首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Direct evidence for the origin and evolution of land plant/cyanobacterial symbioses is virtually absent from the fossil record. Here we report on rare occurrences of prostrate mycorrhizal axes of the Early Devonian land plant Aglaophyton major that host a filamentous cyanobacterium, which enters the plant through the stomata and colonizes the substomatal chambers and intercellular spaces in the outer cortex. In dead ends of the intercellular system, the filaments form loops and continue growth in reverse direction. Some filaments penetrate parenchyma cells close to and within the mycorrhizal arbuscule-zone and form intracellular coils. This discovery represents the earliest direct evidence for cyanobacteria growing inside land plants, and offers a model for the types of associations that may have preceded the evolution of mutualistic land plant/cyanobacterial symbioses.  相似文献   

2.
Motile phototrophic consortia are highly regular associations in which numerous cells of green sulfur bacteria surround a flagellated colorless β-proteobacterium in the center. To date, seven different morphological types of such consortia have been described. In addition, two immotile associations involving green sulfur bacteria are known. By employing a culture-independent approach, different types of phototrophic consortia were mechanically isolated by micromanipulation from 14 freshwater environments, and partial 16S rRNA gene sequences of the green sulfur bacterial epibionts were determined. In the majority of the lakes investigated, different types of phototrophic consortia were found to co-occur. In all cases, phototrophic consortia with the same morphology from the same habitat contained only a single epibiont phylotype. However, morphologically indistinguishable phototrophic consortia collected from different lakes contained different epibionts. Overall, 19 different types of epibionts were detected in the present study. Whereas the epibionts within one geographic region were very similar (Dice coefficient, 0.582), only two types of epibionts were found to occur on both the European and North American continents (Dice coefficient, 0.190). None of the epibiont 16S rRNA gene sequences have been detected so far in free-living green sulfur bacteria, suggesting that the interaction between epibionts and chemotrophic bacteria in the phototrophic consortia is an obligate interaction. Based on our phylogenetic analysis, the epibiont sequences are not monophyletic. Thus, the ability to form symbiotic associations either arose independently from different ancestors or was present in a common ancestor prior to the radiation of green sulfur bacteria and the transition to the free-living state in independent lineages. The present study thus demonstrates that there is great diversity and nonrandom geographical distribution of phototrophic consortia in the natural environment.  相似文献   

3.
Motile phototrophic consortia are highly regular associations in which numerous cells of green sulfur bacteria surround a flagellated colorless beta-proteobacterium in the center. To date, seven different morphological types of such consortia have been described. In addition, two immotile associations involving green sulfur bacteria are known. By employing a culture-independent approach, different types of phototrophic consortia were mechanically isolated by micromanipulation from 14 freshwater environments, and partial 16S rRNA gene sequences of the green sulfur bacterial epibionts were determined. In the majority of the lakes investigated, different types of phototrophic consortia were found to co-occur. In all cases, phototrophic consortia with the same morphology from the same habitat contained only a single epibiont phylotype. However, morphologically indistinguishable phototrophic consortia collected from different lakes contained different epibionts. Overall, 19 different types of epibionts were detected in the present study. Whereas the epibionts within one geographic region were very similar (Dice coefficient, 0.582), only two types of epibionts were found to occur on both the European and North American continents (Dice coefficient, 0.190). None of the epibiont 16S rRNA gene sequences have been detected so far in free-living green sulfur bacteria, suggesting that the interaction between epibionts and chemotrophic bacteria in the phototrophic consortia is an obligate interaction. Based on our phylogenetic analysis, the epibiont sequences are not monophyletic. Thus, the ability to form symbiotic associations either arose independently from different ancestors or was present in a common ancestor prior to the radiation of green sulfur bacteria and the transition to the free-living state in independent lineages. The present study thus demonstrates that there is great diversity and nonrandom geographical distribution of phototrophic consortia in the natural environment.  相似文献   

