首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Human salivary acidic proline-rich proteins were analyzed by electrospray-ion trap mass spectrometry and by matrix-assisted laser desorption/ionization-time of flight mass spectrometry. All acidic-PRP isoforms share a common N-terminal region, which contains a pyroglutamic acid residue at the N-terminus, and two phosphorylation sites on Ser 8 and 22. At the same time, HPLC-MS spectra revealed isoforms of PRP-1 and PRP-3 having a different number of phosphoserine residues, namely, a mono-phosphorylated form of PRP-1 and PRP-3 and a tri-phosphorylated form of PRP-1. The analysis of the masses of tryptic digests suggested that the third phosphate residue should be located on Ser 17. Another protein with a mass of 30,923 amu was detected along the HPLC pattern and MS data of its tryptic digest suggested that it corresponds to the dimer of Pa, the isoform of PRP-1 with a substitution Arg-Cys at 103 position. Finally, structural identification is pending for another post-translational modification of acidic-PRP that provides an increase of 111-114 amu.  相似文献   

2.
Human glandular salivary secretions contain several acidic proline-rich phosphoproteins (PRPs). These proteins have important biological functions related to providing a protective environment for the teeth, and appear to possess other activities associated with modulation of adhesion of bacteria to oral surfaces. These functions and activities depend on the primary structures of the PRPs. Previously determined amino acid sequences of two 150-residue molecules, PRP-1 and PRP-2, and two related 106-residue proteins, PRP-3 and PRP-4, indicated that residue 4 was Asn in PRP-1 and PRP-3, and Asp in PRP-2 and PRP-4, and position 50 was Asn in all four proteins. Recent data from cDNA sequence studies and further structural studies, however, showed that the previously proposed sequences cannot be completely correct. The present work has shown that the protein previously designated as PRP-1 actually consisted of two positional isomers, PIF-s, which has Asn and Asp at positions 4 and 50 respectively, and authentic PRP-1, which has the reverse arrangement. The same isomerism is present in the smaller proteins, PIF-f and PRP-3. Since the isomeric pairs have identical compositions and charges, their presence was not previously detected. Also, by using a more highly purified preparation, it has been found that position 50 in PRP-2 and PRP-4 is Asp, rather than Asn previously reported. These new findings for the six PRPs define their complete primary structures, which are now consistent with those proposed for PRP-1 and PIF-s from cDNA data, and are also consistent with the chromatographic and electrophoretic behaviours of the six PRPs and their derived peptides. These corrected structures are important for understanding the biological functions and activities of these unusual proteins.  相似文献   

3.
A 1 year follow-up investigation of salivary acidic proline-rich proteins (aPRPs) in preterm and at-term newborns using HPLC-ESI-IT-MS showed that (i) this class of proteins is constitutive rather than inducible, as it is still found in the oral cavity of preterm newborns from 180 days of postconception age (PCA); (ii) the expression of PRH-2 locus anticipates that of PRH-1, since Db isoforms are expressed some months after the PRP-1 and PRP-2 isoforms. The evaluation of the relative abundances of the different aPRPs isoforms and derivatives (differently phosphorylated and cleaved) as a function of PCA showed that (iii) the proteolytic enzymes generating truncated isoforms are also constitutive because they are fully active since 180 days of PCA; (iv) the kinase involved in aPRP phosphorylation is not fully mature in preterm newborns, but its activity increases with PCA, synchronizing with that of at-term newborns and reaching the adult levels at about 500-600 days of PCA, in concomitance with the beginning of deciduous dentition.  相似文献   

