首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Culture-independent DNA fingerprints are commonly used to assess the diversity of a microbial community. However, relating species composition to community profiles produced by community fingerprint methods is not straightforward. Terminal restriction fragment length polymorphism (T-RFLP) is a community fingerprint method in which phylogenetic assignments may be inferred from the terminal restriction fragment (T-RF) sizes through the use of web-based resources that predict T-RF sizes for known bacteria. The process quickly becomes computationally intensive due to the need to analyze profiles produced by multiple restriction digests and the complexity of profiles generated by natural microbial communities. A web-based tool is described here that rapidly generates phylogenetic assignments from submitted community T-RFLP profiles based on a database of fragments produced by known 16S rRNA gene sequences. Users have the option of submitting a customized database generated from unpublished sequences or from a gene other than the 16S rRNA gene. This phylogenetic assignment tool allows users to employ T-RFLP to simultaneously analyze microbial community diversity and species composition. An analysis of the variability of bacterial species composition throughout the water column in a humic lake was carried out to demonstrate the functionality of the phylogenetic assignment tool. This method was validated by comparing the results generated by this program with results from a 16S rRNA gene clone library.  相似文献   

2.
Various molecular-biological approaches using the 16S rRNA gene sequence have been used for the analysis of human colonic microbiota. Terminal- restriction fragment length polymorphism (T-RFLP) analysis is suitable for a rapid comparison of complex bacterial communities. Terminal-restriction fragment (T-RF) length can be calculated from a known sequence, thus one can predict bacterial species on the basis of their T-RF length by this analysis. The aim of this study was to build a phylogenetic assignment database for T-RFLP analysis of human colonic microbiota (PAD-HCM), and to demonstrate the effectiveness of PAD-HCM compared with the results of 16S rRNA gene clone library analysis. PAD-HCM was completed to include 342 sequence data obtained using four restriction enzymes. Approximately 80% of the total clones detected by 16S rRNA gene clone library analysis were the same bacterial species or phylotypes as those assigned from T-RF using PAD-HCM. Moreover, large T-RFs consisted of common species or phylotypes detected by both analytical methods. All pseudo-T-RFs identified by mung bean nuclease digestion could not be assigned to a bacterial species or phylotype, and this finding shows that pseudo-T-RFs can also be predicted using PAD-HCM. We conclude that PAD-HCM built in this study enables the prediction of T-RFs at the species level including difficult-to-culture bacteria, and that it is very useful for the T-RFLP analysis of human colonic microbiota.  相似文献   

3.
Terminal restriction fragment length polymorphism (T-RFLP) analysis is commonly used for profiling microbial communities in various environments. However, it may suffer from biases during the analytic process. This study addressed the potential of T-RFLP profiles (1) to reflect real community structures and diversities, as well as (2) to reliably detect changing components of microbial community structures. For this purpose, defined artificial communities of 30 SSU rRNA gene clones, derived from nine bacterial phyla, were used. PCR amplification efficiency was one primary bias with a maximum variability factor of 3.5 among clones. PCR downstream analyses such as enzymatic restriction and capillary electrophoresis introduced a maximum bias factor of 4 to terminal restriction fragment (T-RF) signal intensities, resulting in a total maximum bias factor of 14 in the final T-RFLP profiles. In addition, the quotient between amplification efficiency and T-RF size allowed predicting T-RF abundances in the profiles with high accuracy. Although these biases impaired detection of real community structures, the relative changes in structures and diversities were reliably reflected in the T-RFLP profiles. These data support the suitability of T-RFLP profiling for monitoring effects on microbial communities.  相似文献   

