首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Organs developing as appendages of the ectoderm are initiated from epithelial thickenings called placodes. Their formation is regulated by interactions between the ectoderm and underlying mesenchyme, and several signalling molecules have been implicated as activators or inhibitors of placode formation. Ectodysplasin (Eda) is a unique signalling molecule in the tumour necrosis factor family that, together with its receptor Edar, is necessary for normal development of ectodermal organs both in humans and mice. We have shown previously that overexpression of the Eda-A1 isoform in transgenic mice stimulates the formation of several ectodermal organs. In the present study, we have analysed the formation and morphology of placodes using in vivo and in vitro models in which both the timing and amount of Eda-A1 applied could be varied. The hair and tooth placodes of K14-Eda-A1 transgenic embryos were enlarged, and extra placodes developed from the dental lamina and mammary line. Exposure of embryonic skin to Eda-A1 recombinant protein in vitro stimulated the growth and fusion of placodes. However, it did not accelerate the initiation of the first wave of hair follicles giving rise to the guard hairs. Hence, the function of Eda-A1 appears to be downstream of the primary inductive signal required for placode initiation during skin patterning. Analysis of BrdU incorporation indicated that the formation of the epithelial thickening in early placodes does not involve increased cell proliferation and also that the positive effect of Eda-A1 on placode expansion is not a result of increased cell proliferation. Taken together, our results suggest that Eda-A1 signalling promotes placodal cell fate during early development of ectodermal organs.  相似文献   

2.
3.
X-linked and autosomal forms of anhidrotic ectodermal dysplasia syndromes (HED) are characterized by deficient development of several ectodermal organs, including hair, teeth and exocrine glands. The recent cloning of the genes that underlie these syndromes, ectodysplasin (ED1) and the ectodysplasin A receptor (EDAR), and their identification as a novel TNF ligand-receptor pair suggested a role for TNF signaling in embryonic morphogenesis. In the mouse, the genes of the spontaneous mutations Tabby (Ta) and downless (dl) were identified as homologs of ED1 and EDAR, respectively. To gain insight into the function of this signaling pathway in development of skin and hair follicles, we analyzed the expression and regulation of Eda and Edar in wild type as well as Tabby and Lef1 mutant mouse embryos. We show that Eda and Edar expression is confined to the ectoderm and occurs in a pattern that suggests a role of ectodysplasin/Edar signaling in the interactions between the ectodermal compartments and the formation and function of hair placodes. By using skin explant cultures, we further show that this signaling pathway is intimately associated with interactions between the epithelial and mesenchymal tissues. We also find that Ta mutants lack completely the placodes of the first developing tylotrich hairs, and that they do not show patterned expression of placodal genes, including Bmp4, Lef1, Shh, Ptch and Edar, and the genes for beta-catenin and activin A. Finally, we identified activin as a mesenchymal signal that stimulates Edar expression and WNT as a signal that induces Eda expression, suggesting a hierarchy of distinct signaling pathways in the development of skin and hair follicles. In conclusion, we suggest that Eda and Edar are associated with the onset of ectodermal patterning and that ectodysplasin/edar signaling also regulates the morphogenesis of hair follicles.  相似文献   

4.
Wnts are secreted glycoproteins implicated in diverse processes during embryonic patterning in metazoans. They signal through seven-transmembrane receptors of the Frizzled (Fz) family [1] to stabilise β-catenin [2]. Wnts are antagonised by several extracellular inhibitors including the product of the dickkopf1 (dkk1) gene, which was identified in Xenopus embryos and is a member of a multigene family. The dkk1 gene acts upstream of the Wnt pathway component dishevelled but its mechanism of action is unknown [3]. Although the function of Dkk1 as a Wnt inhibitor in vertebrates is well established [3], [4], [5] and [6], the effect of other Dkks on the Wnt/β-catenin pathway is unclear. Here, we report that a related family member, Dkk2, activates rather than inhibits the Wnt/β-catenin signalling pathway in Xenopus embryos. Dkk2 strongly synergised with Wnt receptors of the Fz family to induce Wnt signalling responses. The study identifies Dkk2 as a secreted molecule that is able to activate Wnt/β-catenin signalling. The results suggest that a coordinated interplay between inhibiting dkk1 and activating dkk2 can modulate Fz signalling.  相似文献   

