首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
2.
3.
4.
5.
6.
Sry (sex-determining region on Y chromosome) is expressed in the undifferentiated, bipotential genital ridges of mammalian XY fetuses. The expression of Sry initiates testis development, but the lineage of Sry-expressing cells is unclear. In this study, double-transgenic mice were analyzed using the Cre/loxP system. Cre under the control of the Sry promoter was expressed in the fetal gonads of transgenic mice similarly to endogenous Sry. The Sry/Cre-transgenic mice were crossed with CAG(cytomegalovirus immediate-early enhancer, chicken beta-actin promoter and fusion intron of chicken beta-actin and rabbit beta-globin)/loxP/CAT/loxP/LacZ-transgenic mice, in which the transgene expressed beta-galactosidase after a Cre-mediated recombination event. Sertoli cells, germ cells of testes and granulosa cells of ovaries of double-transgenic mice stained positive with X-gal. Cre expression was detected in germ cells and peritubular/Sertoli cells in adult testes. It is not clear whether beta-galactosidase expression in the Sertoli cells of the testes occurred as a result of Cre expression in the adult or in the fetal gonads. These analyses indicate that cells expressing Sry-inducing factors in female fetal gonads become granulosa cells.  相似文献   

7.
The seminiferous epithelial cycle and spermatogenic wave are conserved features of vertebrate spermatogenic organisation that reflect the need for the rigorous maintenance of sperm production. Although the cycle and the wave of the adult seminiferous epithelium have been well characterised, particularly in rodent species, their developmental origins are unknown. We show that the Sertoli cells of the pre-pubertal mouse, including those of the germ cell-deficient XXSxra mutant, exhibit coordinated, cyclical patterns of gene expression, presaging the situation in the adult testis, where Sertoli cell function is coupled to the spermatogenic cycle. In the case of the galectin 1 gene (Lgals1), localised differential expression in the Sertoli cells can be traced back to neonatal and embryonic stages, making this the earliest known molecular marker of functional heterogeneity in mammalian testis cords. In addition, the timing of germ cell apoptosis in normal pre-pubertal testes is linked to the temporal cycle of the Sertoli cells. These data show that the cycle and wave of the murine seminiferous epithelium originate at a much earlier stage in development than was previously known, and that their maintenance in the early postnatal cords depends exclusively on the somatic cell lineages.  相似文献   

8.
Sertoli cells are the primary structural component of the fetal testis cords and postnatal seminiferous tubules. Live imaging technologies facilitate the visualization of cell morphologies and behaviors through developmental processes. A transgenic mouse line was generated using a fragment of the rat Gata4 gene to direct the expression of a dual-color fluorescent protein reporter in fetal and adult Sertoli cells. The reporter encoded a red fluorescent protein, monomeric Cherry (mCherry), fused to histone 2B and enhanced green fluorescent protein (EGFP) fused to a glycosylphosphatidylinositol sequence, with a self-cleaving 2A polypeptide separating the two fusion proteins. After translation, the red and green fluorescent proteins translocated to the nucleus and plasma membrane, respectively, of Sertoli cells. Transgene expression in testes was first detected by fluorescent microscopy around Embryonic Day 12.0. Sertoli cell division and migration were visualized during testis cord formation in organ culture. Initially, the Sertoli cells had mesenchyme-like morphologies and behaviors, but later, the cells migrated to the periphery of the testis cords to become epithelialized. In postnatal seminiferous tubules, Sertoli nuclei were evenly spaced when viewed from the external surface of tubules, and Sertoli cytoplasm and membranes were associated with germ cells basally in a rosette pattern. This mouse line was bred to previously described transgenic mouse lines expressing EGFP in Sertoli cytoplasm or a nuclear cyan fluorescent protein (Cerulean) and mCherry in plasma membranes of germ cells. This revealed the physical relationship between Sertoli and germ cells in developing testis cords and provided a novel perspective on Sertoli cell development.  相似文献   

