首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The interactions of bacterial pathogens with cells of the human leptomeninges are critical events in the progression of meningitis. An in vitro model based on the culture of human meningioma cells was used to investigate the interactions of the meningeal pathogens Escherichia coli K1, Haemophilus influenzae, Neisseria meningitidis and Streptococcus pneumoniae. A rank order of association with meningioma cells was observed, with N. meningitidis showing the highest levels of adherence, followed by E. coli, S. pneumoniae and H. influenzae. Neisseria meningitidis and H. influenzae did not invade meningioma cells or induce cell death, but induced a concentration-dependent secretion of inflammatory mediators. Neisseria meningitidis induced higher levels of IL-6, MCP-1, RANTES and GM-CSF than H. influenzae, but there was no significant difference in the levels of IL-8 induced by both pathogens. Streptococcus pneumoniae was also unable to invade meningioma cells, but low concentrations of bacteria failed to stimulate cytokine secretion. However, higher concentrations of pneumococci led to cell death. By contrast, only E. coli K1 invaded meningioma cells directly and induced rapid cell death before an inflammatory response could be induced. These data demonstrate that the interactions of different bacterial pathogens with human meningeal cells are distinct, and suggest that different intervention strategies may be needed in order to prevent the morbidity and mortality associated with bacterial meningitis.  相似文献   

2.
The influence of the two surface structures of Neisseria meningitidis, capsule and pili, in bacterial interactions with human endothelial cells was investigated. Increased association correlated with the presence of pili on bacteria while capsule type had no apparent effect. Strains expressing both Class I and Class II pili associated with endothelial cells in significantly larger numbers compared with the non-piliated variants of the same strains (greater than 10x). Variants of Neisseria gonorrhoeae strain P9 expressing antigenically distinct pili also associated with endothelial cells in larger numbers (greater than 30x) compared with the non-piliated variant. Electron microscopic studies confirmed these data and showed that gonococci were internalized more frequently compared with meningococci. One consequence of increased association was an increase in the cytopathic effect of bacteria on the target cells.  相似文献   

3.
We have characterized an interaction of 20 strains of Neisseria meningitidis serogroups A, B, C, 29E, W-135 and Z with immobilized fibronectin of human plasma. The adhesion of meningococci to fibronectin was determined by the extent of piliated cells and did not depend on the meningococcal serogroup. Binding of non-piliated or weakly piliated strains (2-5% of piliated cells in the stock) was sufficiently greater than those piliated (8-10%), where the adhesion to fibronectin was not at all observed. The examination of two well-piliated strains showed that the loss of pili resulted in the increase of bacterial adhesion to fibronectin. Constants of association and dissociation of piliated and non-piliated strains to fibronectin were calculated. The role of meningococci-fibronectin interaction in the pathogenesis of meningococcal infection is discussed.  相似文献   

4.
Whereas capsulate strains of Neisseria meningitidis are dependent on pili for adhesion to human endothelial and epithelial cells, strains which lacked assembled pili and were partially capsule-deficient adhered to and invaded human endothelial and epithelial cells if they expressed the Opc protein. Bacteria expressing low or undetectable levels of Opc protein failed to adhere to or invade eukaryotic cells. In addition, the presence of OpaAC751 protein on the surface of bacteria did not increase bacterial interactions with host cells. Association of Opc-expressing bacteria was inhibited by antibodies against Opc. Invasion was dependent on the host-cell cytoskeletal activity and was inhibited by cytochalasin D. In some cells, infected at the apical surface, bacteria emerging from basal surface were detected by electron microscopy. Opc is found in diverse meningococci and may represent a common virulence factor which facilitates adherence and invasion by these bacteria.  相似文献   