5.
During embryonic and postnatal development, Wnt/beta-catenin signaling is involved in several stages of hair morphogenesis from placode formation to hair shaft differentiation. Using a transgenic approach, we have investigated further the role of beta-catenin signaling in embryonic hair development. Forced epithelial stabilization of beta-catenin resulted in precocious and excessive induction of hair follicles even in the absence of Eda/Edar signaling, a pathway essential for primary hair placode formation. In addition, the spacing and size of the placodes was randomized. Surprisingly, the down-growth of follicles was suppressed and hair shaft production was severely impaired. Gene and reporter expression analyses revealed elevated mesenchymal Wnt activity, as well as increased BMP signaling, throughout the skin that was accompanied by upregulation of Sostdc1 (Wise, ectodin) expression. Our data suggest that BMPs are downstream of Wnt/beta-catenin and that their interplay may be a critical component in establishing correct patterning of hair follicles through the reaction-diffusion mechanism.  相似文献   

6.
Stimulation of ectodermal organ development by Ectodysplasin-A1   总被引:11,自引:0,他引:11  
Organs developing as ectodermal appendages share similar early morphogenesis and molecular mechanisms. Ectodysplasin, a signaling molecule belonging to the tumor necrosis factor family, and its receptor Edar are required for normal development of several ectodermal organs in humans and mice. We have overexpressed two splice forms of ectodysplasin, Eda-A1 and Eda-A2, binding to Edar and another TNF receptor, Xedar, respectively, under the keratin 14 (K14) promoter in the ectoderm of transgenic mice. Eda-A2 overexpression did not cause a detectable phenotype. On the contrary, overexpression of Eda-A1 resulted in alterations in a variety of ectodermal organs, most notably in extra organs. Hair development was initiated continuously from E14 until birth, and in addition, the transgenic mice had supernumerary teeth and mammary glands, phenotypes not reported previously in transgenic mice. Also, hair composition and structure was abnormal, and the cycling of hairs was altered so that the growth phase (anagen) was prolonged. Both hairs and nails grew longer than normal. Molar teeth were of abnormal shape, and enamel formation was severely disturbed in incisors. Furthermore, sweat gland function was stimulated and sebaceous glands were enlarged. We conclude that ectodysplasin-Edar signaling has several roles in ectodermal organ development controlling their initiation, as well as morphogenesis and differentiation.  相似文献   

7.
A novel function of NF-kappaB in the development of most ectodermal appendages, including two types of murine pelage hair follicles, was detected in a mouse model with suppressed NF-kappaB activity (c(IkappaBalphaDeltaN)). However, the developmental processes regulated by NF-kappaB in hair follicles has remained unknown. Furthermore, the similarity between the phenotypes of c(IkappaBADeltaN) mice and mice deficient in Eda A1 (tabby) or its receptor EdaR (downless) raised the issue of whether in vivo NF-kappaB regulates or is regulated by these novel TNF family members. We now demonstrate that epidermal NF-kappaB activity is first observed in placodes of primary guard hair follicles at day E14.5, and that in vivo NF-kappaB signalling is activated downstream of Eda A1 and EdaR. Importantly, ectopic signals which activate NF-kappaB can also stimulate guard hair placode formation, suggesting a crucial role for NF-kappaB in placode development. In downless and c(IkappaBalphaDeltaN) mice, placodes start to develop, but rapidly abort in the absence of EdaR/NF-kappaB signalling. We show that NF-kappaB activation is essential for induction of Shh and cyclin D1 expression and subsequent placode down growth. However, cyclin D1 induction appears to be indirectly regulated by NF-kappaB, probably via Shh and Wnt. The strongly decreased number of hair follicles observed in c(IkappaBalphaDeltaN) mice compared with tabby mice, indicates that additional signals, such as TROY, must regulate NF-kappaB activity in specific hair follicle subtypes.  相似文献   

