoporphyrinogen to protoporphyrin as compared to E. coli extracts. This finding suggests some fundamental differences in these two organisms in this key step in heme synthesis. It is known that these two facultative organisms also differ in that E. coli synthesizes cytochrome during both aerobic and anaerobic growth, while Staphylococcus only synthesizes cytochromes when grown aerobically.  相似文献   

11.
Mitochondrial catalase and oxidative injury   总被引:2,自引:0,他引:2  
Mitochondria dysfunction induced by reactive oxygen species (ROS) is related to many human diseases and aging. In physiological conditions, the mitochondrial respiratory chain is the major source of ROS. ROS could be reduced by intracellular antioxidant enzymes including superoxide dismutase, glutathione peroxidase and catalase as well as some antioxidant molecules like glutathione and vitamin E. However, in pathological conditions, these antioxidants are often unable to deal with the large amount of ROS produced. This inefficiency of antioxidants is even more serious in mitochondria, because mitochondria in most cells lack catalase. Therefore, the excessive production of hydrogen peroxide in mitochondria will damage lipid, proteins and mDNA, which can then cause cells to die of necrosis or apoptosis. In order to study the important role of mitochondrial catalase in protecting cells from oxidative injury, a HepG2 cell line overexpressing catalase in mitochondria was developed by stable transfection of a plasmid containing catalase cDNA linked with a mitochondria leader sequence which would encode a signal peptide to lead catalase into the mitochondria. Mitochondria catalase was shown to protect cells from oxidative injury induced by hydrogen peroxide and antimycin A. However, it increased the sensitivity of cells to tumor necrosis factor-alpha-induced apoptosis by changing the redox-oxidative status in the mitochondria. Therefore, the antioxidative effectiveness of catalase when expressed in the mitochondrial compartment is dependent upon the oxidant and the locus of ROS production.  相似文献   

12.
Anaerobic and aerobic chemostat cultures of Saccharomyces cerevisiae were performed at a constant dilution rate of 0.10 h(-1). The glucose concentration was kept constant, whereas the nitrogen concentration was gradually decreasing; i.e., the conditions were changed from glucose and energy limitation to nitrogen limitation and energy excess. This experimental setup enabled the glycolytic rate to be separated from the growth rate. There was an extensive uncoupling between anabolic energy requirements and catabolic energy production when the energy source was present in excess both aerobically and anaerobically. To increase the catabolic activity even further, experiments were carried out in the presence of 5 mM acetic acid or benzoic acid. However, there was almost no effect with acetate addition, whereas both respiratory (aerobically) and fermentative activities were elevated in the presence of benzoic acid. There was a strong negative correlation between glycolytic flux and intracellular ATP content; i.e., the higher the ATP content, the lower the rate of glycolysis. No correlation could be found with the other nucleotides tested (ADP, GTP, and UTP) or with the ATP/ADP ratio. Furthermore, a higher rate of glycolysis was not accompanied by an increasing level of glycolytic enzymes. On the contrary, the glycolytic enzymes decreased with increasing flux. The most pronounced reduction was obtained for HXK2 and ENO1. There was also a correlation between the extent of carbohydrate accumulation and glycolytic flux. A high accumulation was obtained at low glycolytic rates under glucose limitation, whereas nitrogen limitation during conditions of excess carbon and energy resulted in more or less complete depletion of intracellular storage carbohydrates irrespective of anaerobic or aerobic conditions. However, there was one difference in that glycogen dominated anaerobically whereas under aerobic conditions, trehalose was the major carbohydrate accumulated. Possible mechanisms which may explain the strong correlation between glycolytic flux, storage carbohydrate accumulation, and ATP concentrations are discussed.  相似文献   

13.
Mitochondria as we don't know them   总被引:12,自引:0,他引:12  
Biochemistry textbooks depict mitochondria as oxygen-dependent organelles, but many mitochondria can produce ATP without using any oxygen. In fact, several other types of mitochondria exist and they occur in highly diverse groups of eukaryotes - protists as well as metazoans - and possess an often overlooked diversity of pathways to deal with the electrons resulting from carbohydrate oxidation. These anaerobically functioning mitochondria produce ATP with the help of proton-pumping electron transport, but they do not need oxygen to do so. Recent advances in understanding of mitochondrial biochemistry provide many surprises and furthermore, give insights into the evolutionary history of ATP-producing organelles.  相似文献   