5.
6.
Bacterial invasion of the meninges can occur as a consequence of bloodstream invasion by some bacterial pathogens. Bacteria enter the central nervous system following a direct interaction with the luminal side of the cerebral endothelium, which constitutes the blood-brain barrier. To breach the barriers protecting the brain, extracellular pathogens must cross a monolayer of tight junction-expressing endothelial or epithelial cells. The limited number of pathogens capable of crossing these tight barriers and invading the meninges suggests that they display very specific attributes. For Neisseria meningitidis, type IV pili have been identified as being essential for meningeal invasion and it is believed other, as-yet-unidentified factors are also involved.  相似文献   

7.
The effect of variations in Neisseria meningitidis pili on bacterial interactions with three epithelial cell lines as well as human umbilical vein endothelial cells was studied using a panel of seven strains expressing Class I or Class II pili. Comparison of adherence of piliated and pilus-deficient variants of each strain to epithelial cells suggested that Class I pili may mediate bacterial adherence with all three epithelial cell lines. In contrast, Class II pili of the strains used did not increase bacterial adherence to Hep-2 larynx carcinoma cells, although an increase in adherence to Chang conjunctival and A549 lung carcinoma epithelial cells was observed in the Class II pili-expressing strains. In addition to these interclass functional variations, differences in adherence to epithelial cells were also observed among Class I and Class II strains. Functionally different pilin variants of one Class I strain, MC58, were obtained by single colony isolation. One piliated variant was identified which had concurrently lost the ability to adhere to both Chang and Hep-2 cells ('non-adherent' phenotype; adherence of less than 2 bacteria per cell). In addition, several adherent pilin variants were isolated from non-adherent Pil- and Pil+ bacteria by selection on Chang cells (adherence of 10-25 bacteria per cell). In contrast to epithelial cells, all variant pili, whether of Class I or Class II, adhered to endothelial cells in substantially larger numbers (greater than 50 bacteria per cell) and therefore implied the existence of distinct mechanisms in pilus-facilitated interactions of N. meningitidis with endothelial and epithelial cells.  相似文献   

8.
Type 4 pili produced by the pathogenic Neisseria species constitute primary determinants for the adherence to host tissues. In addition to the major pilin subunit (PilE), neisserial pili contain the variable PilC proteins represented by two variant gene copies in most pathogenic Neisseria isolates. Based upon structural differences in the conserved regions of PilE, two pilus classes can be distinguished in Neisseria meningitidis . For class I pili found in both Neisseria gonorrhoeae and N. meningitidis , PilC proteins have been implicated in pilus assembly, natural transformation competence and adherence to epithelial cells. In this study, we used primers specific for the pilC2 gene of N. gonorrhoeae strain MS11 to amplify, by the polymerase chain reaction, and clone a homologous pilC gene from N. meningitidis strain A1493 which produces class II pili. This gene was sequenced and the deduced amino acid sequence showed 75.4% and 73.8% identity with the gonococcal PilC1 and PilC2, respectively. These values match the identity value of 74.1% calculated for the two N. gonorrhoeae MS11 PilC proteins, indicating a horizontal relationship between the N. gonorrhoeae and N. meningitidis pilC genes. We provide evidence that PilC functions in meningococcal class II pilus assembly and adherence. Furthermore, expression of the cloned N. meningitidis pilC gene in a gonococcal pilC1,2 mutant restores pilus assembly, adherence to ME-180 epithelial cells, and transformation competence to the wild-type level. Thus, PilC proteins exhibit indistinguishable functions in the context of class I and class II pili.  相似文献   

9.
Hemagglutination by Neisseria meningitidis   总被引:5,自引:0,他引:5  
The direct agglutination of erythrocytes by Neisseria meningitidis was studied as a marker for adherence. Hemagglutination (HA) was studied by slide test (5-min incubation) and by dilutions in microtitre plates (20-h incubation). Meningococci that were freshly isolated from subjects agglutinated only human cells by slide test but human, dog, rabbit, guinea pig, and rat cells were agglutinated in the microtitre system. Newly isolated strains were piliated and HA positive but pili were lost after 10 passages on agar, and bacteria became HA negative. HA could be maintained by "affinity culturing," which selected markedly adhesive bacteria: erythrocytes with adherent meningococci were isolated and cultured on agar. This procedure was repeated daily. HA titres were unaffected by mannose but were reduced by sonic disruption, trypsinization, ultraviolet irradiation, heating (65 degrees C), and formaldehyde. Encapsulated (serogroupable) bacteria had low HA titres compared with nongroupable strains, and purified capsular polysaccharides A and C inhibited HA. Meningococcal HA is probably mediated by pili and modified by other factors such as encapsulation. Colonial variation was not a reliable indicator of piliation, and HA is best used for this purpose.  相似文献   