8.
Cranial placodes are specialized ectodermal regions in the developing vertebrate head that give rise to both neural and non-neural cell types of the neuroendocrine system and the sense organs of the visual, olfactory and acoustic systems. The cranial placodes develop from a panplacodal region which is specifically marked by genes of the eyes absent/eya and two “six homeobox” family members (sine oculis/six1 and six4). It had been believed that cranial placodes are evolutionary novelties of vertebrates. However, data from non-vertebrate chordates suggest that placode-like structures evolved in the chordate ancestor already. Here, we identify a morphological structure in the embryonic head of the beetle Tribolium castaneum with placode-like features. It is marked by the orthologs of the panplacodal markers Tc-six4, Tc-eya and Tc-sine oculis/six1 (Tc-six1) and expresses several genes known to be involved in adenohypophyseal placode development in vertebrates. Moreover, it contributes to both epidermal and neural tissues. We identify Tc-six4 as a specific marker for this structure that we term the insect head placode. Finally, we reveal the regulatory gene network of the panplacodal genes Tc-six4, Tc-eya and Tc-six1 and identify them as head epidermis patterning genes. Our finding of a placode-like structure in an insect suggests that a placode precursor was already present in the last common ancestor of bilaterian animals.  相似文献   

9.
10.
Dickkopf (dkk) genes belong to the family of secreted wnt-inhibitors with conserved cysteine-rich domains. In contrast to the prototype dkk1, dkk3 does not modulate canonical Wnt/β-catenin signalling. Until now, neither functions nor interaction partners of dkk3 in lower vertebrates have been described. In this study we cloned two dkk3 homologues dkk3a(dkk3l) and dkk3b(dkk3) and a dkk1 homologue dkk1a of the zebrafish and studied their expression patterns during embryonic development in comparison to the known dkk1b gene. Moreover, mutants with defects in hedgehog signalling (smo), notch (mib) signalling, nodal signalling (Zoep) or retinoic acid synthesis (neckless) were analyzed for changes in dkk3 gene expression.In situ hybridization analyses showed a dynamic expression of dkk1a and dkk1b primarily in epidermal structures of the otic vesicle, lens, branchial arches and fin folds. While dkk1a was expressed mainly in deep tissues, dkk1b expression was mainly found in protrusions at the outer surface of the branchial arch epidermis. In contrast, dkk3 genes showed expression in different tissues. Strong signals for dkk3a(dkk3l) were present in various neuronal structures of the head, whereas dkk3b(dkk3) expression was restricted mainly to endocrine cells of the pancreas and to the brachial arches.In summary, both dkk3 genes display a unique and distinct expression pattern in late embryonic development, pointing to a specific role during neuronal and pancreatic cell differentiation.  相似文献   

11.
12.
Mechanisms of ectodermal organogenesis   总被引:17,自引:0,他引:17  
All ectodermal organs, e.g. hair, teeth, and many exocrine glands, originate from two adjacent tissue layers: the epithelium and the mesenchyme. Similar sequential and reciprocal interactions between the epithelium and mesenchyme regulate the early steps of development in all ectodermal organs. Generally, the mesenchyme provides the first instructive signal, which is followed by the formation of the epithelial placode, an early signaling center. The placode buds into or out of the mesenchyme, and subsequent proliferation, cell movements, and differentiation of the epithelium and mesenchyme contribute to morphogenesis. The molecular signals regulating organogenesis, such as molecules in the FGF, TGFbeta, Wnt, and hedgehog families, regulate the development of all ectodermal appendages repeatedly during advancing morphogenesis and differentiation. In addition, signaling by ectodysplasin, a recently identified member of the TNF family, and its receptor Edar is required for ectodermal organ development across vertebrate species. Here the current knowledge on the molecular regulation of the initiation, placode formation, and morphogenesis of ectodermal organs is discussed with emphasis on feathers, hair, and teeth.  相似文献   