4.
Permanent stable symbioses, primarily microbial, are analyzed as parasexual phenomena from the evolutionary point of view. Such associations bring together in single individuals heritable traits of high selective advantage in certain environments. By convergent evolution several types of associations have repeatedly arisen: motile photosynthetic forms, nitrogen fixing and wood digesting complexes, and so forth. Many examples are discussed from the point of view of the number of originally independent genomes that comprise the recognizable individuals.The level of partner integration in many associations is analyzed. Examples of many levels: genic, gene product, metabolite, behavioral, and the methods by which they can be distinguished are discussed.The literature concerning a large number of associations is reviewed: Methanobacillus; predatory and consortia bacteria; blue green algal sheath dwelling bacteria; anaerobic worm-bacterial; algal, and foreign chloroplast retention by heterotrophic eukaryotes (ciliates, coelenterates, mollusks); the double nucleated photosynthetic dinoflagellate (Peridinium balticum); hindgut microbes in termites and woodroaches (Pyrsonympha, Barbulanympha and their associated spirochetes and other bacteria); sand dwelling and other ciliates and their associated bacteria; and so forth. The status of observations and artificial systems claiming evidence for transfer of genes between very distantly related organisms is critically discussed.A continuum from nearly completely autonomous partners (e.g., zoochlorellae in invertebrate animals) to nearly unrecognizable merged components (e.g., gamma particles in Blastocladiella) is found to exist among examples of extant organisms. The diversity and prevalence of such associations support the concept that there are many precedents for the steps hypothesized in the serial endosymbiotic theory of the origin of eukaryotic cells.  相似文献   

5.
Amber preserves microscopic, soft-bodies organisms and is a good medium in which to trace the evolution of pathogen–vector associations. Spirochetes-like cells (Spirochaetales: Spirochaetaceae) in the hemocoel and lumen of the alimentary tract of a larva tick (Amblyomma sp. Arachnida: Ixodidae) in Dominican amber are described in the collective fossil genus and species, Palaeoborrelia dominicanan. gen., n. sp. The size and shape of the fossil spirochetes closely resemble those of present-day Borrelia species. This discovery represents the first record of spirochete-like cells associated with fossil ticks.  相似文献   

6.
Most symbiotic prokaryotes known to date have been found in association with eukaryotes, whereas only few (3.5%) bacteria or archaea are known that have established interactions with other prokaryotes. As revealed by direct microscopic investigations, however, multiple morphotypes of highly structured associations of different prokaryotes exist in nature. These so-called consortia appear to represent the most developed type of bacterial interaction. Phototrophic consortia are associations of green sulfur bacteria that surround a central chemotrophic bacterium. In some natural environments, almost all cells of green sulfur bacteria occur in the associated state, i.e. as epibionts of phototrophic consortia. In contrast to earlier speculations, the central bacterium belongs to the beta-Proteobacteria. Within the consortia, the green sulfur bacterial epibionts grow photolithoautotrophically, utilizing exogenous sulfide as photosynthetic electron donor. The entire consortium does not appear to be independent of organic carbon compounds, since it exhibits chemotaxis towards 2-oxoglutarate and, as demonstrated by microautoradiography, can also incorporate this compound. Intact consortia exhibit a scotophobic response in which the bacteriochlorophylls of the epibionts function as light sensors, whereas the chemotrophic central bacterium confers motility upon the association. Hence, a signal exchange must occur between the different bacteria. Based on their 16S rRNA gene sequences, the epibionts represent distinct phylotypes that are often only distantly related to known species of green sulfur bacteria. Since phototrophic consortia have recently become available in enrichment cultures, they can now serve as suitable model systems for the investigation of the molecular mechanisms of cell-cell recognition and signal exchange, and for studies of the coevolution of nonrelated prokaryotes.  相似文献   

7.
During the Precambrian, ultraviolet (UV) radiation reaching the Earth's surface, including UVC wavelengths (190–280 nm), was considerably higher than present because of the lack of absorbing gases (e.g. O2 and O3) in the atmosphere. High UV flux would have been damaging to photosynthetic organisms exposed to solar radiation. Nevertheless, fossil evidence indicates that cyanobacteria-like ancestors may have evolved as early as 3.5 × 109 yr ago, and were common in shallow marine habitats by 2.5 × 109 years ago. Scytonemin, a cyanobacterial extracellular sheath pigment, strongly absorbs UVC radiation. Exposure to high-irradiance conditions caused cells to synthesize scytonemin and resulted in decreased UVC inhibition of photosynthetic carbon uptake. It was further demonstrated that scytonemin alone was sufficient for substantial protection against UVC damage. This represents the first experimental demonstration of biological protection against UVC radiation in cyanobacteria. These results suggest that scytonemin may have evolved during the Precambrian and allowed colonization of exposed, shallow-water and terrestrial habitats by cyanobacteria or their oxygenic ancestors.  相似文献   

