首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A modified specific, sensitive and reproducible chiral gas chromatographic (GC) method for the resolution and quantification of ethosuximide enantiomers in urine and plasma was developed. The samples were extracted by liquid-liquid extraction, using diethylether and the enantiomers were separated and quantified on a chiral gas chromatographic column (25QC2 / CYDEX- beta 0.25). The method involved the use of GC/MS instrumentation for the acquisition of data in the electron impact selective-ion monitoring mode, collecting ions characteristic of both ethosuximide and alpha, alpha - dimethyl - beta - methylsuccinimide, the internal standard and of mass-to-charge ratio (m/z) exactly equal to 55 and 70 units. The limit of quantitation of the method was 2.5 microg/ml for both urine and plasma with both enantiomers. The method proved to be linear, precise and reproducible in the 5-300 microg/ml concentration range for urine samples and in the 10-250 microg/ml concentration range for plasma samples. Future research work envisaged the application of this method in pharmacokinetic and pharmacodynamic studies.  相似文献   

2.
A high-performance liquid chromatographic method using liquid-liquid extraction was developed for the determination of 1-(3-fluoro-4-hydroxy-5-mercaptomethyl-tetrahydrofuran-2-yl)-5-methyl-1H-pyrimidine-2,4-dione (l-FMAUS; I) in rat plasma and urine. A 100 microl aliquot of distilled water containing l-cysteine (100 mg/ml) was added to a 100 microl aliquot of biological sample. l-Cysteine was employed to protect binding between the 5'-thiol of I and protein in the biological sample. After vortex-mixing for 30s and adding a 50 microl aliquot of the mobile phase containing the internal standard (10 microg/ml of 3-aminophenyl sulfone), 1 ml of ethyl acetate was used for extraction. After vortex-mixing, centrifugation, and evaporating the ethyl acetate, the residue was reconstituted with a 100 microl aliquot of the mobile phase. A 50 microl aliquot was injected onto a C(18) reversed-phase column. The mobile phases, 50 mM KH(2)PO(4) (pH = 2.5):acetonitrile (85:15, v/v) for rat plasma and 50 mM KH(2)PO(4) (pH 2.5):acetonitrile:methanol (85:10:5, v/v/v) for urine samples, were run at a flow-rate of 1.2 ml/min. The column effluent was monitored by an ultraviolet detector set at 265 nm. The retention times for I and the internal standard were approximately 9.7 and 12.5 min, respectively, in plasma samples and the corresponding values in urine samples were 16.8 and 14.9 min. The quantitation limits of I in rat plasma and urine were 0.1 and 0.5 microg/ml, respectively.  相似文献   

3.
A reversed-phase high-performance liquid chromatographic method using a mobile phase of acetonitrile-methanol-trifluoroacetic acid-water (16.1:7.2:0.1:76.6, v/v/v/v) at a flow rate of 1.0 ml min(-1) on a LiChrospher RP-18 column with UV (254 nm) detection has been developed for the separation of sulfadoxine and its metabolite N-acetyl sulfadoxine in plasma. No interferences due to endogenous compounds or common antimalarial drugs were noticed. The limit of detection for sulfadoxine and N-acetyl sulfadoxine was 0.01 microg ml(-1) with a signal-to-noise ratio of 5:1 while the limit of quantification was 2.5 microg ml(-1). Intra-day mean relative standard deviations (RSD's) for sulfadoxine and N-acetyl sulfadoxine were 2.6 and 2.8%, respectively, while mean inter-day RSD's for sulfadoxine and N-acetyl sulfadoxine were 2.4 and 2.8%, respectively. Extraction recoveries averaged 90.6% for sulfadoxine and 86.9% for N-acetyl sulfadoxine. The method was applied for the assay of sulfadoxine and its metabolite N-acetyl sulfadoxine in plasma from Plasmodium falciparum malaria patients. Mean plasma sulfadoxine concentrations on day 2 (51 h) from samples collected from sensitive and resistant P. falciparum patients treated with three tablets of Fansidar were 62.8 and 60.5 microg ml(-1), respectively. Mean ratio of N-acetyl sulfadoxine to sulfadoxine was 9.1% for responders and 13.9% for non-responders which revealed that higher amounts of the metabolite N-acetyl sulfadoxine were present in non-responders. The method described should find an application in the therapeutic monitoring of malaria patients.  相似文献   