9.
10.
To explore physiological roles of BCL-W, a prosurvival member of the BCL-2 protein family, we generated transgenic (TG) mice overexpressing Bcl-w driven by a chicken beta-actin promoter. Male Bcl-w TG mice developed normally but were infertile. The adult TG testes displayed disrupted spermatogenesis with various severities ranging from thin seminiferous epithelium containing less germ cells to Sertoli cell-only appearance. No overpopulation of any type of germ cells was observed during testicular development. In contrast, the developing TG testes displayed decreased number of spermatogonia, degeneration, and detachment of spermatocytes and Sertoli cell vacuolization. The proliferative activity of germ cells was significantly reduced during testicular development and spermatogenesis, as determined by in vivo and in vitro 5'-bromo-2'deoxyuridine incorporation assays. Sertoli cells were structurally and functionally normal. The degenerating germ cells were TUNEL-negative and no typical apoptotic DNA ladder was detected. Our data suggest that regulated spatial and temporal expression of BCL-W is required for normal testicular development and spermatogenesis, and overexpression of BCL-W inhibits germ cell cycle entry and/or cell cycle progression leading to disrupted spermatogenesis.  相似文献   

11.
Androgen receptor-interacting protein 4 (ARIP4) belongs to the SNF2 family of proteins involved in chromatin remodeling, DNA excision repair, and homologous recombination. It is a DNA-dependent ATPase, binds to DNA and mononucleosomes, and interacts with androgen receptor (AR) and modulates AR-dependent transactivation. We have examined in this study the expression and cellular localization of ARIP4 during postnatal development of mouse testis. ARIP4 was detected by immunohistochemistry in Sertoli cell nuclei at all ages studied, starting on day 5, and exhibited the highest expression level in adult mice. At the onset of spermatogenesis, ARIP4 expression became evident in spermatogonia, pachytene, and diplotene spermatocytes. Immunoreactive ARIP4 antigen was present in Leydig cell nuclei. In Sertoli cells ARIP4 was expressed in a stage-dependent manner, with high expression levels at stages II-VI and VII-VIII. ARIP4 expression patterns did not differ significantly in testes of wild-type, follicle-stimulating hormone receptor knockout, and luteinizing hormone receptor knockout mice. In testes of hypogonadal mice, ARIP4 was found mainly in interstitial cells and exhibited lower expression in Sertoli and germ cells. In vitro stimulation of rat seminiferous tubule segments with testosterone, FSH, or forskolin did not significantly change stage-specific levels of ARIP4 mRNA. Heterozygous ARIP4(+/-) mice were haploinsufficient and had reduced levels of Sertoli-cell specific androgen-regulated Rhox5 (also called Pem) mRNA. Collectively, ARIP4 is an AR coregulator in Sertoli cells in vivo, but the expression in the germ cells implies that it has also AR-independent functions in spermatogenesis.  相似文献   

12.
The homeodomain CUX1 protein exists as multiple isoforms that arise from proteolytic processing of a 200-kDa protein or an alternate splicing or from the use of an alternate promoter. The 200-kDa CUX1 protein is highly expressed in the developing kidney, where it functions to regulate cell proliferation. Transgenic mice ectopically expressing the 200-kDa CUX1 protein develop renal hyperplasia associated with reduced expression of the cyclin kinase inhibitor p27. A 55-kDa CUX1 isoform is expressed exclusively in the testes. We determined the pattern and timing of CUX1 protein expression in developing testes. CUX1 expression was continuous in Sertoli cells from prepubertal testes but became cyclic when spermatids appeared. In testes from mature mice, CUX1 was highly expressed only in round spermatids at stages IV-V of spermatogenesis, in both spermatids and Sertoli cells at stages VI-X of spermatogenesis, and only in Sertoli cells at stage XI of spermatogenesis. While most of the seminiferous tubules in wild-type mice were between stages VI and X of spermatogenesis, there was a significant reduction in the percentage of seminiferous tubules between stages VI and X in Cux1 transgenic mice and a significant increase in the percentage of seminiferous tubules in stages IV-V and XI. Moreover, CUX1 was not expressed in proliferating cells in testes from either wild-type or transgenic mice. Thus, unlike the somatic form of CUX1, which has a role in cell proliferation, the testis-specific form of CUX1 is not involved in cell division and appears to play a role in signaling between Sertoli cells and spermatids.  相似文献   