8.
1. We assessed the role of cyanobacterial–bacterial consortia (Gloeotrichia echinulata phycospheres) for net changes in inorganic carbon, primary production (PP) and secondary production in Lake Erken (Sweden). 2. At the time of sampling, large colonies of G. echinulata formed a massive bloom with abundances ranging from 102 colonies L?1 in the pelagic zone to 5000 colonies L?1 in shallow bays. These colonies and their surrounding phycospheres contributed between 17 and 92% of total PP, and phycosphere‐associated bacteria contributed between 8.5 and 82% of total bacterial secondary production. PP followed a diurnal cycle, whereas bacterial production showed no such pattern. Over a 24 h period, carbon dioxide measurements showed that the phycospheres were net autotrophic in the top layer of the water column, whereas they were net heterotrophic below 2 m depth. 3. Sequencing and phylogenetic analysis of 16S rRNA genes of attached bacteria revealed a diverse bacterial community that included populations affiliated with Proteobacteria, Bacteriodetes, Acidobacteria, Fusobacteria, Firmicutes, Verrucomicrobia, and other Cyanobacteria. 4. Compared with their planktonic counterparts, bacteria associated with cyanobacterial phycospheres had lower affinity for arginine, used as a model compound to assess uptake of organic compounds. 5. Extrapolation of our data to the water column of lake Erken suggests that microorganisms that were not associated with cyanobacteria dominated CO2 production at the ecosystem scale during our experiments, as CO2 fixation balanced CO2 production in the cyanobacterial phycospheres.  相似文献   

9.
Cyanobacteria have gained a lot of attention in recent years because of their potential applications in biotechnology. We present an overview of the literature describing the uses of cyanobacteria in industry and services sectors and provide an outlook on the challenges and future prospects of the field of cyanobacterial biotechnology. Cyanobacteria have been identified as a rich source of biologically active compounds with antiviral, antibacterial, antifungal and anticancer activities. Several strains of cyanobacteria were found to accumulate polyhydroxyalkanoates, which can be used as a substitute for nonbiodegradable petrochemical-based plastics. Recent studies showed that oil-polluted sites are rich in cyanobacterial consortia capable of degrading oil components. Cyanobacteria within these consortia facilitated the degradation processes by providing the associated oil-degrading bacteria with the necessary oxygen, organics and fixed nitrogen. Cyanobacterial hydrogen has been considered as a very promising source of alternative energy, and has now been made commercially available. In addition to these applications, cyanobacteria are also used in aquaculture, wastewater treatment, food, fertilizers, production of secondary metabolites including exopolysaccharides, vitamins, toxins, enzymes and pharmaceuticals. Future research should focus on isolating new cyanobacterial strains producing high value products and genetically modifying existing strains to ensure maximum production of the desired products. Metagenomic libraries should be constructed to discover new functional genes that are involved in the biosynthesis of biotechnological relevant compounds. Large-scale industrial production of the cyanobacterial products requires optimization of incubation conditions and fermenter designs in order to increase productivity.  相似文献   

10.
The Proterozoic History and Present State of Cyanobacteria   总被引:1,自引:0,他引:1  
Sergeev  V. N.  Gerasimenko  L. M.  Zavarzin  G. A. 《Microbiology》2002,71(6):623-637
The paper delves into the main regularities of the distribution of fossil microorganisms in Precambrian rocks, beginning from the Archean Eon about 3.5 billion years ago and ending in the Cambrian Period about 0.5 billion years ago. The paper analyzes facial peculiarities in the lateral differentiation of microfossils in Proterozoic basins and the main stages of temporal changes in fossil cyanobacterial communities, which are based on the irreversible succession of physicochemical conditions on the Earth and the evolution of eukaryotic microorganisms and their incorporation into prokaryotic ecosystems. To gain insight into Proterozoic fossil record, modern stratified cyanobacterial mats built up from layers of prokaryotes are considered. The analysis of phosphatization, carbonatization, and silification processes in modern algal–bacterial communities suggests that analogous processes took place in Proterozoic microbiotas. A comparison of modern and Precambrian living forms confirms the inference that cyanobacterial communities are very conservative and have changed insignificantly both morphologically and physiologically during the past two billion years.  相似文献   