4.
gamma-Aminobutyric acid, type A (GABA(A)) receptors, of which the GABA(C) receptor family is a subgroup, are members of the Cys loop family of neurotransmitter receptors. Homology modeling of the extracellular domain of these proteins has revealed many molecular details, but it is not yet clear how GABA is orientated in the binding pocket. Here we have examined the role of arginine residues that the homology model locates in or close to the binding site of the GABA(C) receptor (Arg-104, Arg-170, Arg-158, and Arg-249) using mutagenesis and functional studies. The data suggest that Arg-158 is critical for GABA binding and/or function; substitution with Lys, Ala, or Glu resulted in nonfunctional receptors, and modeling placed the carboxylate of GABA within 3A of this residue. Substitution of Arg-104 with Ala or Glu resulted in >10,000-fold increases in EC(50) values compared with wild type receptors, and modeling indicated a role of this residue both in binding GABA and in the structure of the binding pocket. Substitution of Arg-170 with Asp or Ala yielded nonfunctional receptors, whereas Lys caused an approximately 10-fold increase in EC(50). Arg-249 was substituted with Ala, Glu, or Asp with relatively small ( approximately 4-30-fold) changes in EC(50). These and data from other residues that the model suggested could interact with GABA (His-105, Ser-168, and Ser-243) support a location for GABA in the binding site with its carboxylate pincered between Arg-158 and Arg-104, with Arg-104, Arg-170, and Arg-249 contributing to the structure of the binding pocket through salt bridges and/or hydrogen bonds.  相似文献   

5.
Choline acetyltransferase (ChAT) synthesizes acetylcholine in cholinergic neurons; regulation of its activity or response to physiological stimuli is poorly understood. We show that ChAT is differentially phosphorylated by protein kinase C (PKC) isoforms on four serines (Ser-440, Ser-346, Ser-347, and Ser-476) and one threonine (Thr-255). This phosphorylation is hierarchical, with phosphorylation at Ser-476 required for phosphorylation at other serines. Phosphorylation at some, but not all, sites regulates basal catalysis and activation. Ser-476 with Ser-440 and Ser-346/347 maintains basal ChAT activity. Ser-440 is targeted by Arg-442 for phosphorylation by PKC. Arg-442 is mutated spontaneously (R442H) in congenital myasthenic syndrome, rendering ChAT inactive and causing neuromuscular failure. This mutation eliminates phosphorylation of Ser-440, and Arg-442, not phosphorylation of Ser-440, appears primarily responsible for ChAT activity, with Ser-440 phosphorylation modulating catalysis. Finally, basal ChAT phosphorylation in neurons is mediated predominantly by PKC at Ser-476, with PKC activation increasing phosphorylation at Ser-440 and enhancing ChAT activity.  相似文献   

6.
Pa ID, a long-chain neurotoxin homologue, was isolated from the venom of an Australian elapid snake, Pseudechis australis, and its amino acid sequence was determined by conventional methods. Pa ID was an acidic protein (pI = 6.2) and consisted of 68 amino acid residues. It did not show binding activity to the acetylcholine receptor of an electric ray (Narke japonica) nor lethal effect on mice, though the amino acid sequence is homologous with those of long-chain neurotoxins isolated from other elapid snakes (homology, 39-51%). In the sequence of Pa ID, a structurally invariant residue (Tyr-22) and two functionally invariant residues (Val/Ala-49 and Lys/Arg-50) in snake venom neurotoxins are replaced by a cysteine, an arginine, and a methionine residue, respectively, and furthermore, four common residues in long-chain neurotoxins, Gly-17, Ala-43, Ser-59, and Phe/His-66 are replaced by a glutamic acid, a threonine, a threonine, and a valine residue, respectively. The conformational change of the protein molecule caused by these replacements and the removal of a positive charge at position 50 are probably the reasons why Pa ID has lost the lethality.  相似文献   