13.
Mammary glands, like other skin appendages such as hair follicles and teeth, develop from the surface epithelium and underlying mesenchyme; however, the molecular controls of embryonic mammary development are largely unknown. We find that activation of the canonical WNT/beta-catenin signaling pathway in the embryonic mouse mammary region coincides with initiation of mammary morphogenesis, and that WNT pathway activity subsequently localizes to mammary placodes and buds. Several Wnt genes are broadly expressed in the surface epithelium at the time of mammary initiation, and expression of additional Wnt and WNT pathway genes localizes to the mammary lines and placodes as they develop. Embryos cultured in medium containing WNT3A or the WNT pathway activator lithium chloride (LiCl) display accelerated formation of expanded placodes, and LiCl induces the formation of ectopic placode-like structures that show elevated expression of the placode marker Wnt10b. Conversely, expression of the secreted WNT inhibitor Dickkopf 1 in transgenic embryo surface epithelium in vivo completely blocks mammary placode formation and prevents localized expression of all mammary placode markers tested. These data indicate that WNT signaling promotes placode development and is required for initiation of mammary gland morphogenesis. WNT signals play similar roles in hair follicle formation and thus may be broadly required for induction of skin appendage morphogenesis.  相似文献   

14.
The late differentiation of the ectodermal layer is analysed in the ascidians Ciona intestinalis and Botryllus schlosseri, by means of light and electron microscopy, in order to verify the possible presence of placodal structures. Cranial placodes, ectodermal regions giving rise to nonepidermal cell types, are classically found exclusively in vertebrates; however, data are accumulating to demonstrate that the nonvertebrate chordates possess both the genetic machinery involved in placode differentiation, and ectodermal structures that are possible homologues of vertebrate placodes. Here, the term "placode" is used in a broad sense and defines thickenings of the ectodermal layer that can exhibit an interruption of the basal lamina where cells delaminate, and so are able to acquire a nonepidermal fate. A number of neurogenic placodes, ones capable of producing neurons, have been recognised; their derivatives have been analysed and their possible homologies with vertebrate placodes are discussed. In particular, the stomodeal placode may be considered a multiple placode, being composed of different sorts of placodes: part of it, which differentiates hair cells, is discussed as homologous to the octavo-lateralis placodes, while the remaining portion, giving rise to the ciliated duct of the neural gland, is considered homologous to the adenohypophyseal placode. The neurohypophyseal placode may include the homologues of the hypothalamus and vertebrate olfactory placode; the rostral placode, producing the sensorial papillae, may possibly be homologous to the placodes of the adhesive gland of vertebrates.  相似文献   

15.
In vertebrates, cranial placodes form crucial parts of the sensory nervous system in the head. All cranial placodes arise from a common territory, the preplacodal region, and are identified by the expression of Six1/4 and Eya1/2 genes, which control different aspects of sensory development in invertebrates as well as vertebrates. While So and Eya can induce ectopic eyes in Drosophila, the ability of their vertebrate homologues to induce placodes in non-placodal ectoderm has not been explored. Here we show that Six1 and Eya2 are involved in ectodermal patterning and cooperate to induce preplacodal gene expression, while repressing neural plate and neural crest fates. However, they are not sufficient to induce ectopic sensory placodes in future epidermis. Activation of Six1 target genes is required for expression of preplacodal genes, for normal placode morphology and for placode-specific Pax protein expression. These findings suggest that unlike in the fly where the Pax6 homologue Eyeless acts upstream of Six and Eya, the regulatory relationships between these genes are reversed in early vertebrate placode development.  相似文献   

