首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
THE SYNTHESIS OF ACETYLCHOLINE BY THE OLIVOCOCHLEAR BUNDLE   总被引:1,自引:1,他引:0  
Abstract— Choline acetyltransferase (ChAc; EC 2.3.1.6) was assayed in the membranous cochlea and in the eighth cranial nerve (both the vestibular and cochlear components) from the point where it leaves the brain stem to the internal auditory meatus of the cat. To determine the contribution of the efferent innervation of the cochlea to this enzymatic activity both eighth nerves and both membranous cochleae were assayed at 17–29 days following section of the right, crossed and uncrossed olivo-cochlear bundles (OCB) in the cat. The lesion was produced along the right sulcus limitans on the floor of the fourth ventricle. The left eighth nerves and cochleae served as controls in the ChAc assay. There was a significant decrease in ChAc activity in the right cochlea and eighth nerve after OCB section and degeneration. The mean activity of ChAc in the right cochleae of the 6 operated cats was 15 ± 7 μg of ACh formed. h−1 (g wet wt. of tissue) −1 in comparison to the rate of all the intact cochleae of 156 ± 38 μg of ACh formed. h−1. (g of tissue)−1, a statistically significant difference ( P < 0005). The mean activity of ChAc in the right eighth nerves of the cats with OCB lesions was 30 ± 8 n-g of ACh formed. h−1. (g of tissue)−1in comparison to 91 ± 19 fig of ACh formed . h−1. (g of tissue)−1 found for intact eighth nerves. This difference was also significant ( P < 0005). Thus, section and degeneration of the crossed and uncrossed OCB reduce the activity of ChAc in the eighth nerve and membranous cochlea. This finding provides support for the hypothesis suggesting the cholinergic nature of olivo-cochlear transmission.  相似文献   

2.
Abstract— Crude or purified rat brain choline acetyltransferase (ChAc) is activated by anions. Among anions, Cl is the most effective and may promote an up to 60 fold increase in V max. In the absence of Cl, at low ionic strength, acetylcholine (ACh) is a good ChAc inhibitor ( K i= 0.310 m m ). The ACh inhibition becomes negligible when Cl is increased to 145 m m (ACh K i= 45 m m ). These results are discussed in terms of regulation of ACh synthesis by nerve terminals. It is proposed that ChAc is part of a presynaptic membrane bound multienzymatic complex under direct control of the ion fluxes promoted by nerve impulses.  相似文献   

3.
Antennae of the moth, Manduca sexta, are thickly populated with sensory neurons, which send axons through antennal nerves to the brain. These neurons arise by cell divisions and differentiate synchronously during the 18 days of metamorphosis from pupa to adult. Biochemical studies support the hypothesis that antennal neurons use acetylcholine (ACh) as a neurotransmitter: (1) Antennae incubated with [14C]choline synthesize and store [14C]ACh; several other transmitter candidates do not accumulate detectably when appropriate radioactive precursors are supplied; (2) antennae and antennal nerves contain endogenous ACh; and (3) extracts of mature antennae contain choline acetyltransferase (ChAc) and acetylcholinesterase (AChE) with properties similar to those reported for the enzymes from other arthropods. Levels of ACh, ChAc, and AChE begin to increase in antennae soon after the sensory neurons are “born.” Levels rise exponentially for over a week as the neurons differentiate and then reach a plateau, at about the time the neurons reach morphological maturity, that is maintained into adulthood. In contrast, levels of carnitine acetyltransferase, cholinesterase, and soluble protein, presumably not confined to nervous tissue, change little during metamorphosis. Levels of ACh, ChAc, and AChE rise in an intracranial segment of antennal nerve at about the same time as in the antenna, indicating that axons can transport neurotransmitter machinery at an early stage in their development.  相似文献   