13.
Although much research has focused on transferring exogenous genes into living mouse testis to investigate specific gene functions in spermatogenic, Sertoli, and Leydig cells, relatively little is known regarding real-time gene expression in vivo. In this study, we constructed a bicistronic lentiviral vector (LV) encoding firefly luciferase and enhanced green fluorescence protein (EGFP); this was a highly efficient in vivo gene transfer tool. After microinjecting LV into the seminiferous tubules the ICR mouse testis, we detected luciferase and EGFP expression in vivo and ex vivo in the injected tubules using bioluminescence imaging (BLI) with the IVIS-200 system and fibered confocal fluorescence microscopy (CellViZio), respectively. In addition, with an in vivo BLI system, luciferase expression in the testis was detected for ∼3 mo. Furthermore, EGFP expression in seminiferous tubules was confirmed in excised testes via three-dimensional fluorescent imaging with a confocal laser-scanning microscope. With immunostaining, EGFP expression was confirmed in several male germ cell types in the seminiferous tubules, as well as in Sertoli and Leydig cells. In conclusion, we demonstrated that real-time in vivo BLI analysis can be used to noninvasively (in vivo) monitor long-term luciferase expression in mouse testis, and we verified that EGFP expression is localized in seminiferous tubules after bicistronic LV-mediated gene transfer into mouse testes. Furthermore, we anticipate the future use of in vivo BLI technology for real-time study of specific genes involved in spermatogenesis.  相似文献   

14.
15.
In the present study we examined the capacity of somatic and germ cells dissociated from fetal mouse testes at various stages to reform seminiferous cords in culture. We found that after 12 h in culture, seminiferous cords became segregated from stromal cells. Although Sertoli cells were incorporated into seminiferous cords at all stages studied, the germ cells dramatically changed their histogenetic behavior with age. Most germ cells which had been dissociated at 12.5 days postcoitum (dpc) were incorporated into the seminiferous cords, whereas at 14.5 dpc or later the majority remained among the stromal cells or as clusters on the surface of the aggregates. We considered three possible causes for this change in behavior of germ cells: (i) Failure to deposit some extracellular matrix components in the aggregates. (ii) Decrease in adhesiveness of prospermatogonia to either extracellular matrix components or Sertoli cells. (iii) A change in adhesiveness of Sertoli cells to germ cells with age. We found that laminin and fibronectin were similarly deposited in aggregates at 12.5 and 15.5 dpc. When prospermatogonia at 15.5 dpc labeled with colloidal gold were reaggregated with somatic cells at 12.5 dpc, 50% were incorporated into seminiferous cords. Moreover, [3H]thymidine-labeled Sertoli cells at 15.5 dpc formed heterochronic seminiferous cords with Sertoli cells at 12.5 dpc. These results suggest that mouse Sertoli cells change their surface property which is essential for binding to germ cells when they enter the mitotic resting stage (T-prospermatogonia).  相似文献   