4.
A rapid, selective and highly sensitive reversed-phase high-performance liquid chromatography (HPLC) method was developed for the determination of levosulpiride, 5-(aminosulfonyl)-N-[(1-ethyl-2-pyrrolidinyl)methyl]-2-methoxy benzamide, in human serum and urine. The method involved the extraction with a dichloromethane followed by back-extraction into 0.025 M sulfuric acid. HPLC analysis was carried out using reversed-phase isocratic elution with a Luna C(18)(2) 5 microm column, a mobile phase of acetonitrile-0.01 M potassium hydrogen phosphate (30:70, v/v, adjusted to pH 8.5 with triethylamine), and a fluorescence detector with excitation at 300 nm and emission at 365 nm. The chromatograms showed good resolution and sensitivity and no interference of human serum and urine. The calibration curves were linear over the concentration range 0.25-200 ng/ml for serum and 0.2-20 microg/ml for urine with correlation coefficients greater than 0.997. Intra- and inter-day assay precision and accuracy fulfilled the international requirements. The mean absolute recovery for human serum was 89.8+/-3.7%. The lower limits of quantitation in human serum and urine were 0.25 ng/ml and 0.2 microg/ml, respectively, which were sensitive enough for pharmacokinetic studies. Stability studies showed that levosulpiride in human serum and urine was stable during storage, or during the assay procedure. This method was successfully applied to the study of pharmacokinetics of levosulpiride in human volunteers following a single oral administration of levosulpiride (25 mg) tablet.  相似文献   

5.
A liquid chromatographic-tandem mass spectrometric method (LC-MS/MS) for the determination of ulifloxacin, the active metabolite of prulifloxacin, in human plasma is described. After sample preparation by protein precipitation with methanol, ulifloxacin and ofloxacin (internal standard) were chromatographically separated on a C(18) column using a mobile phase consisting of methanol, water and formic acid (70:30:0.2, v/v/v) at a flow rate of 0.5 ml/min and then were detected using MS/MS by monitoring their precursor-to-product ion transitions, m/z 350-->m/z 248 for ulifloxacin and m/z 362-->m/z 261 for ofloxacin, in selected reaction monitoring (SRM) mode. Positive electrospray ionization was used for the ionization process. The linear range was 0.025-5.0 microg/ml for ulifloxacin with a lower limit of quantitation of 0.025 microg/ml. Within- and between-run precision was less than 6.6 and 7.8%, respectively, and accuracy was within 2.0%. The recovery ranged from 92.1 to 98.2% at the concentrations of 0.025, 0.50 and 5.0 microg/ml. Compared with the reported LC method, the present LC-MS/MS method can directly determine the ulifloxacin in human plasma without any need of derivatization. The present method has been successfully used for the pharmacokinetic studies of a prulifloxacin formulation product after oral administration to healthy volunteers.  相似文献   

6.
A quantitative method for the analysis of morphine in human urine in the concentration range between 0.25 and 2 microg/ml is described and validated. Morphine was determined after enzymatic hydrolysis of the urine. After liquid-liquid extraction with dichloromethane-methanol (9:1) at pH 9.5, morphine was derivatized with N-methyl-N-trimethylsilyltrifluoroacetamide (MSTFA) and analyzed with GC-MS (full scan). The limit of quantification of the method was 0.25 microg/ml. Two Papaveris fructus containing herbal teas were administered to five male volunteers and urine samples were taken quantitatively during the first 12 h after the administration. The morphine concentration in the tea was 10.4 and 31.5 microg/ml, respectively. Morphine was detected in the urine of all volunteers by 1 h after drinking the tea. Maximum morphine concentrations, 4.3 and 7.4 microg/ml, respectively, were obtained 4-6 h after administration. Doping positive urine samples were delivered for 1-9 h.  相似文献   