4.
To establish molecular monitoring for the phytoplankton community in aquatic ecosystems, we analysed the terminal restriction fragment length polymorphism (T-RFLP) of small subunit ribosomal RNA gene (18S rDNA) sequences of nuclear genomes from the algal strains of culture collections and environmental samples of two freshwater reservoirs (Sangcheon reservoir and Seoho reservoir, Korea). Terminal restriction fragment (T-RF) length database was also constructed from twelve strains of algal culture collections to annotate and identify the phytoplankton species from T-RFLP profiles. Algal species in reservoirs were identified and monitored through the colony sequencing and T-RF length patterns of 18S rRNA. In this study, 41 unique clones were identified from two reservoirs including Chlorophyta, Cryptophyta, and Alveolata. In the case of Cryptomonas sp., we found significant linear relationships between T-RF peak areas and biovolumes by cell counting. Our results suggest that T-RFLP analysis can be a fast and quantitative monitoring tool for species changes in phytoplankton communities.  相似文献   

5.
Terminal restriction fragment length polymorphism (T-RFLP) analysis of amplified ribosomal RNA genes is used for profiling microbial communities and sometimes for species richness and relative abundance estimation in environmental samples. However, the T-RFLP fingerprint may be subject to biases during the procedure, influencing the detection of real community structures in the environment. To investigate possible sources of T-RFLP bias, 18S rRNA gene clones derived from two arbuscular mycorrhizal fungal sequences were combined in simple pairwise mixes to assess the effects of polymerase chain reaction cycle number, plant genomic DNA purification method and varying template ratio on the template-to-product ratio as measured by relative T-RF peak area. Varying cycle numbers indicated that amplification was still in the exponential phase at the cycle numbers lower than 18, so these small cycle numbers were used for the comparison of template-to-product quantities. Relative abundance estimated from T-RF peak ratios varied with different purification procedures, but the best results, closest to input ratios, were obtained by using phenol–chloroform purification. The presence of an excess of unpurified non-target plant genomic DNA generated a bias towards lower or overestimation of relative abundance. We conclude that a low number of amplification cycles and stringent DNA purification are necessary for accurate mixed sample analysis by T-RFLP.  相似文献   

6.
Terminal restriction fragment length polymorphism (T-RFLP) is used to monitor the structural diversity of complex microbial communities in terms of richness, relative abundance, and distribution of the major subpopulations and individual members. However, discrepancies of several nucleotides between expected and experimentally observed lengths of terminal restriction fragments (T-RFs), together with the difficulty of obtaining DNA sequence information from T-RFLP profiling, often prevent accurate phylogenetic characterization of the microbial community of interest. In this study, T-RFLP analysis of DNA from an artificial assembly of five bacterial strains was carried out with a combination of two size markers with different fluorescent tags. Precise sizing of T-RFs in the 50- to 500-nucleotide range was achieved by using the same dye for both samples and size markers. Phylogenetic assignment of the component microbial strains was facilitated by coupling T-RFLP to denaturing high-performance liquid chromatography (D-HPLC) of 16S RNA gene fragments followed by direct sequencing. The proposed coupling of D-HPLC and T-RFLP provides unambiguous characterization of microbial communities containing less than 15 microbial strains.Over the last 2 decades, the development of molecular biology tools has led to the emergence of a new discipline, molecular microbial ecology. The overall structural diversity of microbial communities can be examined easily using PCR-based strategies (6), usually targeting the 16S rRNA gene as a universal genetic marker of prokaryotes. Genotyping approaches avoid current limitations of cultivation methods, which only poorly reflect the phylogenetic diversity of microbial communities (12). The principles, technical aspects, and limitations of commonly employed methods were recently reviewed (10). Among these methods, terminal restriction fragment length polymorphism (T-RFLP) has proved to be invaluable for rapid characterization of the composition and dynamics of species-rich samples (13). Compared to other approaches, T-RFLP is semiquantitative and combines high levels of sensitivity, resolution, and reproducibility (see Table S1 in the supplemental material). Taxonomic diversity of microbial communities is evaluated by using the strain-dependent variability of restriction sites within a conserved PCR-amplified DNA fragment. The terminal restriction fragments (T-RFs) of digested PCR products appear as chromatographic peaks after size-dependent electrophoretic separation due to a fluorescent tag attached to one of the primers used for PCR. The relative abundance of peaks is evaluated, and fragment lengths are estimated using a fluorescent internal size standard comigrating with the sample (5). The estimated lengths corresponding to the T-RFLP peaks obtained are compared to databases of T-RF sizes generated by in silico digestion of known 16S rRNA gene sequences with commonly used restriction enzymes for phylogenetic assignment (13). However, estimation of T-RF lengths from experimental chromatograms is biased by the fact that differences in the electrophoretic properties of the two different fluorescent dyes used to distinguish sample fragments from the size marker significantly affect fragment migration (7, 11). Discrepancies greater than 6 nucleotides (nt), depending on the length of the fragment, have been reported between expected and experimentally estimated fragment lengths (7). This causes errors in phylogenetic assignments and may in turn lead to erroneous inferences regarding the functional aspects of the microbial communities under investigation. Another drawback of T-RFLP is the difficulty of retrieving sequence information directly from experimental T-RFs, since additional construction of representative 16S rRNA gene libraries is required to obtain such information.Here we propose an experimental strategy to circumvent current limitations of T-RFLP and facilitate characterization of microbial communities. First, we propose an optimized protocol for T-RFLP that yields reliable T-RF sizes. Second, we describe use of denaturing high-performance liquid chromatography (D-HPLC) as an alternative to cloning in order to gain direct access to DNA sequence information. D-HPLC, an emerging technique for microbial community profiling (1, 4), enables collection of DNA fragments separated on the basis of differences in sequence, sequence length, and G+C content at a partially denaturing temperature. The unambiguous phylogenetic characterization of a model microbial assembly of five reference strains is described as proof of principle of the usefulness of the proposed strategy.  相似文献   