16.
Sertoli cells provide the microenvironment necessary for germ cell development and spermatogenesis; disruption of Sertoli cell morphology or function can lead to germ cell aplasia, which is observed in testicular dysgenesis syndrome. Mutation of the adenomatous polyposis coli (APC) gene has been associated with various human cancers, including testicular cancer, but its involvement in nonmalignant testicular pathologies has not been reported. We have developed a mouse model (APC(cko)) that expresses a truncated form of APC in Sertoli cells. Despite normal embryonic and early postnatal testicular development in APC(cko) mice, premature germ cell loss and Sertoli cell-only seminiferous tubules were observed in mutant testes without affecting Sertoli cell quiescence, apoptosis, or differentiation, which were confirmed by the absence of both proliferating cell nuclear antigen, DNA strand breaks, and anti-Müllerian hormone, respectively. We show that mutant Sertoli cells lose their apical extensions, which would normally enclose germ cells during various stages of spermatogenesis, and were unable to maintain the blood-testis barrier because of disrupted expression of junctional proteins. We also observed an up-regulation of Snail and Slug, markers suggestive of epithelial-mesenchymal transition in the Sertoli cells, but tumorigenesis was not observed. No comparable phenotype was observed with Sertoli cell-specific loss-of-function mutations in β-catenin, leading us to speculate that truncation of APC in Sertoli cells results in progressive degeneration of the seminiferous tubules by a mechanism that disrupts the integrity of Sertoli cell junctions independently of APC-regulated β-catenin activities and leads to development of a Sertoli cell-only phenotype.  相似文献   

17.
18.
The Musashi1 (Msi1) gene identified in mouse is a member of a subfamily of RNA binding proteins that are highly conserved across species. Msi1 expression is highly enriched in proliferative cells within the developing central nervous system. Within the testis, proliferation and differentiation of germ cells takes place within the seminiferous epithelium, where these cells are supported physically and functionally by Sertoli cells that do not themselves proliferate following the onset of puberty. RNA binding proteins expressed in testicular germ cells are essential for normal fertility. Preliminary data suggested the mRNA for Msi1 was present in ovary; therefore, we used an Msi1-specific cRNA and monoclonal antibody to investigate whether Msi1 was expressed in the testis. Msi1 mRNA was expressed in rat testis from birth until adulthood; in situ hybridization revealed silver grains within the seminiferous epithelium. Immunohistochemical studies demonstrated that at all ages examined (from Fetal Day 14.5 until adulthood) Msi1 protein was expressed in Sertoli cells. In fetal and adult rat ovaries, Msi1 was detected in granulosa cells and their precursors. In Sertoli cells, protein was detected in both cytoplasmic and nuclear compartments; in adult testes, the immunointensity of the nuclear staining was stage dependent, with highest levels of expression in Sertoli cells at stages I-VI. In rat gonads, the RNA binding protein Msi1 is expressed in both proliferating and nonproliferating Sertoli and granulosa cells.  相似文献   

19.
The P[lArB]-element insertional mutation (Indyp115) was obtained in the promoter region of the Na(+)-dicarboxylate transporter gene of Drosophila (gene Indy, I'm not dead yet) within the 75D region of chromosome 3. The expression pattern of the reporter beta-galactosidase was determined in various tissues of third-instar larvae and adult flies. Both males and females homozygous for this mutation were fertile, though their viability was reduced. The two lethality phases were revealed in embryogenesis at nucleus cleavage stages 1-5 to the point of blastoderm formation and at latest stages 15-16, as well as at stage 17, when the larval development is completed though the larva still remains in the chorion. The gene expression in the follicular cells of an embryo at the terminal oogenesis stages is suggested to cause the first lethality stage. The expression pattern of this gene seems also to account for the tissue- and stage-specific activity of the 5'-regulatory region in the Indy gene.  相似文献   

20.
The transferrin receptor has been immunohistochemically localized in the seminiferous epithelium of the rat with a monoclonal antibody, MRC OX26, which recognizes the transferrin receptor glycoprotein. The receptor was detectable on mitotically and meiotically dividing germ cells and, less abundantly, on round spermatids. It was lost from germ cells during spermatid elongation and was undetectable on immature spermatozoa. The transferrin receptor was also present on Sertoli cells in the testes of immature animals and on Sertoli cells in the testes of aspermatogenic animals that had been irradiated in utero. It was not detectable on Sertoli cells in the testes of cryptorchid animals. These studies demonstrate that the transferrin receptor is abundant on dividing germ cells as well as dividing somatic cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号