14.
Activity of mitochondria isolated from whole seedlings of Echinochloa crus-galli (L.) Beauv. var oryzicola germinated under aerobic and anaerobic conditions for 5 to 7 days was investigated. Mitochondria from both treatments exhibited good respiratory control and ADP/O ratios. Although O2 uptake was low in anaerobic mitochondria, activity rapidly increased when the seedlings were transferred to air. Mitochondria from both aerobically and anaerobically grown seedlings of E. crus-galli var oryzicola maintained up to 66% of their initial respiration rate in the presence of both cyanide and salicylhydroxamic acid, and the inhibitory effects of cyanide and azide were additive. In addition, antimycin A was not an effective inhibitor of respiration. Reduced-minus-oxidized absorption spectra revealed that cytochromes a, a3, and b were reduced to a greater extent and cytochrome c was reduced to a lesser extent in anaerobically germinated seedlings relative to that in aerobically germinated seedlings. An absorption maximum in the cytochrome d region of the spectrum was reduced to the same extent under both germination conditions and an absorption maximum at 577 nm was present only in anaerobically germinated seedlings. Anaerobically germinated seedlings contained 70% of the cytochrome c oxidase activity found in air grown seedlings. Upon exposure to air, the developmental pattern of this enzyme in anaerobically germinated seedlings was similar to air controls. Succinate dehydrogenase activity in anaerobic seedlings was only 45% of the activity found in aerobically germinated seeds, but within 1 hour of exposure to air, the activity had increased to control levels. The results suggest that mitochondria isolated from E. crus-galli var oryzicola differ from other plants studied and that the potential for mitochondrial function during anaerobiosis exists.  相似文献   

15.
Selective and non-selective autophagic degradation of mitochondria in yeast   总被引:1,自引:0,他引:1  
Mitochondria are essential to oxidative energy production in aerobic eukaryotic cells, where they are also required for multiple biosynthetic pathways to take place. Mitochondrial homeostasis also plays a crucial role in ageing and programmed cell death, and recent data have suggested that mitochondria degradation is a strictly regulated process. Autophagy is an evolutionary conserved mechanism that provides cells with a mechanism for the continuous turnover of damaged and obsolete macromolecules and organelles. In this work, we investigated mitochondria degradation by autophagy. Electron microscopy observations of yeast cells submitted to nitrogen starvation after growth on different carbon sources provided evidence that microautophagy, rather than macroautophagy, preferentially occurred in cells grown under nonfermentable conditions. The observation of mitochondria degradation showed that both a selective process and a nonselective process of mitochondria autophagy occurred successively. In a yeast strain inactivated for the gene UTH1, the selective process was not observed.  相似文献   

16.
A laboratory scale sequencing batch reactor (SBR) operating for enhanced biological phosphorus removal (EBPR) and fed with a mixture of volatile fatty acids (VFAs) showed stable and efficient EBPR capacity over a four-year-period. Phosphorus (P), poly-beta-hydroxyalkanoate (PHA) and glycogen cycling consistent with classical anaerobic/aerobic EBPR were demonstrated with the order of anaerobic VFA uptake being propionate, acetate then butyrate. The SBR was operated without pH control and 63.67 +/- 13.86 mg P l-1 was released anaerobically. The P% of the sludge fluctuated between 6% and 10% over the operating period (average of 8.04 +/- 1.31%). Four main morphological types of floc-forming bacteria were observed in the sludge during one year of in-tensive microscopic observation. Two of them were mainly responsible for anaerobic/aerobic P and PHA transformations. Fluorescence in situ hybridization (FISH) and post-FISH chemical staining for intracellular polyphosphate and PHA were used to determine that 'Candidatus Accumulibacter phosphatis' was the most abundant polyphosphate accumulating organism (PAO), forming large clusters of coccobacilli (1.0-1.5 micro m) and comprising 53% of the sludge bacteria. Also by these methods, large coccobacillus-shaped gammaproteobacteria (2.5-3.5 micro m) from a recently described novel cluster were glycogen-accumulating organisms (GAOs) comprising 13% of the bacteria. Tetrad-forming organisms (TFOs) consistent with the 'G bacterium' morphotype were alphaproteobacteria, but not Amaricoccus spp., and comprised 25% of all bacteria. According to chemical staining, TFOs were occasionally able to store PHA anaerobically and utilize it aerobically.  相似文献   