7.
Fecal microbial diversity in a strictly vegetarian woman was determined by the 16S rDNA library method, terminal restriction fragment length polymorphism (T-RFLP) analysis and a culture-based method. The 16S rDNA library was generated from extracted fecal DNA, using bacteria-specific primers. Randomly selected clones were partially sequenced. T-RFLP analysis was performed using amplified 16S rDNA. The lengths of T-RF were analyzed after digestion by HhaI and MspI. The cultivated bacterial isolates were used for partial sequencing of 16S rDNA. Among 183 clones obtained, approximately 29% of the clones belonged to 13 known species. About 71% of the remaining clones were novel "phylotypes" (at least 98% similarity of clone sequence). A total of 55 species or phylotypes were identified among the 16S rDNA library, while the cultivated isolates included 22 species or phylotypes. In addition, many new phylotypes were detected from the 16S rDNA library. The 16S rDNA library and isolates commonly included the Bacteroides group, Bifidobacterium group, and Clostridium rRNA clusters IV, XIVa, XVI and XVIII. T-RFLP analysis revealed the major composition of the vegetarian gut microbiota were Clostridium rRNA subcluster XIVa and Clostridium rRNA cluster XVIII. The dominant feature of this strictly vegetarian gut microbiota was the detection of many Clostridium rRNA subcluster XIVa and C. ramosum (Clostridium rRNA cluster XVIII).  相似文献   

8.
The microbial community structure of an anoxic profundal lake sediment, i.e., subtropical Lake Kinneret, was analysed with respect to its composition by culture-independent molecular methods including terminal restriction fragment length polymorphism (T-RFLP) analysis, comparative sequence analysis, and quantitative real-time PCR. In particular we were interested in the structure, species composition, and relative abundance of the overall microbial community in the methanogenic sediment layer (0-10 cm depth). Pairwise comparison of archaeal and bacterial 16S rRNA gene T-RFLP profiles obtained from three independent samplings indicated stability of the microbial community. The numbers of Archaea and Bacteria, quantified by real-time PCR, amounted to about 10(8) and 10(10) 16S rRNA gene copies cm(-3) sediment, respectively, suggesting that Archaea may account for only a minor fraction (approximately 1%) of the total prokaryotic community. Hydrogenotrophic Methanomicrobiales and acetoclastic Methanosaeta spp. dominated T-RFLP profiles of the archaeal community. T-RFLP profiles of the bacterial community were dominated by Deltaproteobacteria, sulphate reducers and syntrophs in particular. The second most abundant group was assigned to the Bacteroidetes-Chlorobi-group. Only one bacterial group, which was affiliated with halorespiring bacteria of subphylum II of the Chloroflexi, showed variation in abundance within the sediment samples investigated. Our study gives a comprehensive insight into the structure of the bacterial and archaeal community of a profundal lake sediment, indicating that sulphate reducers, syntrophs, bacteroidetes, halorespirers and methanogens are of particular importance in Lake Kinneret sediment.  相似文献   