7.
Dantrolene is believed to stabilize interdomain interactions between the NH2-terminal and central regions of ryanodine receptors by binding to the NH2-terminal residues 590-609 in skeletal ryanodine receptor (RyR1) and residues 601-620 in cardiac ryanodine receptor (RyR2). To gain further insight into the structural basis of dantrolene action, we have attempted to localize the dantrolene-binding sequence in RyR1/RyR2 by using GFP as a structural marker and three-dimensional cryo-EM. We inserted GFP into RyR2 after residues Arg-626 and Tyr-846 to generate GFP-RyR2 fusion proteins, RyR2Arg-626-GFP and RyR2Tyr-846-GFP. Insertion of GFP after residue Arg-626 abolished the binding of a bulky GST- or cyan fluorescent protein-tagged FKBP12.6 but not the binding of a smaller, nontagged FKBP12.6, suggesting that residue Arg-626 and the dantrolene-binding sequence are located near the FKBP12.6-binding site. Using cryo-EM, we have mapped the three-dimensional location of Tyr-846-GFP to domain 9, which is also adjacent to the FKBP12.6-binding site. To further map the three-dimensional location of the dantrolene-binding sequence, we generated 10 FRET pairs based on four known three-dimensional locations (FKBP12.6, Ser-437-GFP, Tyr-846-GFP, and Ser-2367-GFP). Based on the FRET efficiencies of these FRET pairs and the corresponding distance relationships, we mapped the three-dimensional location of Arg-626-GFP or -cyan fluorescent protein, hence the dantrolene-binding sequence, to domain 9 near the FKBP12.6-binding site but distant to the central region around residue Ser-2367. An allosteric mechanism by which dantrolene stabilizes interdomain interactions between the NH2-terminal and central regions is proposed.  相似文献   

8.
B Laine  P Sautière  G Biserte 《Biochemistry》1976,15(8):1640-1645
Rat chloroleukemia histone H2A, obtained from the F2a2 fraction, has been eluted in two peaks from a Biorex 70 column. The amino acid sequence of rat chloroleukemia histone H2A has been determined and compared to that of calf-thymus histone H2A. The structural studies performed on the tryptic peptides from the maleylated histone and on the thermolysin peptides from the native histone clearly demonstrate the existence of three molecular species of histone H2A depending on the nature of the amino acid residue at positions 16 and 99: H2A-alpha (Ser-16 and Lys-99) accounts for 60% and H2A-betaI (Thr-16 and Arg-99) and H2A-betaII (Ser-16 and Arg-99) for 20% each. A threonine residue at position 16 and a lysine residue at position 99 have been found in calf-thymus histone H2A.  相似文献   

9.
To identify the proteins involved in 5-fluorouracil (5-FU) resistance, a comparison of the total and phosphorylated proteins between the human colorectal cancer (CRC) cell line DLD-1 and its 5-FU-resistant subclone DLD-1/5-FU was performed. Using 2-DE and MALDI-TOF/TOF-based proteomics, 17 up-regulated and 19 down-regulated protein spots were identified in the 5-FU-resistant DLD-1/5-FU cells compared with the parent cell lines. In DLD-1/5-FU cells, 7 anti-apoptotic proteins (HSPB1, proteasome subunit α-5, transitional endoplasmic reticulum ATPase, 14-3-3 β, 14-3-3 γ, 14-3-3 σ, and phosphoglycerate kinase 1) were up-regulated and 4 proapoptotic proteins (cofilin-1, pyruvate kinase M2, glyceraldehyde-3-phosphate dehydrogenase, and nucleophosmin) were down-regulated. The results show that the acquired drug resistance of DLD-1/5-FU cells is caused by the prevention of drug-induced apoptosis, in particular through the enhanced constitutive expression of HSPB1 and its phosphorylated form. Short interfering RNA knockdown of endogenous HSPB1 in DLD-1/5-FU cells restored the sensitivity to 5-FU. Furthermore, MALDI-TOF/TOF and 2-DE Western blot analysis identified the phosphorylated residues of HSPB1 as Ser-15 and Ser-82 in the main (diphosphorylated) form and Ser-15, Ser-78, and Ser-82 in the minor (triphosphorylated) form. The current findings indicate that phosphorylated HSPB1 may play an important role in 5-FU resistance.  相似文献   