4.
CHOLINE ACETYLTRANSFERASE ACTIVITY IN LARGE VENTRAL SPINAL NEURONS   总被引:4,自引:2,他引:2  
Abstract— Up to approx 3 pmol of acetylcholine (ACh)/h/cell body was synthesized by perikarya of large spinal neurons isolated in bulk fractions from bovine ventral spinal cord. Many of the cell bodies are probably derived from motoneurons. A medium of low ionic strength and pH was used to minimize losses of soluble acetyl CoA:choline- o -acetyltransferase (ChAc; EC 2.3.1.6) from the neurons, whose permeability properties were altered. Such a medium also increased the retention of other soluble proteins by the cell bodies. The maximal rate of hydrolysis of ACh by the isolated neurons exceeded that of its synthesis by a factor of at least 100. It was estimated that ChAc and acetylcholinesterase (AChE; EC 3.1.1.7) each represent less than 0.01% by weight of the total protein in these cell bodies and that as little as 10% of each enzyme in the ventral spinal cord is located within the large neuronal somata and their proximal processes.  相似文献   

5.
Abstract— (1) On analysis of human brain tissue to determine its choline acetyltransferase (ChAc) content the recovery of enzyme from many regions is very poor when the tissue is acetone-dried and then extracted in the standard manner; for this reason the method is unsuitable when quantitative recoveries are required; it is preferable to prepare sucrose homogenates and activate these with ether before incubation.
(2) From measurements made on homogenates of one adult brain the highest concentration of ChAc was found in the putamen and the lowest in the corpus callosum. The caudate nucleus also had a high activity. As in other mammals, the concentration of enzyme in the cerebellum was found to be low. Analogous results were obtained on a nine-year-old brain but the level of ChAc activity was generally higher than in the older brain.
(3) During foetal development up to thirty-two weeks, ChAc is higher in the cerebellum than in the caudate, the thalamus, corpora quadrigemina, medulla and spinal cord. In all regions the concentration and total amount of enzyme rise fairly steadily up to this time; between 24 and 32 weeks, however, its concentration in the cerebellum and corpora quadrigemina falls slightly although the total increases considerably.
(4) Comparison of the results with the data of other authors indicates general agreement between the distribution of the enzyme in the human brain and its distribution in other mammals, especially the rhesus monkey. The corpus callosum may be an exception since in man it contains little ChAc while in lower mammals it seems to have relatively high concentrations of both ACh and ChAc.
(5) In comparing the values for ChAc reported here with the values for AChE reported by others, three tissues, the globus pallidus, substantia nigra and cerebellum are found to be exceptional in that relative to their concentration in the caudate the activity of ChAc is only about one-tenth that of AChE.  相似文献   

6.
The nerves from the walking leg of lobster released acetylcholine (ACh) even when the ends were tied off, although this release was significantly increased when the nerve endings were not tied. The resting nerves were kept in sea water containing physostigmine. In absence of physostigmine no ACh was found in the surrounding fluid. Removal of Ca from the sea water reduced the release of ACh, while increased concentrations of Ca had no significant effect. Removal of Mg++ or increased Mg++ concentrations in the presence of normal Ca++ concentrations increased the release of ACh. Increased K+ concentrations had a stimulating action on the efflux of ACh. Increased or reduced Na+ concentrations had only slight effects on the release of ACh in resting lobster nerve. During the 4 hr observation period the excised nerves were still able to synthesize ACh. The choline acetylase activity was stimulated by increased concentrations of Mg++ and K+. The effects of ions on the release of ACh are similar to those reported at the junction.  相似文献   