9.
Terminal restriction fragment length polymorphism (T-RFLP) analysis of PCR-amplified genes is a widely used fingerprinting technique in molecular microbial ecology. In this study, we show that besides expected terminal restriction fragments (T-RFs), additional secondary T-RFs occur in T-RFLP analysis of amplicons from cloned 16S rRNA genes at high frequency. A total of 50% of 109 bacterial and 78% of 68 archaeal clones from the guts of cetoniid beetle larvae, using MspI and AluI as restriction enzymes, respectively, were affected by the presence of these additional T-RFs. These peaks were called "pseudo-T-RFs" since they can be detected as terminal fluorescently labeled fragments in T-RFLP analysis but do not represent the primary terminal restriction site as indicated by sequence data analysis. Pseudo-T-RFs were also identified in T-RFLP profiles of pure culture and environmental DNA extracts. Digestion of amplicons with the single-strand-specific mung bean nuclease prior to T-RFLP analysis completely eliminated pseudo-T-RFs. This clearly indicates that single-stranded amplicons are the reason for the formation of pseudo-T-RFs, most probably because single-stranded restriction sites cannot be cleaved by restriction enzymes. The strong dependence of pseudo-T-RF formation on the number of cycles used in PCR indicates that (partly) single-stranded amplicons can be formed during amplification of 16S rRNA genes. In a model, we explain how transiently formed secondary structures of single-stranded amplicons may render single-stranded amplicons accessible to restriction enzymes. The occurrence of pseudo-T-RFs has consequences for the interpretation of T-RFLP profiles from environmental samples, since pseudo-T-RFs may lead to an overestimation of microbial diversity. Therefore, it is advisable to establish 16S rRNA gene sequence clone libraries in parallel with T-RFLP analysis from the same sample and to check clones for their in vitro digestion T-RF pattern to facilitate the detection of pseudo-T-RFs.  相似文献   

10.
Cultivation-independent analyses of soil microbial community structures are frequently used to describe microbiological soil characteristics. Semi-automated terminal restriction fragment length polymorphism (T-RFLP) analyses yield high-resolution genetic profiles of highly diverse soil microbial communities and hold great potential for use in routine soil quality monitoring. A serious limitation of T-RFLP analyses has been the inability to reliably affiliate observed terminal restriction fragments (T-RF) to phylogenetic groups. In the study presented here, we were able to overcome this limitation of T-RFLP. With a combination of adapter ligation, fragment size selection, and re-amplification with adapter site specific PCR, we were able to isolate a T-RF-fraction of a narrow size-range containing a T-RF that was significantly more abundant in heavy metal amended soils. Cloning the size-selected T-RF fraction allowed for the efficient isolation of clones containing this specific T-RF. Sequence determination and phylogenetic inference in RDP-II affiliated the sequence to unclassified cyanobacteria. Specific primer design and PCR amplification from bulk soil DNA allowed for independent confirmation of the results from bacterial T-RFLP and T-RF cloning. Our results show that specific T-RFs can be efficiently isolated and identified, and that the adapter ligation approach holds great potential for genetic profiling and for identification of community components of interest.  相似文献   