10.
Neisseria meningitidis traversal across the blood-cerebrospinal fluid barrier is an essential step in the pathogenesis of bacterial meningitis. We have previously shown that invasion of human brain microvascular endothelial cells (HBMEC) by meningococci is mediated by bacterial outer membrane protein Opc that binds fibronectin, thereby anchoring the bacterium to the integrin alpha 5 beta 1-receptor on the endothelial cell surface. However, subsequent signal transduction mechanisms essential for or regulated by N. meningitidis adhesion and invasion, or HBMEC responses to N. meningitidis are unknown. In this report we investigated the role of c-Jun N-terminal kinases 1 and 2 (JNK1 and JNK2), p38 mitogen-activated (MAP) kinase and protein tyrosine kinases in endothelial-N. meningitidis interaction. Binding of meningococci to HBMEC phosphorylated and activated JNK1 and JNK2 and p38 MAPK as well as their direct substrates c-Jun and MAP kinase activated kinase-2 (MAPKAPK-2), respectively. Non-invasive meningococcal strains lacking opc gene (opc mutants and sequence type 11 complex meningococci) still activated p38 MAPK, however, failed to activate JNK. Inhibition of JNK1 and JNK2 significantly reduced internalization of N. meningitidis by HBMEC without affecting its adherence. Blocking the endothelial integrin alpha 5 beta 1 also decreased N. meningitidis-induced JNK activation in HBMEC. These findings indicate the crucial role of JNK signalling pathway in N. meningitidis invasion in HBMEC. In contrast, p38 MAPK pathway was important for the control of interleukin-6 (IL-6) and IL-8 release by HBMEC. Genistein, a protein tyrosine kinase inhibitor, decreased both invasion of N. meningitidis into HBMEC and IL-6 and IL-8 release, indicating that protein tyrosine kinases, which link signals from integrins to intracellular signalling pathways are essential for both bacterial internalization and cytokine secretion by HBMEC.  相似文献   

11.
Adherence of pathogenic Neisseria to target host cells is mediated by pili. PilC1 and PilC2 are two high-molecular-weight proteins involved in pilus assembly and cellular adherence functions of the pili. Inactivation of pilC1 or pilC2 in N. meningitidis resulted in clones that expressed the same number of pili as the parent, contained no alterations in pilE and showed no detectable differences in PilE glycosylation. However, the PilC2+ pilC1- mutant showed much reduced adherence to target cells, indicating that production of PilC1 is essential for pilus-mediated adherence. To study further the functional differences between the meningococcal pilC genes, we determined the complete nucleotide sequence of pilC1 and pilC2 of N. meningitidis. Alignment of six PilC sequences demonstrated that PilC is composed of both conserved and variable regions. By immunogold labelling of bacterial sections we showed that PilC is present in the membranes of both piliated and non-piliated bacteria. Further, we demonstrated that PilC is associated with the bacterial cell surface.  相似文献   

12.
A major feature of Neisseria meningitidis is its ability to invade human brain meninges. To access the meninges, the bacteria must cross the blood-brain barrier (BBB), which is one of the tightest barriers in the body. Therefore, N. meningitidis must have evolved some type of sophisticated means to bypass the physical properties of this cellular barrier. As N. meningitidis is encapsulated when present in the bloodstream, this review will focus on the mechanisms that encapsulated N. meningitidis has developed to interact with host cells and will suggest ways in which these mechanisms may be helpful for crossing the BBB.  相似文献   