7.
A simple high-performance liquid chromatographic (HPLC) method was developed for the simultaneous determination of iohexol, iothalamate, p-aminohippuric acid (PAH) and n-acetyl-p-aminohippuric acid (n-acetyl-PAH) in human plasma and urine. A C(18) column at a flow rate of 1 ml/min with an aqueous mobile phase of trifluoroacetic acid (0.1% TFA in deionized water (pH 2.2), v/v) and methanol gradient was used for component separation. The plasma and urine assay demonstrated linearity from 10 to 50 microg/ml for iohexol and iothalamate, 5 to 40 microg/ml for PAH and 2.5 to 40 microg/ml for n-acetyl-PAH. The HPLC plasma and urine results obtained for PAH were used to calculate the subject kidney effective renal plasma flow (ERPF) and the iohexol results were used to calculate the subject kidney glomerular filtration rate (GFR). The HPLC results for PAH were then compared to an alternative colorimetric method for analyzing PAH to determine if subject metabolism (acetylation) of PAH affected the ERPF results obtained using the colorimetric method, the subsequent ERPF/GFR ratio and clinical impression of subject patient kidney function. The method was utilized in several different clinical studies evaluating the effect of kidney function from medications (phase IV evaluations) marketed for patients with cardiovascular disease.  相似文献   

8.
We have developed a sensitive and reproducible high performance liquid chromatography (HPLC)-UV method for the quantification of the p38 MAPkinase inhibitor SB202190 in serum, kidney homogenates and urine samples. Liquid-liquid extraction of SB202190 from the samples was performed using diethylether after adding a derivative of SB202190 as internal standard (I.S.). Chromatography was carried out using a C8 reversed-phase column with an isocratic mobile phase consisting of acetonitrile-water-trifluoroacetic acid (30:70:0.1, v/v/v; pH 2.0). Both drug and I.S. were measured at 350 nm and eluted at 5.0 and 10.6 min, respectively. Peak-height ratios of the drug and the I.S. were used for the quantification of SB202190 from the different matrixes. The limit of quantitation of SB202190 in serum, kidney and urine were 0.25 microg/ml, 1 microg/g and 1 microg/ml, respectively. The average recoveries were 74, 75 and 92% in serum, kidney and urine, respectively. The intra- and inter-day precision (% CV) and accuracy (% bias) were below 15% for all concentrations. The method was successfully applied for a pharmacokinetic study of SB202190 in rats.  相似文献   

9.
A sensitive and selective liquid chromatographic-tandem mass spectrometric (LC-MS-MS) method was developed to determine cefixime ((6R,7R)-7-[(Z)-2-(2-amino-4-thiazolyl)-2-(carboxymethoxyimino)acetamido]-8-oxo-3-vinyl-5-thia-1-azabicyclo-[4,2,0]-oct-2-ene-2-carboxylic acid) in human plasma. After a simple protein precipitation using acetonitrile, the post-treatment samples were analyzed on a C(8) column interfaced with a triple quadrupole tandem mass spectrometer. Positive electrospray ionization was employed as the ionization source. The mobile phase consisted of acetonitrile-water-formic acid (40:60:0.5, v/v/v). The analyte and internal standard cefetamet were both detected by use of selected reaction monitoring mode. The method was linear in the concentration range of 0.05-8.0 microg/ml. The lower limit of quantification was 0.05 microg/ml. The intra- and inter-day relative standard deviation across three validation runs over the entire concentration range was less than 12.7%. The accuracy determined at three concentrations (0.05, 0.80 and 7.2 microg/ml for cefixime) was within +/-2.0% in terms of relative error. Each plasma sample was chromatographed within 3.5 min. The method herein described was successfully applied for the evaluation of pharmacokinetic profiles of cefixime capsule in 24 healthy volunteers.  相似文献   

10.
A simple and sensitive HPLC-UV assay was developed for the measurement of iothalamate (IOT) in human serum and urine. Chromatographic separation was achieved using an embedded-carbamate-group bonded RP18 column and mobile phase consisting of 50 mM monobasic sodium phosphate and methanol (90:10, v/v) without the addition of ion-pair reagents. The assay demonstrated a high analytical reliability within the IOT concentration range of 1-150 microg/ml in serum and 25-1500 microg/ml in urine. The relative standard deviations (RSDs) for intra- and inter-day analysis were less than 5.1% in all cases. This method has been used for the evaluation of glomerular filtration rate (GFR) in subjects participating in a phase I clinical trial of a novel antimalarial medicine. The average baseline GFR was 100.41+/-19.99 ml/min/1.73 m(2) in 119 healthy volunteers. The assay may also allow the simultaneous measurements of p-aminohippuric acid (PAH), N-acetyl PAH (aPAH), and IOT with some modification. PAH, IOT, aPAH, and beta-hydroxyethyl-theophylline internal standard peaks appeared approximately at 2.5, 3.7, 5.9, and 11.8 min, respectively, in an isocratic run.  相似文献   