11.
Instances of symbiotic consortia in the microplankton of highlyoligotrophic seas are discussed on the basis of case studiesand long-term observations off the Israeli coast of the Gulfof Aqaba, Red Sea, and the inshore and offshore waters of theEastern Mediterranean. Associations described include diatomswith filamentous cyanophytes, diatoms with protozoans, tintinnidswith attached or encrusted diatoms, and acantharians with algalendosymbionts. Noted among the case studies is the frequentoccurrence of the endosymbiont cyanophyte Richelia inrracellularis,capable of molecular nitrogen fixation, in diatoms, includingthree species of Hemiaulus. For one of these associations, seeminglywith Hemiaulus sinensis, this is the first photographic record.The consortia are considered in relation to their seasonal distributionin depth profiles from the northern end of the Gulf of Aqaba,and in relation to their occurrence in the Eastern Mediterraneanand also worldwide in similar environments. These aspects andthe easily identifiable symbiotic nature of the consortia describedherewith make them useful as indicator species of warm wateroligotrophic seas.  相似文献   

12.
Fossil evidence of photosynthesis, documented in the geological record by microbially laminated stromatolites, microscopic fossils, and carbon isotopic data consistent with the presence of Rubisco-mediated CO2-fixation, extends to ~3500 million years ago. Such evidence, however, does not resolve the time of origin of oxygenic photosynthesis from its anoxygenic photosynthetic evolutionary precursor. Though it is evident that cyanobacteria, the earliest-evolved O2-producing photoautotrophs, existed before ~2450 million years ago — the onset of the “Great Oxidation Event” (GOE) that forever altered Earth’s environment — O2-producing photosynthesis seems certain to have originated hundreds of millions of years earlier. How did Earth’s biota respond to the GOE? Four lines of evidence are here suggested to reflect this major environmental transition: (1) rRNA phylogeny-correlated metabolic and biosynthetic pathways document evolution from an anaerobic (pre-GOE) to a dominantly oxygen-requiring (post-GOE) biosphere; (2) consistent with the rRNA phylogeny of cyanobacteria, their fossil record evidences the immediately post-GOE presence of cyanobacterial nostocaceans characterized by specialized cells that protect their oxygen-labile nitrogenase enzyme system; (3) the earliest known fossil eukaryotes, obligately aerobic phytoplankton and putative algae, closely post-date the GOE; and (4) microbial sulfuretums are earliest known from rocks deposited during and immediately after the GOE, their apparent proliferation evidently spurred by an increase of environmental oxygen and a resulting upsurge of metabolically useable sulfate and nitrate. Though the biotic response to the GOE is a question new to paleobiology that is yet largely unexplored, additional evidence of its impact seems certain to be uncovered.  相似文献   

13.
Examination of modern gastropod associations from the low intertidal zone of Isla Santa Cruz suggests that fossil rocky intertidal deposits from this tropical locality will be taphonomically compromised in three ways: (1) Marine hermit crabs, by their use of empty gastropod shells, will mix the shells from varying tidal heights and habitats, thus facilitating mixed associations of such shells in the fossil record, (2) encrusting organisms on crab-inhabited shells are abundant, while boring organisms are almost non-existent, indicating possible differences in postmortem shell retention, and (3) intertidal shells are further taphonomically altered by terrestrial hermit crabs, which transport the shells onto land as well as physically modify the shells. Gastropod fossils from beach and terrace deposits on Isla Santa Fe are interpreted to be a mixed assemblage of rocky intertidal assemblage with few shells indicating influence from marine hermit crabs. Modification of the shell by marine and terrestrial hermit crabs was also evident. A unique polish to the shells at one locality is attributed to the marine iguanas and is only found in the terrace site biologically bulldozed by egg-laying iguanas. Few studies exist on modern rocky intertidal associations in the Galápagos, and the fossil record of rocky shores may provide a baseline for future studies in how community structure has changed over since the advent of humans. Galapagos, C oenobita C ompressus , gastropods, humans, Gulf of California, bionts, nutrients.
Sally E. Walker, Department of Geology, The University of Georgia, Athens, Georgia, USA; 8th September, 1994; revised 28th June, 1995.  相似文献   

14.
Associations of cyanobacteria and actinomycetes were formed experimentally from the cyanobacterium Anabaena variabilis ATCC 29413 and the streptomycetes isolated from apogeotropic roots of sago plants. Based on their phenotypic properties and the 16S rRNA gene sequencing, the streptomycetes were identified as representatives of Streptomyces pluricolorescens (strains 1 and 2). Cyanobacteria developing in monoculture and in association with an actinomycete were essentially different in their morphological and physiological-biochemical characteristics. In associations, cyanobacteria showed a higher (by tens of times) nitrogen-fixing activity compared to the monoculture and the morphological modifications of which were not observed in the monoculture (increase in cell size, increase in the portion of heterocysts among vegetative cells, appearance of the forms of unbalanced growth of cyanobacteria as giant, disc-shaped, curved, and rhomboid cells). At extremely low humidity (aw 0.50), associated cyanobacterial cells remained viable, whereas in the monoculture, chlorophyll decomposition and cells death occurred. The methods of high-resolution (H1 600 MHz) nuclear magnetic resonance (NMR) and pulsed-gradient spin echo NMR revealed a fraction of mobile protons in lyophilized samples of the cyanobacterium-actinomycete association, which was evidence of the presence of free water. This fraction was not found in the lyophilized samples of cyanobacterial and streptomycete monocultures. The revealed differences can explain the survival of cyanobacterial cells in associations.  相似文献   