10.
The CD11/CD18 (beta(2)) integrins are leukocyte-specific adhesion receptors, and their ability to bind ligands on other cells can be activated by extracellular stimuli. During cell activation, the CD18 chain is known to become phosphorylated on serine and functionally important threonine residues located in the intracellular C-terminal tail. Here, we identify catalytic domain fragments of protein kinase C (PKC) delta and PKCbetaI/II as the major protein kinases in leukocyte extracts that phosphorylate a peptide corresponding to the cytoplasmic tail of the integrin CD18 chain. The sites phosphorylated in vitro were identified as Ser-745 and Thr-758. PKCalpha and PKCeta also phosphorylated these residues, and PKCalpha additionally phosphorylated Thr-760. Ser-745, a novel site, was shown to become phosphorylated in T cells in response to phorbol ester stimulation. Ser-756, a residue not phosphorylated by PKC isoforms, also became phosphorylated in T cells after phorbol ester stimulation. When leukocyte extracts were subjected to affinity chromatography on agarose to which residues 751-761 of the CD18 chain phosphorylated at Thr-758 were bound covalently, the only proteins that bound specifically were identified as isoforms of 14-3-3 proteins. Thus, PKC-mediated phosphorylation of CD18 after cell stimulation could lead to the recruitment of 14-3-3 proteins to the activated integrin, which may play a role in regulating its adhesive state or ability to signal.  相似文献   

11.
The requirement of basic residues as substrate specificity determinants for the chicken gizzard myosin light chain kinase has been studied using synthetic peptide analogs of the local phosphorylation site sequence in the myosin light chains, Lys-Lys-Arg13-Pro-Gln-Arg16-Ala-Thr-Ser19-Asn-Val-Phe- Ala. The basic residue, Arg-16, was found to have a strong influence on the kinetics of phosphorylation similar to that reported previously for the three adjacent residues, Lys-11, Lys-12, and Lys-13 (Kemp, B. E., Pearson, R. B., and House, C. (1983) Proc. Natl. Acad. Sci. U. S. A. 80, 7471-7475). The location of Arg-16 in relation to Ser-19 as well as the distance between Arg-13 and Arg-16 had a profound effect on both the kinetics and the site specificity of phosphorylation. Placement of Arg-16 at position 15 resulted in a complete switch in phosphorylation site specificity from Ser-19 to Thr-18. Increasing the number of alanine residues between Arg-13 and Arg-16 in the model peptide, Lys-Lys-Arg-(Ala)n-Arg-Ala-Thr-Ser-Asn-Val-Phe-Ala, also influenced the kinetics and site specificity of peptide phosphorylation. With two or three alanines (n = 2 or 3), the apparent Km was 7.5 and 10 microM, respectively, and 97% of the phosphate was esterified to Ser-19. Increasing or decreasing the number of alanines (n = O to n = 4) was accompanied by an increase in the apparent Km and phosphorylation of both Thr-18 and Ser-19. These results support the concept that both the presence and location of basic residues play an essential role in the substrate specificity of the smooth muscle myosin light chain kinase.  相似文献   

12.
Hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels contribute to pacemaking activity in specialized neurons and cardiac myocytes. HCN channels have a structure similar to voltage-gated K(+) channels but have a much larger putative S4 transmembrane domain and open in response to membrane hyperpolarization instead of depolarization. As an initial attempt to define the structural basis of HCN channel gating, we have characterized the functional roles of the charged residues in the S2, S3, and S4 transmembrane domains. The nine basic residues and a single Ser in S4 were mutated individually to Gln, and the function of mutant channels was analyzed in Xenopus oocytes using two-microelectrode voltage clamp techniques. Surface membrane expression of hemagglutinin-epitope-tagged channel proteins was examined by chemiluminescence. Our results suggest that 1) Lys-291, Arg-294, Arg-297, and Arg-300 contribute to the voltage dependence of gating but not to channel folding or trafficking to the surface membrane; 2) Lys-303 and Ser-306 are essential for gating, but not for channel folding/trafficking; 3) Arg-312 is important for folding but not gating; and 4) Arg-309, Arg-315, and Arg-318 are crucial for normal protein folding/trafficking and may charge-pair with Asp residues located in the S2 and S3 domains.  相似文献   