11.
Mitoguazone is an antiproliferative agent used in chemotherapy. This study describes a simple and sensitive high-performance liquid chromatographic method for the determination of mitoguazone in 100 microl of plasma. Samples were deproteinized with 100 microl of a solution of internal standard (amiloride, 10 microg/ml) in acetonitrile. An aliquot of the supernatant was injected onto the column. HPLC separation was achieved on a silica column with the mobile phase of methanol-50 mM potassium phosphate buffer (pH 3)-triethylamine (80:20:0.3, v/v), at a flow-rate of 1 ml/min. The eluent was detected at 320 nm. The retention time was about 5.5 min for amiloride and 12 min for mitoguazone. No endogenous substances were found to interfere. Calibration curves were linear from 0.25 to 50 microg/ml. The absolute recoveries of mitoguazone and amiloride were both greater than 84%. The limit of quantitation was 0.25 microg/ml. The intra- and inter-day precision (expressed as RSD) was 5.8%, or less, and the accuracy was 94.7% of the nominal concentration. The method is suitable in pharmacokinetic investigation and monitoring mitoguazone concentration.  相似文献   

12.
We present a specific method for the determination of disodium clodronate in human plasma and urine using a gas-chromatographic system with nitrogen phosphorus detector (NPD). The compound was extracted from plasma and urine samples by an anion-exchange resin and derivatizated with bistrimethylsilyltrifluoroacetamide (BSTFA). Sodium bromobisphosphonate was used as internal standard. The calibration curves were linear in both plasma and urine, with a regression coefficient r > 0.9975 in plasma and r > 0.9977 in urine.The limit of quantitation was 0.3 microg/ml in plasma and 0.5 microg/ml in urine. The method was validated by intra-day assays at three concentration levels. During the study we carried out inter-day assays to confirm the feasibility of the method. The precision in plasma at 0.5, 15, and 45 microg/ml was 12.4, 0.2, and 6.5% (n = 40), respectively; in urine at 0.8, 8, and 40 microg/ml it was 8.6, 6.4, and 9.3% (n = 40), respectively.The method was accurate and reproducible, and was successfully applied to determine the pharmacokinetic parameters of clodronate in healthy volunteers after intravenous infusion and intramuscular injection of 200 mg of the compound. The Cmax after intravenous infusion and intramuscular injection was 16.1 and 12.8 microg/ml, respectively. AUC(0-48 h) after infusion administration and intramuscular injection was 44.2 +/- 18.0 and 47.5 +/- 12.4 h microg/ml, respectively. The elimination half-life in both administrations was 6.31 +/- 2.7 h.  相似文献   

13.
Olanzapine is a commonly used atypical antipsychotic medication for which therapeutic drug monitoring has been proposed as clinically useful. A sensitive method was developed for the determination of olanzapine concentrations in plasma and urine by high-performance liquid chromatography with low-wavelength ultraviolet absorption detection (214 nm). A single-step liquid–liquid extraction procedure using heptane-iso-amyl alcohol (97.5:2.5 v/v) was employed to recover olanzapine and the internal standard (a 2-ethylated olanzapine derivative) from the biological matrices which were adjusted to pH 10 with 1 M carbonate buffer. Detector response was linear from 1–5000 ng (r2>0.98). The limit of detection of the assay (signal:noise=3:1) and the lower limit of quantitation were 0.75 ng and 1 ng/ml of olanzapine, respectively. Interday variation for olanzapine 50 ng/ml in plasma and urine was 5.2% and 7.1% (n=5), respectively, and 9.5 and 12.3% at 1 ng/ml (n=5). Intraday variation for olanzapine 50 ng/ml in plasma and urine was 8.1% and 9.6% (n=15), respectively, and 14.2 and 17.1% at 1 ng/ml (n=15). The recoveries of olanzapine (50 ng/ml) and the internal standard were 83±6 and 92±6% in plasma, respectively, and 79±7 and 89±7% in urine, respectively. Accuracy was 96% and 93% at 50 and 1 ng/ml, respectively. The applicability of the assay was demonstrated by determining plasma concentrations of olanzapine in a healthy male volunteer for 48 h following a single oral dose of 5 mg olanzapine. This method is suitable for studying olanzapine disposition in single or multiple-dose pharmacokinetic studies.  相似文献   