11.
Terminal restriction fragment length polymorphism (T-RFLP) analysis of PCR-amplified genes is a widely used fingerprinting technique in molecular microbial ecology. In this study, we show that besides expected terminal restriction fragments (T-RFs), additional secondary T-RFs occur in T-RFLP analysis of amplicons from cloned 16S rRNA genes at high frequency. A total of 50% of 109 bacterial and 78% of 68 archaeal clones from the guts of cetoniid beetle larvae, using MspI and AluI as restriction enzymes, respectively, were affected by the presence of these additional T-RFs. These peaks were called “pseudo-T-RFs” since they can be detected as terminal fluorescently labeled fragments in T-RFLP analysis but do not represent the primary terminal restriction site as indicated by sequence data analysis. Pseudo-T-RFs were also identified in T-RFLP profiles of pure culture and environmental DNA extracts. Digestion of amplicons with the single-strand-specific mung bean nuclease prior to T-RFLP analysis completely eliminated pseudo-T-RFs. This clearly indicates that single-stranded amplicons are the reason for the formation of pseudo-T-RFs, most probably because single-stranded restriction sites cannot be cleaved by restriction enzymes. The strong dependence of pseudo-T-RF formation on the number of cycles used in PCR indicates that (partly) single-stranded amplicons can be formed during amplification of 16S rRNA genes. In a model, we explain how transiently formed secondary structures of single-stranded amplicons may render single-stranded amplicons accessible to restriction enzymes. The occurrence of pseudo-T-RFs has consequences for the interpretation of T-RFLP profiles from environmental samples, since pseudo-T-RFs may lead to an overestimation of microbial diversity. Therefore, it is advisable to establish 16S rRNA gene sequence clone libraries in parallel with T-RFLP analysis from the same sample and to check clones for their in vitro digestion T-RF pattern to facilitate the detection of pseudo-T-RFs.  相似文献   

12.
The bacterial community composition in soil and rhizosphere taken from arable field sites, differing in soil parent material and soil texture, was analyzed using terminal restriction fragment length polymorphism (T-RFLP) of 16S rRNA genes. Nine sandy to silty soils from North-East Germany could clearly be distinguished from each other, with a relatively low heterogeneity in the community structure within the field replicates. There was a relationship between the soil parent material, i.e. different glacial and aeolian sediments, and the clustering of the profiles from different sites. A site-specific grouping of T-RFLP profiles was also found for the rhizosphere samples of the same field sites that were planted with potatoes. The branching of the rhizosphere profiles corresponded partly with the soil parent material, whereas the effect of the plant genotype was negligible. Selected terminal restriction fragments differing in their relative abundance within the nine soils were analyzed based on the cloning of the 16S rRNA genes of one soil sample. A high phylogenetic diversity observed to include Acidobacteria, Betaproteobacteria, Bacteroidetes, Verrucomicrobia, and Gemmatimonadetes. The assignment of three out of the seven selected terminal restriction fragments to members of Acidobacteria suggested that this group seems to participate frequently in the shifting of community structures that result from soil property changes.  相似文献   

13.
Fingerprinting techniques provide access to understanding the ecology of uncultured microbial consortia. However, the application of current techniques such as terminal restriction fragment length polymorphism (T-RFLP) and denaturing gradient gel electrophoresis (DGGE) has been hindered due to their limitations in characterizing complex microbial communities. This is due to that different populations possibly share the same terminal restriction fragments (T-RFs) and DNA fragments may co-migrate on DGGE gels. To overcome these limitations, a new approach was developed to separate terminal restriction fragments (T-RFs) of 16S rRNA genes on a two-dimensional gel (T-RFs-2D). T-RFs-2D involves restriction digestion of terminal fluorescence-labelled PCR amplified 16S rRNA gene products and their high-resolution separation via a two-dimensional (2D) gel electrophoresis based on the T-RF fragment size (1(st) D) and its sequence composition on the denaturing gradient gel (2(nd) D). The sequence information of interested T-RFs on 2D gels can be obtained through serial poly(A) tailing reaction, PCR amplification and subsequent DNA sequencing. By employing the T-RFs-2D method, bacteria with MspI digested T-RF size of 436 (±1) bp and 514 (±1) bp were identified to be a Lysobacter sp. and a Dehalococcoides sp. in a polychlorinated biphenyl (PCB) dechlorinating culture. With the high resolution of 2D separation, T-RFs-2D separated 63 DNA fragments in a complex river-sediment microbial community, while traditional DGGE detected only 41 DNA fragments in the same sample. In all, T-RFs-2D has its advantage in obtaining sequence information of interested T-RFs and also in characterization of complex microbial communities.  相似文献   