13.
Serum amyloid A isoforms, apoSAA1 and apoSAA2, are apolipoproteins of unknown function that become major components of high density lipoprotein (HDL) during the acute phase of an inflammatory response. ApoSAA is also the precursor of inflammation-associated amyloid, and there is strong evidence that the formation of inflammation-associated and other types of amyloid is promoted by heparan sulfate (HS). Data presented herein demonstrate that both mouse and human apoSAA contain binding sites that are specific for heparin and HS, with no binding for the other major glycosaminoglycans detected. Cyanogen bromide-generated peptides of mouse apoSAA1 and apoSAA2 were screened for heparin binding activity. Two peptides, an apoSAA1-derived 80-mer (residues 24-103) and a smaller carboxyl-terminal 27-mer peptide of apoSAA2 (residues 77-103), were retained by a heparin column. A synthetic peptide corresponding to the CNBr-generated 27-mer also bound heparin, and by substituting or deleting one or more of its six basic residues (Arg-83, His-84, Arg-86, Lys-89, Arg-95, and Lys-102), their relative importance for heparin and HS binding was determined. The Lys-102 residue appeared to be required only for HS binding. The residues Arg-86, Lys-89, Arg-95, and Lys-102 are phylogenetically conserved suggesting that the heparin/HS binding activity may be an important aspect of the function of apoSAA. HS linked by its carboxyl groups to an Affi-Gel column or treated with carbodiimide to block its carboxyl groups lost the ability to bind apoSAA. HDL-apoSAA did not bind to heparin; however, it did bind to HS, an interaction to which apoA-I contributed. Results from binding experiments with Congo Red-Sepharose 4B columns support the conclusions of a recent structural study which found that heparin binding domains have a common spatial distance of about 20 A between their two outer basic residues. Our present work provides direct evidence that apoSAA can associate with HS (and heparin) and that the occupation of its binding site by HS, and HS analogs, likely caused the previously reported increase in amyloidogenic conformation (beta-sheet) of apoSAA2 (McCubbin, W. D., Kay, C. M., Narindrasorasak, S., and Kisilevsky, R. (1988) Biochem. J. 256, 775-783) and their amyloid-suppressing effects in vivo (Kisilevsky, R., Lemieux, L. J., Fraser, P. E., Kong, X., Hultin, P. G., and Szarek, W. A. (1995) Nat. Med. 1, 143-147), respectively.  相似文献   

14.
Leishmania major 3-mercaptopyruvate sulfurtransferase is a crescent-shaped molecule comprising three domains. The N-terminal and central domains are similar to the thiosulfate sulfurtransferase rhodanese and create the active site containing a persulfurated catalytic cysteine (Cys-253) and an inhibitory sulfite coordinated by Arg-74 and Arg-185. A serine protease-like triad, comprising Asp-61, His-75, and Ser-255, is near Cys-253 and represents a conserved feature that distinguishes 3-mercaptopyruvate sulfurtransferases from thiosulfate sulfurtransferases. During catalysis, Ser-255 may polarize the carbonyl group of 3-mercaptopyruvate to assist thiophilic attack, whereas Arg-74 and Arg-185 bind the carboxylate group. The enzyme hydrolyzes benzoyl-Arg-p-nitroanilide, an activity that is sensitive to the presence of the serine protease inhibitor N alpha-p-tosyl-L-lysine chloromethyl ketone, which also lowers 3-mercaptopyruvate sulfurtransferase activity, presumably by interference with the contribution of Ser-255. The L. major 3-mercaptopyruvate sulfurtransferase is unusual with an 80-amino acid C-terminal domain, bearing remarkable structural similarity to the FK506-binding protein class of peptidylprolyl cis/trans-isomerase. This domain may be involved in mediating protein folding and sulfurtransferase-protein interactions.  相似文献   