13.
Mannose binding lectin (MBL) is a key molecule in the lectin pathway of complement activation, and likely of importance in our innate defence against meningococcal infection. We evaluated the role of MBL in cytokine induction by LPS or non-LPS components of Neisseria meningitidis, using a meningococcal mutant deficient for LPS. Binding experiments showed that MBL exhibited low, but significant binding to encapsulated LPS+ meningococci (H44/76) and LPS-deficient (LPS-) meningococci (H44/76lpxA). Experiments with human mononuclear cells (PBMCs) showed that MBL significantly augmented IL-1beta production after stimulation with LPS+ and LPS- meningococci, in a dose-dependent fashion. In addition, IL-10 production was enhanced after stimulation with LPS- meningococci. In contrast, TNFalpha, IL-6 and IFNgamma productions were unaffected. No effect of MBL was observed on cytokine induction by meningococcal LPS. MBL enhanced cytokine production at concentrations >10(7) meningococci. It is concluded that MBL interacts with non-LPS components of N. meningitidis and in this way modulates the cytokine response.  相似文献   

14.
A central step in the pathogenesis of bacterial meningitis caused by Neisseria meningitidis (the meningococcus) is the interaction of the bacteria with cells of the blood-brain barrier. In the present study, we analysed the invasive potential of two strains representing hypervirulent meningococcal lineages of the ET-5 and ET-37 complex in human brain-derived endothelial cells (HBEMCs). In contrast to previous observations made with epithelial cells and human umbilical vein-derived endothelial cells (HUVECs), significant internalization of encapsulated meningococci by HBMECs was observed. However, this uptake was found only for the ET-5 complex isolate MC 58, and not for an ET-37 complex strain. Furthermore, the uptake of meningococci by HBMECs depended on the presence of human serum, whereas serum of bovine origin did not promote the internalization of meningococci in HBMECs. By mutagenesis experiments, we demonstrate that internalization depended on the expression of the opc gene, which is present in meningococci of the ET-5 complex, but absent in ET-37 complex meningococci. Chromatographic separation of human serum proteins revealed fibronectin as the uptake-promoting serum factor, which binds to HBMECs via alpha 5 beta 1 integrin receptors. These data provide evidence for unique molecular mechanisms of the interaction of meningococci with endothelial cells of the blood-brain barrier and contribute to our understanding of the pathogenesis of meningitis caused by meningococci of different clonal lineages.  相似文献   

15.
The attachment of pathogenic Neisseria species to human cells, in which type IV pili (Tfp) play a key but incompletely defined role, depends on the ability of these bacteria to establish contacts with the target cells but also interbacterial interactions. In an effort to improve our understanding of the molecular mechanisms of N. meningitidis adherence to human cells, we screened a collection of defined mutants for those presenting reduced attachment to a human cell line. Besides underscoring the central role of Tfp in this process, this analysis led to the identification of mutants interrupted in a novel gene termed pilX, that displayed an adherence as impaired as that of a non-piliated mutant but quantitatively and qualitatively unaltered fibres. Moreover, the pilX gene, which encodes a pilin-like protein that copurifies with Tfp fibres, was also found to be essential for bacterial aggregation. We provide here several piece of evidence suggesting that PilX has intrinsic aggregative but no adhesive properties and that the reduced numbers of adherent bacteria seen with a pilX mutant result from the absence of interbacterial interactions. These data extend the current model for Tfp-facilitated adherence of N. meningitidis to human cells by suggesting that the pili lead to an increase in net initial adherence primarily by mediating a cooperation between the bacteria, which is supported by the finding that a major effect on initial adherence could be observed in a wild-type (WT) genetic background after a mechanical removal of the bacterial aggregates.  相似文献   