17.
Bacterial and archaeal complete genome sequences have been obtained from a wide range of evolutionary lines, which allows some general conclusions about the phylogenetic distribution and evolution of bioenergetic pathways to be drawn. In particular, I searched in the complete genomes for key enzymes involved in aerobic and anaerobic respiratory pathways and in photosynthesis, and mapped them into an rRNA tree of sequenced species. The phylogenetic distribution of these enzymes is very irregular, and clearly shows the diverse strategies of energy conservation used by prokaryotes. In addition, a thorough phylogenetic analysis of other bioenergetic protein families of wide distribution reveals a complex evolutionary history for the respective genes. A parsimonious explanation for these complex phylogenetic patterns and for the irregular distribution of metabolic pathways is that the last common ancestor of Bacteria and Archaea contained several members of every gene family as a consequence of previous gene or genome duplications, while different patterns of gene loss occurred during the evolution of every gene family. This would imply that the last universal ancestor was a bioenergetically sophisticated organism. Finally, important steps that occurred during the evolution of energetic machineries, such as the early evolution of aerobic respiration and the acquisition of eukaryotic mitochondria from a proteobacterium ancestor, are supported by the analysis of the complete genome sequences.  相似文献   

18.
Protein oxidation in plant mitochondria as a stress indicator.   总被引:8,自引:0,他引:8  
Plant mitochondria produce reactive oxygen species (ROS) as an unavoidable side product of aerobic metabolism, but they have mechanisms for regulating this production such as the alternative oxidase. Once produced, ROS can be removed by several different enzyme systems. Finally, should the first two strategies fail, the ROS produced can act as a signal to the rest of the cell and/or cause damage to DNA, lipids and proteins. Proteins are modified in a variety of ways by ROS, some direct, others indirect e.g. by conjugation with breakdown products of fatty acid peroxidation. Reversible oxidation of cysteine and methionine side chains is an important mechanism for regulating enzyme activity. Mitochondria from both mammalian and plant tissues contain a number of oxidised proteins, but the relative abundance of these post-translationally modified forms is as yet unknown, as are the consequences of the modification for the properties and turnover time of the proteins. Specific proteins appear to be particularly vulnerable to oxidative carbonylation in the matrix of plant mitochondria; these include several enzymes of the Krebs cycle, glycine decarboxylase, superoxide dismutase and heat shock proteins. Plant mitochondria contain a number of different proteases, but their role in removing oxidatively damaged proteins is, as yet, unclear.  相似文献   

19.
The effects of adding molybdate and selenite to a glucose-minimal salts medium on the formation of enzymes involved in the anaerobic metabolism of formate and nitrate in Escherichia coli have been studied. When cells were grown anaerobically in the presence of nitrate, molybdate stimulated the formation of nitrate reductase and a b-type cytochrome, resulting in cells that had the capacity for active nitrate reduction in the absence of formate dehydrogenase. Under the same conditions, selenite in addition to molybdate was required for forming the enzyme system which permits formate to serve as an effective electron donor for nitrate reduction. When cells were grown anaerobically on a glucose-minimal salts medium without nitrate, active hydrogen production from formate as well as formate dehydrogenase activity depended on the presence of both selenite and molybdate. The effects of these metals on the formation of formate dehydrogenase was blocked by chloramphenicol, suggesting that protein synthesis is required for the increases observed. It is proposed that the same formate dehydrogenase is involved in nitrate reduction, hydrogen production, and in aerobic formate oxidation.  相似文献   

20.
《Autophagy》2013,9(1):4-9
Cellular degradative processes including proteasomal and vacuolar / lysosomal (autophagic) degradation, as well as the activity of proteases (both cytosolic and mitochondrial), provide for a continuous turnover of damaged and obsolete macromolecules and organelles. Mitochondria are organelles essential for respiration and oxidative energy production in aerobic cells; they are also required for multiple biosynthetic pathways. As such, mitochondrial homeostasis is very important for cell survival. We review the evidence regarding the possible mechanisms for mitochondrial degradation. Increasingly, the evidence suggests autophagy plays a central role in the degradation of mitochondria. How mitochondria might be specifically selected for autophagy (mitophagy) remains an open question, although some evidence suggests that, under certain circumstances, in mammalian cells the Mitochondrial Permeability Transition (MPT) plays a role in initiation of the process. As more is learned about the functioning of autophagy as a degradation process, the greater the appreciation we are developing concerning its role in the control of mitochondrial degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号