15.
Vascular ATP-sensitive K(+) channels are activated by multiple vasodilating hormones and neurotransmitters via PKA. A critical PKA phosphorylation site (Ser-1387) is found in the second nucleotide-binding domain (NBD(2)) of the SUR2B subunit. To understand how phosphorylation at Ser-1387 leads to changes in channel activity, we modeled the SUR2B using a newly crystallized ABC protein SAV1866. The model showed that Ser-1387 was located on the interface of NBD2 with TMD1 and physically interacted with Tyr-506 in TMD1. A positively charged residue (Arg-1462) in NBD2 was revealed in the close vicinity of Ser-1387. Mutation of either of these three residues abolished PKA-dependent channel activation. Molecular dynamics simulations suggested that Ser-1387, Tyr-506, and Arg-1462 formed a compact triad upon Ser-1387 phosphorylation, leading to reshaping of the NBD2 interface and movements of NBD2 and TMD1. Restriction of the interdomain movements by engineering a disulfide bond between TMD1 and NBD2 prevented the channel activation in a redox-dependent manner. Thus, a channel-gating mechanism is suggested through enhancing the NBD-TMD coupling efficiency following Ser-1387 phosphorylation, which is shared by multiple vasodilators.  相似文献   

16.
Here we report that bacteriophage T4 RNA ligase 2 (Rnl2) is an efficient catalyst of RNA ligation at a 3'-OH/5'-PO(4) nick in a double-stranded RNA or an RNA.DNA hybrid. The critical role of the template strand in approximating the reactive 3'-OH and 5'-PO(4) termini is underscored by the drastic reductions in the RNA-sealing activity of Rnl2 when the duplex substrates contain gaps or flaps instead of nicks. RNA nick joining requires ATP and a divalent cation cofactor (either Mg or Mn). Neither dATP, GTP, CTP, nor UTP can substitute for ATP. We identify by alanine scanning seven functionally important amino acids (Tyr-5, Arg-33, Lys-54, Gln-106, Asp-135, Arg-155, and Ser-170) within the N-terminal nucleotidyl-transferase domain of Rnl2 and impute specific roles for these residues based on the crystal structure of the AMP-bound enzyme. Mutational analysis of 14 conserved residues in the C-terminal domain of Rnl2 identifies 3 amino acids (Arg-266, Asp-292, and Glu-296) as essential for ligase activity. Our findings consolidate the evolutionary connections between bacteriophage Rnl2 and the RNA-editing ligases of kinetoplastid protozoa.  相似文献   

17.
In a survey for unknown bioactive peptides in frog (Rana catesbeiana) brain and intestine, we isolated four novel peptides that exhibit potent stimulant effects on smooth muscle preparation of guinea pig ileum. By microsequencing and synthesis, these peptides were identified as Lys- Pro- Ser- Pro- Asp- Arg- Phe- Tyr- Gly- Leu- Met- NH2 (ranatachykinin A), Tyr- Lys- Ser- Asp- Ser- Phe- Tyr- Gly- Leu- Met- NH2 (ranatachykinin B), His- Asn- Pro- Ala- Ser- Phe- Ile- Gly- Leu- Met- NH2 (ranatachykinin C) and Lys- Pro- Ans- Pro- Glu- Arg- Phe- Tyr- Ala- Pro- Met- NH2 (ranatachykinin D). Ranatachykinin (RTK) A, B and C conserve the C- terminal sequence, Phe- X- Gly- Leu- Met- NH2, which is common to known members of the tachykinin family. On the other hand, RTK-D has a striking feature in its C-terminal sequence, Phe- Tyr- Ala- Pro- Met- NH2, which has never been found in other known tachykinins, and may constitute a new subclass in the tachykinin family.  相似文献   

18.
Five increasingly anionic phospholipases A2 (Pa1-Pa5) exist in the venom of the lizard Heloderma suspectum. We recently elucidated the sequence of Pa5, the most abundant and most active variant, towards emulsified phosphatidylcholines. Here we present the primary structures of Pa2, Pa3 (subvariants a and b) and Pa4, based on Edman degradation of tryptic, endoproteinase Arg-C and chymotryptic fragments of the reduced and S-carboxymethylated proteins. Pa1-Pa5, considered collectively, belong to an original class of secretory phospholipases A2 with 141-143 residues, a short hydrophobic N-terminus, 10 half-cystine residues and an extended C-terminus. The only known phospholipase A2 with characteristics close enough to be a member of the same class is that present in the venom from the insect Apis mellifera. More specifically, the sequences of Pa3 and Pa5 are almost identical, and those of Pa2 and Pa4 are also quite similar. Both groups diverge enough to indicate the translation of two mRNA species in the venom gland. The primary structure of Pa3 reveals the existence of subvariants a and b, the sequence of which is identical to that previously defined for Pa5, except that the C-terminal tripeptide GEG in Pa5 is replaced by the dipeptide GE in Pa3a and the tetrapeptide GEGR in Pa3b, Pa4, when compared to Pa5, shows 21 substitutions with a cluster of five modified amino acids in positions 40-44, immediately after the catalytic segment amino acids 30-39, and added changes scattered before the C-terminus. Pa2 differs from Pa4 only by the absence of the Gly142 C-terminal residue. The 15% difference in primary structure observed between the Pa3-Pa5 and Pa2-Pa4 subgroups might be largely responsible for their distinct biological properties.  相似文献   