7.
CHOLINE: SELECTIVE ACCUMULATION BY CENTRAL CHOLINERGIC NEURONS   总被引:20,自引:8,他引:12  
Abstract— Most of the cholinergic input to the hippocampus was destroyed by placement of lesions in the medial septal area. In animals with such lesions we found that hippocampal ChAc activity was reduced by 85–90% and endogenous acetylcholine levels were reduced by more than 80 %. When hippocampal synaptosomes from animals with lesions were incubated with [3H]choline at concentrations of 7.5 nm, 1 μm and 10 μm there was approximately a 60 % reduction in the uptake of [3H]choline, suggesting that cholinergic nerve endings were mainly responsible for [3H]choline uptake. At 0.1 mm concentrations of [3H]choline, there was only a 25 % reduction of choline uptake, suggesting that at higher concentrations of choline there was more nonspecific uptake. The uptake of radiolabelled tryptophan, glutamate and GABA were only slightly or not at all affected by the lesions. There was a significant reduction of uptake of radiolabelled serotonin and norepinephrine, since known monoaminergic tracts were disrupted. Choline uptake was reduced only in brain regions in which cholinergic input was interrupted (i.e. the cerebral cortex and hippocampus) and remained unchanged in other regions (i.e. the cerebellum and striatum). The time course of the reduction in choline uptake was similar to that of the reductions in ChAc activity and endogenous ACh levels; there was no decrease at 1 day, a significant decrease at 2 days, and the maximal decrease at 4 days postlesion. There was a close correlation among choline uptake, ChAc activity and ACh levels in the four brain regions examined (i.e. the striatum, cerebral cortex, hippocampus and cerebellum). Our results suggest that when hippocampal synaptosomes (and perhaps synaptosomes from other brain areas as well) are incubated in the presence of choline, at concentrations of 10 μm m or lower, then cholinergic nerve endings are responsible for the bulk of the choline accumulated by the tissue.  相似文献   

8.
Abstract— The synthesis of ACh by choline acetyltransferase (ChAc) has been examined using acetyl-CoA, acetyl-dephospho-CoA and acetylpantetheine phosphate. At pH 7.5 Km values of 25.7 μ m for acetyl-CoA, 54.8 μ m for acetyl-dephospho-CoA and 382 μ m for acetylpantetheine phosphate were obtained and are similar to those at pH 6.0. This indicates that the 3-phosphate may not be required for binding the substrate to the enzyme unlike carnitine acetyltransferase.
Inhibitor constants ( Ki ) for CoA, dephospho-CoA and pantetheine phosphate were also measured and when considered with the Km values obtained for the acetyl derivatives it is concluded that acetyl-dephospho-CoA could be a successful acetyl donor in the synthesis of ACh.
Acetyl-dephospho-CoA was found to be less satisfactory as a substrate for citrate synthase.  相似文献   

9.
Single muscle fibers from lobster walking legs are effectively impermeable to Na, but are permeable to K. They shrink in hyperosmotic NaCl; they swell in low NaCl media which are hyposmotic or which are made isosmotic with the addition of KCl. In conformity, the membrane potential is relatively insensitive to changes in external Na, while it responds according to the Nernst relation for changes in external K. When the medium is made isosmotic or hyperosmotic with RbCl the volume and membrane potential changes are of essentially the same magnitudes as those in media enriched with KCl. The time courses for attaining equilibrium are slower, indicating that Rb is less permeant than K. Substitution of CsCl for NaCl (isosmotic condition) produces no change in volume of the muscle fiber. Addition of CsCl (hyperosmotic condition) causes a shrinkage which attains a steady state, as is the case in hyperosmotic NaCl. Osmotically, therefore, Cs appears to be no more permeant than is Na. However, the membrane depolarizes slowly in Cs-enriched media and eventually comes to behave as an ideal Cs electrode. Thus, the electrode properties of the lobster muscle fiber membrane may not depend upon the diffusional relations of the membrane and ions, and the osmotic permeability of the membrane for a given cation may not correspond with the electrophysiologically deduced permeability. Comparative data on the effects of NH4 and Li are also included and indicate several other degrees of complexity in the cell membrane.  相似文献   

10.
Abstract— Choline acetyltransferase (EC 2.3.1.6) was partially purified from human caudate nucleus and putamen, human sciatic nerve, rabbit and rat brain, and rabbit sciatic nerve. Kinetic constants were determined under the same conditions for all six extracts. Extrapolated Km values were between 6.6 and 18 μM for acetyl-CoA and between 0.4 and 1.2 mM for choline. Product inhibition patterns indicated that ChAc from both central and peripheral nervous tissues of man and the rabbit obeys a Theorell-Chance mechanism. Kinetic parameters suggest a possible influence on ACh synthesis of the in vivo concentration ratio, CoA/acetyl-CoA.  相似文献   