16.
The pili and outer membrane proteins of Neisseria meningitidis (meningococci) facilitate bacterial adhesion and invasion into host cells. In this context expression of meningococcal PilC1 protein has been reported to play a crucial role. Intracellular calcium mobilization has been implicated as an important signaling event during internalization of several bacterial pathogens. Here we employed time lapse calcium-imaging and demonstrated that PilC1 of meningococci triggered a significant increase in cytoplasmic calcium in human brain microvascular endothelial cells, whereas PilC1-deficient meningococci could not initiate this signaling process. The increase in cytosolic calcium in response to PilC1-expressing meningococci was due to efflux of calcium from host intracellular stores as demonstrated by using 2-APB, which inhibits the release of calcium from the endoplasmic reticulum. Moreover, pre-treatment of host cells with U73122 (phospholipase C inhibitor) abolished the cytosolic calcium increase caused by PilC1-expressing meningococci demonstrating that active phospholipase C (PLC) is required to induce calcium transients in host cells. Furthermore, the role of cytosolic calcium on meningococcal adherence and internalization was documented by gentamicin protection assay and double immunofluorescence (DIF) staining. Results indicated that chelation of intracellular calcium by using BAPTA-AM significantly impaired PilC1-mediated meningococcal adherence to and invasion into host endothelial cells. However, buffering of extracellular calcium by BAPTA or EGTA demonstrated no significant effect on meningococcal adherence to and invasion into host cells. Taken together, these results indicate that meningococci induce calcium release from intracellular stores of host endothelial cells via PilC1 and cytoplasmic calcium concentrations play a critical role during PilC1 mediated meningococcal adherence to and subsequent invasion into host endothelial cells.  相似文献   

17.
The variation of cell adherence of meningococci serogroups A, B and C and influenza viruses was investigated in 11 animal species and in humans of different age groups (1st, 2nd, 3rd and 4th weeks; 2nd-3rd months; 4th-12th months, 2nd-3rd years; and 18th-60th years of life) as well as in women during pregnancy (17th-36th weeks) and childbirth. Red blood cells of all animals tested as well as of human newborns were absolutely resistant to attachment of meningococci. In neonatal and the later periods the human cells become far differently sensitive individually to meningococcal adhesion. In contrast, the viral adhesion was characterized by different individual cell sensitivity in all age groups tested. Pregnancy and childbirth did not influence the women's cell sensitivity to adhesion of Neisseria meningitidis. Different receptors are involved in interactions of human cells with influenza viruses and meningococci. The function of meningococcal receptors on human cells develops during postnatal ontogenesis. The variations express both specific (genetic) and ontogenetic (individual) differences in natural resistance to meningococcal infection.  相似文献   

18.
The pili expressed by all isolates of Neisseria gonorrhoeae react with two monoclonal antibodies, SM1 and SM2. In contrast, although many isolates of Neisseria meningitidis also express pili (class I) which react with antibodies SM1 and SM2, a proportion express pili (class II) which fail to react. In order to define the epitopes recognized by these antibodies, a series of overlapping peptides corresponding to the amino acid sequence of conserved regions of gonococcal pili have been synthesized. The minimum epitope recognized by antibody SM1 was found to comprise a linear peptide EYYLN, corresponding to residues 49-53 of mature pilin. In contrast, antibody SM2 reacted with a number of peptides from around the cysteine residue (Cys 1) at position 120, suggesting that an extended region may contribute to a conformational epitope recognized by this antibody in the native protein. The identification of the two epitopes defines structural differences between the classes of pili expressed by meningococci. In order to determine the distribution of pilin gene sequences in Neisseria we used as hybridization probes an oligonucleotide (PS1) with the sequence 5'-GAGTATTACCTGAATCA-3' which spans the coding region for the SM1 epitope, and a fragment of the 3' end of the gonococcal pilE gene which contains conserved sequences flanking the two Cys codons and encodes the SM2 epitope. All strains of N. gonorrhoeae and N. meningitidis tested, regardless of piliation phenotype, harboured DNA sequences homologous to those encoding the carboxy-terminus of meningococcal class I pilin. Furthermore, all gonococci and all meningococci producing class I pili hybridized with oligonucleotide probe PS1. Non-reverting non-piliated derivatives of previously class I pilus-producing strains showed reduced hybridization signals with this probe, but nevertheless retained sequences homologous to the coding sequence for the SM1 epitope. However, meningococci producing class II pili could be divided into two groups on the basis of their reaction with the PS1 probe: half the strains tested failed to react, which is consistent with our previous analysis of silent class I pilin sequences; the remainder reacted (relatively weakly) with the probe, suggesting that the silent pil sequences in these strains extend further towards the 5' end of the pilin gene than in strains studied previously. Some strains of Neisseria lactamica reacted weakly with both types of probe but failed to produce SM1-reactive pili. In contrast, isolates of Neisseria flava, Neisseria pharyngis, Neisseria sicca and a series of unrelated bacteria failed to react with both SM1 antibody and the DNA probes. This confirms that possession of 'gonococcal' pilin sequences is limited to the pathogenic neisseriae.  相似文献   