14.
A sensitive and specific liquid chromatographic method using solid-phase extraction with Sep-pak cartridges has been developed for the determination of Casiopeina IIgly and validated over the linear range 2.5-50 microg/ml in rat plasma. The analysis was performed on a Symetry C(18) (5 microm) column with a Phenomenex C(18) precolumn. The mobile phase was methanol-water (58:42, v/v). The column effluent was monitored at 273 nm. The results showed that the assay is sensitive at 2.5 microg/ml. Maximum intra-day coefficient of variation was 11.47%. The recovery based upon addition of internal standard to rat plasma was 80.98%. The method was used to perform preclinical pharmacokinetic studies in rat plasma and was found to be satisfactory.  相似文献   

15.
An isocratic and sensitive HPLC assay was developed allowing the determination of the new anticancer drug nilotinib (AMN107) in human plasma, urine, culture medium and cell samples. After protein precipitation with perchloric acid, AMN107 underwent an online enrichment using a Zirchrom-PBD precolumn, was separated on a Macherey-Nagel C18-HD column and finally quantified by UV-detection at 258 nm. The total run time is 25 min. The assay demonstrates linearity within a concentration range of 0.005-5.0 microg/ml in plasma (r(2)=0.9998) and 0.1-10.0 microg/ml in urine (r(2)=0.9913). The intra-day precision expressed as coefficients of variation ranged depending on the spiked concentration between 1.27-9.23% in plasma and 1.77-3.29% in urine, respectively. The coefficients of variation of inter-day precision was lower than 10%. Limit of detection was 0.002 microg/ml in plasma and 0.01 microg/ml in urine. The described method is stable, simple, economic and is routinely used for in vivo and in vitro pharmacokinetic studies of AMN107.  相似文献   

16.
A reversed-phase liquid chromatography method involving pre-column derivatisation with fluorescein isothiocyanate (FITC, isomer I) for determination of tobramycin in urine samples after inhalation has been developed. FITC reacts with the primary amino groups of tobramycin and other aminoglycosides under mild conditions to form a highly fluorescent and stable derivative. The chromatographic separation was carried out on a Phenomenex Luna C(18) column at ambient temperature using a constant flow rate of 1 ml/min and mobile phase of acetonitrile-methanol-glacial acetic acid-water (420:60:5:515, v/v/v/v). The tobramycin-FITC derivative was monitored by fluorescent detection at an excitation wavelength 490 nm and emission wavelength 518 nm. The linearity of response for tobramycin was demonstrated at 11 different concentrations of tobramycin extracted from spiked urine, ranging from 0.25 to 20 microg/ml. Tobramycin and neomycin were extracted from spiked urine by a solid phase extraction clean-up procedure on a carboxypropyl-bonded phase (CBA) weak cation-exchange cartridge, and the relative recovery was >99% (n=5). The limit of detection (LOD) and limit of quantitation (LOQ) in urine were 70 and 250 ng/ml, respectively. The method had an accuracy of <0.2%, and intra-day and inter-day precision (in term of %coefficient of variation) were <4.89% and 8.25%, respectively. This assay was used for urinary pharmacokinetic studies to identify the relative lung deposition of tobramycin post-inhalation of tobramycin inhaled solution 300 mg/5 ml (TOBI) by different nebuliser systems.  相似文献   

17.
A simple and rapid solid-phase microextraction method was developed for the enantioselective analysis of ibuprofen in urine. The sampling was made with a polydimethylsiloxane-divinylbenzene coated fiber immersed in the liquid sample. After desorptioning from the fiber, ibuprofen enantiomers were analyzed by HPLC using a Chiralpak AD-RH column and UV detection. The mobile phase was made of methanol-pH 3.0 phosphoric acid solution (75:25, v/v), at a flow rate of 0.45 mL/min. The mean recoveries of SPME were 19.8 and 19.1% for (-)-R-ibuprofen and (+)-(S)-ibuprofen, respectively. The method was linear at the range of 0.25-25 microg/mL. Within-day and between-day assay precision and accuracy were below 15% for both ibuprofen enantiomers at concentrations of 0.75, 7.5 and 20 microg/mL. The method was tested with urine quality control samples and human urine fractions after administration of 200 mg rac-ibuprofen.  相似文献   