11.
Abstract— The present study was undertaken to characterize the cholinergic system of primary cell cultures of mouse and rat CNS.
In confirmation of previous reports, primary cultures were found to contain choline acetyltransferase (ChAc). Furthermore they contain acetylcholine (ACh) as measured by two different bioassays. They also synthesize [3H]ACh from [3H]Choline offered to the cultures.
The formation of [3H]ACh is inhibited in the presence of hemicholinium-3 (10−6 m ) to 50% or ouabain (10−3 m ) to 20% of the values found in untreated cultures. Omission of Na + from the incubation solution also diminishes the [3H]ACh formation of the cells.
[3H]ACh is released upon depolarisation by K+ ions in a concentration dependent manner. The release can be prevented by lack of Ca2+ ions in the incubation solution.  相似文献   

12.
The choline acetyltransferase (ChAc) activity was measured in the optic centres of chick embryos after early removal of the optic cup and of young chicks after monolateral extirpation of the right eyeball after hatching. The contralateral optic lobes were thus deprived of their complement of retinal fibres. The following results were obtained: in chick embryos the ChAc was slightly lower in the deafferented lobe between the 10th and the 14th day of incubation; between the 14th and the 17th day a critical fall in activity was observed leading to a significant ChAc loss of 71 per cent. In eye deprived chicks no significant change in total ChAc activity occurred during the first postoperative month; significant changes were found only in the second month. The results reached so far suggest that removal of retinal fibres does not cause short term changes in optic centre ChAc in either the embryo or the chick. ChAc contained in nerve cell bodies seems independent of synapses and its behaviour is interpreted as a reflection of metabolic disturbance of the centre.  相似文献   

13.
Abstract— Four antisera active against choline acetyltransferase (ChAc) were obtained by injecting 22 rabbits with rat brain ChAc. The ChAc preparations used for immunization (specific activity from 015 to 2 μmol/min/mg of protein) were not pure and the antisera produced were not monospecific. The antisera inhibited and precipitated ChAc, but the precipitated enzyme-antibody complexes still retain ChAc activity. One millilitre of the most active serum precipitates 0–5 μmol/min of rat brain ChAc at the equivalence point. Its titre expressed in mg/ml of immunoglobulins precipitated with the antigen and the equivalence point was calculated at about 0.08 mg/ml of serum. This relatively low titre explains the lack of any visible ChAc immunoprecipitate in an immunodiffusion test. Cross-reactivity studies revealed that ChAc has undergone few changes during evolution, since antisera produced against rat brain ChAc still precipitate ChAc from fish (Torpedo).  相似文献   

14.
—The regulation of [14C]ACh synthesis was studied in rat striatal synaptosomes incubated in presence of various concentrations of Triton X-100, using [2-14C]pyruvate or [6-14C]glucose as precursors. The progressive rupture of the cytoplasmic and mitochondrial compartments induced by the non-ionic detergent was followed by studying the release, into the incubating medium, of lactate dehydrogenase and choline acetyltransferase (ChAc) and of fumarate hydratase, respectively. [3H]Choline uptake (1 μm ) was measured to determine the activity of the high affinity choline permease. 14CO2 formation from [2-14C]pyruvate was used as an index of the Krebs cycle activity. The rate of [14C]ACh synthesis from [2-14C] pyruvate was dependent on the Triton X-100 concentration; the ester formation decreased between 0·001% (v/v) and 0·010%, but increased again beyond this concentration of detergent. This last phenomenon was interpreted as the result of an extracellular synthesis of ACh involving pyruvate dehydrogenase and ChAc. At 0·002% Triton X-100 the 14CO2 formation was not affected, indicating a normal mitochondrial activity. The decrease of [14C]ACh synthesis observed up to this detergent concentration could be correlated to the decline of the highaffinity choline permease activity. In these experimental conditions, the ester synthesis could not be restored by the addition of large amounts of choline in the incubating medium suggesting that the molecules of choline must cross the high-affinity choline permease system in order to be acetylated. This could indicate a close association between the permease and choline acetyltransferase.  相似文献   