19.
The cyclooxygenase activity of the two prostaglandin H synthase (PGHS) isoforms, PGHS-1 and -2, is a major control element in prostanoid biosynthesis. The two PGHS isoforms have 60% amino acid identity, with prominent differences near the C-terminus, where PGHS-2 has an additional 18-residue insert. Some mutations of the C-terminal residue in PGHS-1 and -2 have been found to disrupt catalytic activity and/or intracellular targeting of the proteins, but the relationship between C-terminal structure and function in the two isoforms has been poorly defined. Crystallographic data indicate the PGHS-1 and -2 C-termini are positioned to interact with the endoplasmic reticulum (ER) membrane, although the C-terminal segment structure was not resolved for either isoform. We constructed a series of C-terminal substitution, deletion, and insertion mutants of human PGHS-1 and -2 and evaluated the effects on cyclooxygenase activity and intracellular targeting in transfected COS-1 cells expressing the recombinant proteins. PGHS-1 cyclooxygenase activity was strongly disrupted by C-terminal substitutions and deletions, but not by elongation of the C-terminal segment, even when the ultimate residue was altered. Similar alterations to PGHS-2 had markedly less effect on cyclooxygenase activity. The results indicate that the functioning of the longer C-terminal segment in PGHS-2 is distinctly more tolerant of structural change than the shorter PGHS-1 C-terminal segment. C-Terminal substitutions or deletions did not change the subcellular localization of either isoform, even at short times after transfection, indicating that neither C-terminal segment contains indispensable intracellular targeting signals.  相似文献   

20.
Rim1, a brain-specific Rab3a-binding protein, localizes to the presynaptic cytomatrix and plays an important role in synaptic transmission and synaptic plasticity. Rim2, a homologous protein, is more ubiquitously expressed and is found in neuroendocrine cells as well as in brain. Both Rim1 and Rim2 contain multiple domains, including an N-terminal zinc finger, which in Rim1 strongly enhances secretion in chromaffin and PC12 cells. The yeast two-hybrid technique identified 14-3-3 proteins as ligands of the N-terminal domain. In vitro protein binding experiments confirmed a high-affinity interaction between the N terminus of Rim1 and 14-3-3. The N-terminal domain of Rim2 also bound 14-3-3. The binding domains were localized to a short segment just C-terminal to the zinc finger. 14-3-3 proteins bind to specific phosphoserine residues. Alkaline phosphatase treatment of N-terminal domains of Rim1 and Rim2 almost completely inhibited the binding of 14-3-3. Two serine residues in Rim1 (Ser-241 and Ser-287) and one serine residue in Rim2 (Ser-335) were required for 14-3-3 binding. Incubation with Ca2+/calmodulin-dependent protein kinase II greatly stimulated the interaction of recombinant N-terminal Rim but not the S241/287A mutant with 14-3-3, again indicating the importance of the phosphorylation of these residues for the binding. Rabphilin3, another Rab3a effector, also bound 14-3-3. Serine-to-alanine mutations identified Ser-274 as the likely phosphorylated residue to which 14-3-3 binds. Because the phosphorylation of this residue had been shown to be stimulated upon depolarization in brain slices, the interaction of 14-3-3 with Rabphilin3 may be important in the dynamic function of central nervous system neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号