19.
The interactions of Neisseria meningitidis with cells of the meninges are critical to progression of the acute, compartmentalized intracranial inflammatory response that is characteristic of meningococcal meningitis. An important virulence mechanism of the bacteria is the ability to shed outer membrane (OM) blebs containing lipopolysaccharide (LPS), which has been assumed to be the major pro-inflammatory molecule produced during meningitis. Comparison of cytokine induction by human meningeal cells following infection with wild-type meningococci, LPS-deficient meningococci or after treatment with OM isolated from both organisms, demonstrated the involvement of non-LPS bacterial components in cell activation. Significantly, recognition of LPS-replete OM did not depend on host cell expression of Toll-like receptor (TLR)4, the accessory protein MD-2 or CD14, or the recruitment of LPS-accessory surface proteins heat shock protein (HSP)70, HSP90alpha, chemokine receptor CXCR4 and growth differentiation factor (GDF)5. In addition, recognition of LPS-deficient OM was not associated with the expression of TLR2 or any of these other molecules. These data suggest that during meningococcal meningitis innate recognition of both LPS and non-LPS modulins is dependent on the expression of as yet uncharacterized pattern recognition receptors on cells of the meninges. Moreover, the biological consequences of cellular activation by non-LPS modulins suggest that clinical intervention strategies based solely on abrogating the effects of LPS are likely to be only partially effective.  相似文献   

20.
Entry of Neisseria meningitidis (the meningococcus) into human brain microvascular endothelial cells (HBMEC) is mediated by fibronectin or vitronectin bound to the surface protein Opc forming a bridge to the respective integrins. This interaction leads to cytoskeletal rearrangement and uptake of meningococci. In this study, we determined that the focal adhesion kinase (FAK), which directly associates with integrins, is involved in integrin-mediated internalization of N. meningitidis in HBMEC. Inhibition of FAK activity by the specific FAK inhibitor PF 573882 reduced Opc-mediated invasion of HBMEC more than 90%. Moreover, overexpression of FAK mutants that were either impaired in the kinase activity or were not capable of autophosphorylation or overexpression of the dominant-negative version of FAK (FRNK) blocked integrin-mediated internalization of N. meningitidis. Importantly, FAK-deficient fibroblasts were significantly less invaded by N. meningitidis. Furthermore, N. meningitidis induced tyrosine phosphorylation of several host proteins including the FAK/Src complex substrate cortactin. Inhibition of cortactin expression by siRNA silencing and mutation of critical amino acid residues within cortactin, that encompass Arp2/3 association and dynamin binding, significantly reduced meningococcal invasion into eukaryotic cells suggesting that both domains are critical for efficient uptake of N. meningitidis into eukaryotic cells. Together, these results indicate that N. meningitidis exploits the integrin signal pathway for its entry and that FAK mediates the transfer of signals from activated integrins to the cytoskeleton. A cooperative interplay between FAK, Src and cortactin then enables endocytosis of N. meningitidis into host cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号