15.
Abstract— The transport, distribution and turnover of choline O -acetyltransferase (ChAc, EC 2.3.1.6) and acetylcholinesterase (AChE, EC 3.1.1.7) in the vagus and hypoglossal nerves were studied in adult rabbits. The enzymes accumulated proximally and distally to single and double ligatures on both nerves and thus indicated both a proximo-distal and retrograde flow of the enzymes. Double ligature experiments indicated that only 5–20 per cent of the enzymes were mobile in the axon. The rate of accumulation of both enzymes above a single ligature corresponded to the slow rate of axonal flow provided that all the enzymes were mobile, but to an intermediate or fast flow if only a small part of the enzymes was transported. The distribution of ChAc along the hypoglossal neurons was studied and only 2 per cent of ChAc was confined to cell bodies, 42 per cent was localized to the main hypoglossal nerve trunks and 56 per cent to the preterminal axons and axon terminals in the tongue. The ratio of AChE to ChAc was about 3 in the hypoglossal nerve and 32 in the vagus nerve.
Transection of the hypoglossal nerve was followed by a decrease in the activity of ChAc in the hypoglossal nucleus and nerve and in the axons and their terminals in the tongue. The activity of AChE decreased in the hypoglossal nucleus and nerve but not in the tongue. The half-life of ChAc in preterminal axons and terminals of the hypoglossal nerve was estimated to be 16-21 days from the results obtained on transport, axotomy and distribution of the enzyme. Intracisternal injection of colchicine inhibited the cellulifugal transport of both enzymes and led to an increase in enzyme activity in the hypoglossal nucleus.  相似文献   

16.
Synopsis Histochemical techniques were employed for the localization of choline acetyltransferase (ChAc; EC 2.3.1.6.), acetylcholinesterase (AChE; EC 3.1.1.7) and cholinesterase (ChE; EC 3.1.1.8) activities in dorsal and ventral roots and dorsal root ganglia of the bullfrog. AChE activity was present in most of the neuronal elements of dorsal root ganglia, in some nerve fibres in the dorsal roots, and in all nerve fibres in ventral roots. ChE activity in dorsal root ganglia and in the dorsal roots was confined to non-neuronal elements. No ChE activity was demonstrable in the ventral roots. ChAc activity was localized in many neurons of the dorsal root ganglia and in some nerve fibres of the dorsal roots; however, none of the ventral root fibres were visibly reactive. Some supportive cells of the dorsal roots and ganglia contained small amounts of ChAc activity. Except for the ventral roots, the histochemical distribution of AChE and ChAc activity was similar. The results of solubility studies indicated that under the histochemical conditions, approximately 50% of the ChAc remained bound to the dorsal roots and ganglia, whereas more than 90% of the ChAc in the ventral roots was soluble. This would account for the lack of reactivity in ventral root fibres. Differences in ChAc solubility are discussed in relation to the interpretation of histochemical data and in relation to the concept of multiple forms of ChAc. The results of this study indicate that at least one-third of the neurons of the dorsal root ganglia contain significant levels of the enzymes involved in both the synthesis and hydrolysis of acetylcholine.  相似文献   