14.
The effect of freeze-thaw (FT) cycles on Arctic tundra soil bacterial community was studied in laboratory microcosms. FT-induced changes to the bacterial community were followed over a 60-day period by terminal restriction fragment length polymorphism (T-RFLP) profiles of amplified 16S rRNA genes and reverse transcribed 16S rRNA. The main phylotypes of the active, RNA-derived bacterial community were identified using clone analysis. Non-metric multidimensional scaling ordination of the T-RFLP profiles indicated some shifts in the bacterial communities after three to five FT cycles at −2, −5, and −10°C as analyzed both from the DNA and rRNA. The dominating T-RFLP peaks remained the same, however, and only slight variation was generally detected in the relative abundance of the main T-RF sizes of either DNA or rRNA. T-RFLP analysis coupled to clone analysis of reverse transcribed 16S rRNA indicated that the initial soil was dominated by members of Bacteroidetes, Acidobacteria, Alpha-, Beta-, and Gammaproteobacteria. The most notable change in the rRNA-derived bacterial community was a decrease in the relative abundance of a Betaproteobacteria-related phylotype after the FT cycles. This phylotype decreased, however, also in the control soil incubated at constant +5°C suggesting that the decrease was not directly related to FT sensitivity. The results indicate that FT caused only minor changes in the bacterial community structure.  相似文献   

15.
16.
Molecular analysis of grassland rhizosphere soil has demonstrated complex and diverse bacterial communities, with resultant difficulties in detecting links between plant and bacterial communities. These studies have, however, analyzed "bulk" rhizosphere soil, rather than rhizoplane communities, which interact most closely with plants through utilization of root exudates. The aim of this study was to test the hypothesis that plant species was a major driver for bacterial rhizoplane community composition on individual plant roots. DNA extracted from individual roots was used to determine plant identity, by analysis of the plastid tRNA leucine (trnL) UAA gene intron, and plant-related bacterial communities. Bacterial communities were characterized by analysis of PCR-amplified 16S rRNA genes using two fingerprinting methods: terminal restriction fragment length polymorphisms (T-RFLP) and denaturing gradient gel electrophoresis (DGGE). Links between plant and bacterial rhizoplane communities could not be detected by visual examination of T-RFLP patterns or DGGE banding profiles. Statistical analysis of fingerprint patterns did not reveal a relationship between bacterial community composition and plant species but did demonstrate an influence of plant community composition. The data also indicated that topography and other, uncharacterized, environmental factors are important in driving bacterial community composition in grassland soils. T-RFLP had greater potential resolving power than DGGE, but findings from the two methods were not significantly different.  相似文献   