18.
The stability of caffeine in urine samples has been studied. A high-performance liquid chromatography (HPLC) method for the quantification of caffeine in urine samples was validated for that purpose. The method consists of a liquid-liquid extraction at alkaline pH with chloroform-2-propanol (9:1, v/v) with a salting out effect. 7-Ethyltheophylline was used as internal standard (ISTD). Analyses were performed with an Ultrasphere ODS C18 column using water/acetonitrile (90:10, v/v) as a mobile phase at a flow rate of 1 ml/min. Ultraviolet absorption at 280 nm was monitored. Extraction recoveries for caffeine and 7-ethyltheophylline were 81.4+/-6.0 and 87.3+/-5.7%, respectively. The calibration curves were demonstrated to be linear in the working range of 6-30 microg/ml (r2>0.990). The limit of detection and the limit of quantitation were estimated as 0.7 and 2.0 microg/ml, respectively. Precisions in the range of 1.5-9.2 and 4.1-5.8% were obtained in intra- and inter-assay studies, respectively, using control samples containing 10, 14 and 26 microg/ml of caffeine. Accuracies ranging from 2.9 to 7.4% for intra-assay experiments, and from 3.9 to 5.4% in inter-assay studies were obtained. Stability of caffeine in urine samples was evaluated after long- and short-term storage at different temperature conditions. The batches of spiked urine were submitted to sterilization by filtration. No adsorption of the analyte on filters was observed. Before starting stability studies, batches of reference materials were tested for homogeneity. For long-term stability testing, caffeine concentration in freeze-dried urine stored at 4 degrees C and in liquid urine samples stored at 4, -20, -40 and -80 degrees C was determined at several time intervals for 18 months. For short-term stability testing, caffeine concentration was evaluated in liquid urine stored at 37 degrees C for 7 days. The effect of repeated freezing (at -20 degrees C) and thawing was also studied for up to three cycles. The stability of caffeine was also evaluated in non-sterile samples stored at -20 degrees C for 18 months. No significant loss of the compound was observed at any of the investigated conditions.  相似文献   

19.
A high-performance liquid chromatographic method has been developed for the determination of pipotiazine in human plasma and urine. After selective extraction, pipotiazine and the internal standard (7-methoxypipotiazine) are chromatographed on a column packed with Spherosil XOA 600 (5 μm) using a 7:3 (v/v) mixture of diisopropyl ether—isooctane (1:1, v/v) + 0.2% triethylamine and diisopropyl ether—methanol (1:1, v/v) + 0.2% triethylamine + 2.6% water. The eluted compounds are measured by fluorescence detection. The sensitivity of the method was established at 0.25 ng/ml pipotiazine in plasma and 2 ng/ml pipotiazine in urine (C.V. < 5%). The method has been successfully applied to a pharmacokinetic study following a single oral administration of 10 mg of pipotiazine.  相似文献   

20.
Metabolic activation in the disposition of 3,4-methylenedioxymethamphetamine (MDMA, "ecstasy") has been implicated in some of its pharmacological and toxicological effects, with the major metabolite 3,4-dihydroxymethamphetamine (HHMA) as a putative toxicant through the formation of thioether adducts. We describe the first validated method for HHMA determination based on acid hydrolysis of plasma and urine samples, further extraction by a solid-phase strong cation-exchange resin (SCX, benzenesulfonic acid), and analysis of extracts by high-performance liquid chromatography with electrochemical detection. The chromatographic separation was performed in an n-butyl-silane (C4) column and the mobile phase was a mixture of 0.1 M sodium acetate containing 0.1 M 1-octanesulphonic acid and 4 mM EDTA (pH 3.1) and acetonitrile (82:18, v/v). Compounds were monitored with an electrochemical cell (working potentials 1 and 2, +0.05 and +0.35 V, respectively, gain 60 microA). A mobile phase conditioning cell with a potential set at +0.40 V was connected between the pumping system and the injector. Calibration curves were linear within the working concentration ranges of 50-1000 microg/L for urine and plasma. Limits of detection and quantification were 10.5 and 31.8 microg/L for urine and 9.2 and 28.2 microg/L for plasma. Recoveries for HHMA and DHBA (3,4-dihydroxybenzylamine, internal standard) were close to 50% for both biological matrices. Intermediate precision and inter-day accuracy were within 3.9-6.5% and 7.4-15.3% for urine and 5.0-10.8% and 9.2-13.4% for plasma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号