15.
Populations of the multi-trichomous microbial fossil Eoschizothrix composita n.gen. et sp. are preserved in growth position in silicified stratiform stromatolites of the Gaoyuzhuang Formation, Hebei Province, northern China. The microbial fossils consist predominantly of preserved sheaths, although several specimens retain shriveled remains of trichomes within sheaths. Comparisons with modern morphological counterparts, including shape, growth habit and orientation, degradational sequences, and habitat, support the interpretation of the multi-trichomous microfossils as cyanobacteria, which acted as frame-builders of ancient stromatolites. The distribution and orientation of multi-trichomous microfossils within a synsedimentary context reveal their behavioral responses to sedimentation regime. Horizontally spread, interwoven mats formed during periods of sedimentary stasis. During periods of rapid sediment influx, the filaments assumed an upright orientation, possibly to avoid accumulating particles. This is the first record of fossil stromatolite-building multi-trichomous cyanobacterial which underscores early morphological and functional diversification in cyanobacterial evolution.  相似文献   

16.

Choice of method in phylogenetic analysis should involve some consideration of the quality or completeness of the available fossil record. If it is poor, cladistic methods are preferable; if it is good, stratophenetic methods may be valid. A concept of paleontological completeness, defined herein, is useful for judging the quality of a given fossil record. This paper considers eight possible measures of paleontological completeness, and evaluates their value as phylogenetically useful estimates of the quality of the fossil record. Of the eight measures, Sadler‐Schindel type analysis of stratigraphic completeness and analysis of geographic ranges appear to be the most useful and reliable. The remaining six are useful only as rough approximations of the quality of the record, or as supporting evidence for conclusions based on other methods. Use of these eight measures on the lower Tertiary molluscan record of the U.S. Gulf and Atlantic coastal plains indicates that this record is approximately 30–50% complete. This is probably not complete enough to trust purely stratophenetic approaches to phylogenetic analysis, but is too complete to ignore the record in favor of a purely atemporal, cladistic approach. The concept of paleontological completeness may be useful in estimating the quality of this and other fossil records for non‐phylogenetic purposes, such as studies of evolutionary rates and diversity and extinction patterns.  相似文献   

17.

Background

Molecular dating has gained ever-increasing interest since the molecular clock hypothesis was proposed in the 1960s. Molecular dating provides detailed temporal frameworks for divergence events in phylogenetic trees, allowing diverse evolutionary questions to be addressed. The key aspect of the molecular clock hypothesis, namely that differences in DNA or protein sequence between two species are proportional to the time elapsed since they diverged, was soon shown to be untenable. Other approaches were proposed to take into account rate heterogeneity among lineages, but the calibration process, by which relative times are transformed into absolute ages, has received little attention until recently. New methods have now been proposed to resolve potential sources of error associated with the calibration of phylogenetic trees, particularly those involving use of the fossil record.

Scope and Conclusions

The use of the fossil record as a source of independent information in the calibration process is the main focus of this paper; other sources of calibration information are also discussed. Particularly error-prone aspects of fossil calibration are identified, such as fossil dating, the phylogenetic placement of the fossil and the incompleteness of the fossil record. Methods proposed to tackle one or more of these potential error sources are discussed (e.g. fossil cross-validation, prior distribution of calibration points and confidence intervals on the fossil record). In conclusion, the fossil record remains the most reliable source of information for the calibration of phylogenetic trees, although associated assumptions and potential bias must be taken into account.  相似文献   