17.
Natural fluctuations in soil microbial communities are poorly documented because of the inherent difficulty to perform a simultaneous analysis of the relative abundances of multiple populations over a long time period. Yet, it is important to understand the magnitudes of community composition variability as a function of natural influences (e.g., temperature, plant growth, or rainfall) because this forms the reference or baseline against which external disturbances (e.g., anthropogenic emissions) can be judged. Second, definition of baseline fluctuations in complex microbial communities may help to understand at which point the systems become unbalanced and cannot return to their original composition. In this paper, we examined the seasonal fluctuations in the bacterial community of an agricultural soil used for regular plant crop production by using terminal restriction fragment length polymorphism profiling (T-RFLP) of the amplified 16S ribosomal ribonucleic acid (rRNA) gene diversity. Cluster and statistical analysis of T-RFLP data showed that soil bacterial communities fluctuated very little during the seasons (similarity indices between 0.835 and 0.997) with insignificant variations in 16S rRNA gene richness and diversity indices. Despite overall insignificant fluctuations, between 8 and 30% of all terminal restriction fragments changed their relative intensity in a significant manner among consecutive time samples. To determine the magnitude of community variations induced by external factors, soil samples were subjected to either inoculation with a pure bacterial culture, addition of the herbicide mecoprop, or addition of nutrients. All treatments resulted in statistically measurable changes of T-RFLP profiles of the communities. Addition of nutrients or bacteria plus mecoprop resulted in bacteria composition, which did not return to the original profile within 14 days. We propose that at less than 70% similarity in T-RFLP, the bacterial communities risk to drift apart to inherently different states.  相似文献   

18.
Terminal restriction fragment length polymorphism (T-RFLP) analysis is a popular high-throughput fingerprinting technique used to monitor changes in the structure and composition of microbial communities. This approach is widely used because it offers a compromise between the information gained and labor intensity. In this review, we discuss the progress made in T-RFLP analysis of 16S rRNA genes and functional genes over the last 10 years and evaluate the performance of this technique when used in conjunction with different statistical methods. Web-based tools designed to perform virtual polymerase chain reaction and restriction enzyme digests greatly facilitate the choice of primers and restriction enzymes for T-RFLP analysis. Significant improvements have also been made in the statistical analysis of T-RFLP profiles such as the introduction of objective procedures to distinguish between signal and noise, the alignment of T-RFLP peaks between profiles, and the use of multivariate statistical methods to detect changes in the structure and composition of microbial communities due to spatial and temporal variation or treatment effects. The progress made in T-RFLP analysis of 16S rRNA and genes allows researchers to make methodological and statistical choices appropriate for the hypotheses of their studies.  相似文献   

19.
Rapid analysis of microbial communities has proven to be a difficult task. This is due, in part, to both the tremendous diversity of the microbial world and the high complexity of many microbial communities. Several techniques for community analysis have emerged over the past decade, and most take advantage of the molecular phylogeny derived from 16S rRNA comparative sequence analysis. We describe a web-based research tool located at the Ribosomal Database Project web site (http://www.cme.msu.edu/RDP/html/analyses. html) that facilitates microbial community analysis using terminal restriction fragment length polymorphism of 16S ribosomal DNA. The analysis function (designated TAP T-RFLP) permits the user to perform in silico restriction digestions of the entire 16S sequence database and derive terminal restriction fragment sizes, measured in base pairs, from the 5' terminus of the user-specified primer to the 3' terminus of the restriction endonuclease target site. The output can be sorted and viewed either phylogenetically or by size. It is anticipated that the site will guide experimental design as well as provide insight into interpreting results of community analysis with terminal restriction fragment length polymorphisms.  相似文献   

20.
To establish quantitative methods for ecological risk assessment, we assessed the impacts of transgenic watermelon rootstock (Citrullus lanatus (Twinser) cv. Gongdae) that was resistant to cucumber green mottle mosaic virus. The diversity of soil bacteria and fungi was monitored from May to July of 2005. Terminal restriction fragment length polymorphism (T-RFLP) was used with 16S ribosomal RNA (rRNA) coding genes for bacterial communities and with internal transcribed spacer (ITS) regions of rRNA coding genes for fungal communities. Multivariate analysis of variance (MANOVA) on the principal component analysis (PCA) scores of T-RF profiles detected no significant difference between microbial communities with transgenic or non-transgenic watermelon. Likewise, the results of our multi-response permutation procedure (MRPP) tests on non-metric multidimensional scaling (NMS) showed no significant difference between plant types. However, both MANOVA on PCA and MRPP on NMS revealed significant changes in the microbial community during the growing season. We used loading values of PCA to rank the abundances of bacterial species and found increases of some species in June and July.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号