16.
Fgf and Wnt signalling have been shown to be required for formation of the otic placode in vertebrates. Whereas several Fgfs including Fgf3, Fgf8 and Fgf10 have been shown to participate during early placode induction, Wnt signalling is required for specification and maintenance of the otic placode, and dorsal patterning of the otic vesicle. However, the requirement for specific members of the Wnt gene family for otic placode and vesicle formation and their potential interaction with Fgf signalling has been poorly defined. Due to its spatiotemporal expression during placode formation in the hindbrain Wnt8a has been postulated as a potential candidate for its specification. Here we have examined the role of Wnt8a during formation of the otic placode and vesicle in mouse embryos. Wnt8a expression depends on the presence of Fgf3 indicating a serial regulation between Fgf and Wnt signalling during otic placode induction and specification. Wnt8a by itself however is neither essential for placode specification nor redundantly required together with Fgfs for otic placode and vesicle formation. Interestingly however, Wnt8a and Fgf3 are redundantly required for expression of Fgf15 in the hindbrain indicating additional reciprocal interactions between Fgf and Wnt signalling. Further reduction of Wnt signalling by the inactivation of Wnt1 in a Wnt8a mutant background revealed a redundant requirement for both genes during morphogenesis of the dorsal portion of the otic vesicle.  相似文献   

17.
The neural–epidermal boundary tissues include the neural crest and preplacodal ectoderm (PPE) as primordial constituents. The PPE region is essential for the development of various sensory and endocrine organs, such as the anterior lobe of the pituitary, olfactory epithelium, lens, trigeminal ganglion, and otic vesicles. During gastrulation, a neural region is induced in ectodermal cells that interacts with mesendodermal tissue and responds to several secreted factors. Among them, inhibition of bone morphogenetic protein (BMP) in the presumptive neuroectoderm is essential for the induction of neural regions, and formation of a Wnt and fibroblast growth factor (FGF) signaling gradient along the midline determines anterior–posterior patterning. In this study, we attempted to specifically induce PPE cells from undifferentiated Xenopus cells by regulating BMP, Wnt, and FGF signaling. We showed that the proper level of BMP inhibition with an injection of truncated BMP receptor or treatment with a chemical antagonist triggered the expression of PPE genes. In addition, by varying the amount of injected chordin, we optimized specific expression of the PPE genes. PPE gene expression is increased by adding an appropriate dose of an FGF receptor antagonist. Furthermore, co‐injection with either wnt8 or the Wnt inhibitor dkk‐1 altered the expression levels of several region‐specific genes according to the injected dose. We specifically induced PPE cell differentiation in animal cap cells from early‐stage Xenopus embryos by modulating BMP, Wnt, and FGF signaling. This is not the first research on placode induction, but our simple method could potentially be applied to mammalian stem cell systems. genesis 53:652–659, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

18.
19.
A method for the determination of clenbuterol (4-amino-3,5-dichloro-α[(tert.-butylamino)methyl]-benzyl alcohol hydrochloride) in hair of living cows has been developed. Hair samples were digested in an alkaline medium. The diphasic dialysis technique is a semi-permeable membrane technology developed for the direct extraction of relatively low-molecular-mass analytes such as clenbuterol. In this case, we used sodium citrate buffer to homogenize the digested hair, dichloromethane was used as the extraction solvent at 37°C, and stirring was applied at 150 rpm for 4 h. The analysis was carried out using gas chromatography–mass spectrometry. The calibration curve for clenbuterol in hair was linear in the range from 12.5 to 400 ng g−1. The detection limit of clenbuterol was 5 ng g−1 and the quantification limit was 12.5 ng g−1, in hair. A good inter-day reproducibility was obtained (R.S.D.=7.08%). The repeatability and intra-day reproducibility (50 ng g−1 of hair, n=10) show R.S.D.s of 7.1 and 9.5%, respectively.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号