18.
Lacustrine microbial mats in Antarctic ice‐free oases are considered modern analogues of early microbial ecosystems as their primary production is generally dominated by cyanobacteria, the heterotrophic food chain typically truncated due to extreme environmental conditions, and they are geographically isolated. To better understand early fossilization and mineralization processes in this context, we studied the microstructure and chemistry of organo‐mineral associations in a suite of sediments 50–4530 cal. years old from a lake in Skarvsnes, Lützow Holm Bay, East Antarctica. First, we report an exceptional preservation of fossil autotrophs and their biomolecules on millennial timescales. The pigment scytonemin is preserved inside cyanobacterial sheaths. As non‐pigmented sheaths are also preserved, scytonemin likely played little role in the preservation of sheath polysaccharides, which have been cross‐linked by ether bonds. Coccoids preserved thylakoids and autofluorescence of pigments such as carotenoids. This exceptional preservation of autotrophs in the fossil mats argues for limited biodegradation during and after deposition. Moreover, cell‐shaped aggregates preserved sulfur‐rich nanoglobules, supporting fossilization of instable intracellular byproducts of chemotrophic or phototrophic S‐oxidizers. Second, we report a diversity of micro‐ to nanostructured CaCO3 precipitates intimately associated with extracellular polymeric substances, cyanobacteria, and/or other prokaryotes. Micro‐peloids Type 1 display features that distinguish them from known carbonates crystallized in inorganic conditions: (i) Type 1A are often filled with globular nanocarbonates and/or surrounded by a fibrous fringe, (ii) Type 1B are empty and display ovoid to wrinkled fringes of nanocrystallites that can be radially oriented (fibrous or triangular) or multilayered, and (iii) all show small‐size variations. Type 2 rounded carbonates 1–2 μm in diameter occurring inside autofluorescent spheres interpreted as coccoidal bacteria may represent fossils of intracellular calcification. These organo‐mineral associations support organically driven nanocarbonate crystallization and stabilization, hence providing potential markers for microbial calcification in ancient rocks.  相似文献   

19.
The early Eocene of the southern Bighorn Basin, Wyoming, is notable for its nearly continuous record of mammalian fossils. Microsyopinae (?Primates) is one of several lineages that shows evidence of evolutionary change associated with an interval referred to as Biohorizon A. Arctodontomys wilsoni is replaced by a larger species, Arctodontomys nuptus, during the biohorizon interval in what is likely an immigration/emigration or immigration/local extinction event. The latter is then superseded by Microsyops angustidens after the end of the Biohorizon A interval. Although this pattern has been understood for some time, denser sampling has led to the identification of a specimen intermediate in morphology between A. nuptus and M. angustidens, located stratigraphically as the latter is appearing. Because specimens of A. nuptus have been recovered approximately 60 m above the appearance of M. angustidens, it is clear that A. nuptus did not suffer pseudoextinction. Instead, evidence suggests that M. angustidens branched off from a population of A. nuptus, but the latter species persisted. This represents possible evidence of cladogenesis, which has rarely been directly documented in the fossil record. The improved understanding of both evolutionary transitions with better sampling highlights the problem of interpreting gaps in the fossil record as punctuations.  相似文献   

20.
Lungfish (Dipnoi) date back to the Devonian, and some fossil taxa as well as extant African lungfishes are known for their ability to aestivate, tolerating low-oxygen environments associated with seasonal drying. Extant lungfishes are separated into two families: Lepidosirenidae (Protopterus in Africa and Lepidosiren in South America) and Neoceratodontidae (Neocerotadus in Australia). African lungfishes were more geographically and phylogenetically diverse on the continent in the past than they are today, with only 5% of extinct taxa recorded from the sub-Saharan fossil record. Given the sparse record of Lepidosirenidae fossils from continental Africa, any new materials are important for understanding diversification of the clade. Here we describe new lungfish fossils cautiously referable to Protopterus annectens and Protopterus aethiopicus, which are strongly supported sister taxa based on the molecular phylogeny. Specimens were collected from the late Oligocene Nsungwe Formation in the Rukwa Rift Basin (RRB) of southwestern Tanzania. The late Oligocene Nsungwe Formation represents a sequence of continental rift-fill deposits of the Songwe sub-basin of the RRB and is subdivided into the lower Utengule and upper Songwe members. Recovery of such material from the Paleogene of Africa below the equator addresses a sizable gap in the lungfish fossil record. It also expands the Nsungwe Formation fauna that includes invertebrates, alestid fishes, ptychadenid anurans, snakes, and several clades of mammals, deepening paleoecological insights into the late Oligocene record of the continental African interior. At present, P. aethiopicus and P. dolloi have an extensive modern eastern African distribution associated with the rift lakes and a region where extant members of P. annectens are not presently known. Fossil specimens described herein document presence of the clade during Paleogene volcanic activity in the western branch of the Eastern African Rift System.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号