17.
—The distribution of choline acetyltransferase (ChAc, EC 2.3.1.6) and l -glutamate 1-carboxylyase (glutamate decarboxylase, GAD, EC 4.1.1.15) was studied in serial frontal slices of the substantia nigra (SN) (pars compacta, PC; pars reticulata, PR; an intermediate region, IR) as well as in other brain areas from post mortem tissue of control and Parkinsonian patients. Within the SN from control brain ChAc and GAD activities showed a distinctive distribution: ChAc activity in PC was higher than in PR and IR by 427% and 253% respectively and within PC the enzyme activity in the rostral part exceeded that in the control part by 353%. The GAD activity in PC was higher by 41% than that in PR and within PC seemed to be higher in the caudal than in the rostral part. For both enzyme activities there were no significant differences between PR and IR or within these regions. In Parkinsonian brain both ChAc and GAD activities were reduced to 15-25% of controls in all 3 regions of the SN. The distinctive distribution of ChAc and GAD activity found in the SN of control brain was abolished: no difference was observed between the 3 regions. However, within PC the ChAc activity was lower in the medial than in the rostral part. Since nigral ChAc is possibly located in interneurons, the decrease in enzyme activity may be connected with the cell loss observed in the SN of Parkinsonian brain. By contrast, nigral GAD is probably contained in terminals of strio-nigral neurons and the decrease in enzyme activity in Parkinson's disease in the absence of striatal cell loss, may reflect a change in the functional state of these GABA neurons. Among various areas of control brains ChAc activity was highest in caudate nucleus and putamen while GAD was highest in SN. caudate nucleus, putamen and cerebral cortex. In Parkinsonian brain the most severe reduction in ChAc and GAD activities was found in the SN.  相似文献   

18.
The ChAc activity of spinal and sympathetic ganglia was measured throughout the embryonic life of the chick. In spinal ganglia, the ChAc activity reached a first peak when the maximal proliferation of neuroblasts occurred. Then, the relative ChAc activity decreased. After the 12th day of incubation, the enzyme activity increased again and reached a second peak on the 16th day. In sympathetic ganglia, the general course of the development of ChAc activity was similar to spinal ganglia. However, higher enzymic activity was found. Furthermore, the earlier peak of ChAc activity occurred 48 hr later than the corresponding peak in spinal ganglia. The behaviour of ChAc activity in these two areas of the developing nervous system is interpreted as a function of their histogenesis.  相似文献   

19.
Abstract— Choline acetyltransferase (acetyl-CoA: choline O -acetyl transferase; EC 2.3.1.6; ChAc) purified from human brain (basal ganglia) and sciatic nerve were separated into apparent multiple enzyme forms by the method of isoelectric focusing (pH gradient 3-10) on acrylamide gel. A preparative separation of enzyme forms of human brain was accomplished by the column method, by using a sucrose gradient. When each separated form was re-electrofocused, only a portion of the ChAc activity was observed in its original pH region while more than one-half of the recovered activity for each fraction appeared at pH 7.8-8. Gel filtration and kinetic studies of separated forms indicated that the more acidic forms might be aggregates, while more basic forms might be configurational isomers. Human ChAc of sciatic nerve did not exhibit acidic forms on electrofocusing, but otherwise yielded an electrofocusing profile similar to that of human brain. ChAc of rabbit brain and sciatic nerve each exhibited only a single form at pH 7.1 ± 0.2. Although ChAc differs among species, the enzyme of brain and sciatic nerve of the same species cannot be clearly distinguished by electrofocusing.  相似文献   

20.
Abstract— In the lobster nerve the fixation of CO, at various levels of pCO2 was studied by the incorporation of [l-14C]pyruvate. Incorporation of 14C was solely dependent on CO2 fixation since the C-1 was decarboxylated in the formation of acetyl-CoA. Paired-nerve studies with [2-14C]pyruvate afforded a study of pyruvate metabolism in the lobster nerve. [I14C]Pyruvate was incorporated to nearly the same extent at all levels of pCO2 including zero pCO2, a finding that suggested metabolic recycling of CO2. The magnitude of the metabolic recycling of C-1 of pyruvate or pyruvate dismutation was estimated to be nearly 20 per cent of total CO2 fixation. Re-evaluation of the relative contributions of the CO2 fixation. and acetyl-CoA pathways on the basis of more extensive data gave a ratio of 2:3.
The pCO2 affected synthesis of ACh and the level of citrate. With increasing pCO2, the specific radioactivity of ACh decreased much more than the content of ACh. The decrease in the specific radioactivity of ACh but not that of citrate further suggested metabolic compartmentation. The implication of these findings is discussed.
Alanine functioned as a metabolic sink for the incorporated pyruvate. Pyruvate levels were estimated to be approximately 0.1 nmol/mg of protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号