首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The muscarinic agonist carbachol has previously been shown to reverse positive inotropic responses of rabbit left atrial strips to equiactive doses of the beta-adrenoceptor agonist isoproterenol and to the alpha-adrenoceptor agonist phenylephrine. Responses to phenylephrine were measured in the presence of the beta-blocker timolol. However, carbachol was not able to reverse the increase in tension produced by elevating the extracellular Ca2+ concentration. To gain more information about the nature of the functional interaction of carbachol with alpha- and beta-receptor stimulants in left atria, the interaction of carbachol with these agonists, as well as with elevated Ca2+ and the Ca2+ activator compound BAY K 8644, was compared with that of the Ca2+ antagonists D-600 and nifedipine. The results demonstrate that the Ca2+ antagonists exhibit a selectivity similar to that of carbachol, in that responses to both isoproterenol and phenylephrine plus timolol were blocked by low concentrations of D-600 and nifedipine, which had no effect on positive inotropic responses to elevated Ca2+. Higher concentrations of these antagonists shifted the Ca2+ dose-response curve to the right. In addition, although phenylephrine and BAY K 8644 increased tension to a similar extent, responses to phenylephrine were more sensitive than responses to BAY K 8644 to inhibition by both carbachol and D-600. These similarities between the effects of low concentrations of D-600 and nifedipine and those of carbachol are consistent with the hypothesis that carbachol antagonizes responses to alpha- and beta-receptor stimulation in left atria primarily by blocking increases in Ca2+ influx produced by these agonists.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
1. In hepatocytes from starved rats, vasopressin, angiotensin (angiotensin II) and oxytocin stimulated gluconeogenesis from lactate by 25--50%; minimal effective concentrations were about 0.02pM, 1 nM and 0.2 nM respectively. 2. Vasopressin and angiotensin also stimulated gluconeogenesis from alanine, pyruvate, serine and glycerol. EGTA decreased gluconeogenesis from these substrates. 3. Hormonal stimulation of gluconeogenesis from lactate was abolished in the absence of extracellular Ca2+. 4. Insulin did not prevent stimulation of gluconeogenesis by vasopressin or angiotensin. 5. The potency of the stimulatory effects of vasopressin and angiotensin on hepatic gluconeogenesis suggests they are operative in vivo. Also, the data suggest that Ca2+ plays a role in the stimulation by these hormones.  相似文献   

3.
The effects of K+ and the Ca2+ channel blocker D-600 on parathyroid hormone (PTH) release and cytoplasmic Ca2+ activity (Ca2+i) were measured at different Ca2+ concentrations in dispersed parathyroid cells from normal cattle and from patients with hyperparathyroidism. When the extracellular Ca2+ concentration was raised within the 0.5-3.0 mM range Ca2+i increased and PTH secretion was inhibited. There was also a stimulatory effect of Ca2+ on secretion as indicated by a parallel decrease of Ca2+i and PTH release when extracellular Ca2+ was reduced to less than 25 nM. Addition of 30-50 mM K+ stimulated PTH release and lowered Ca2+i. The effect of K+ was less pronounced in the human cells with a decreased suppressability of PTH release. The Ca2+ channel blocker D-600 had no effect on Ca2+i and PTH release in the absence of extracellular Ca2+. However, at 0.5-1.0 mM Ca2+, D-600 increased Ca2+i and inhibited PTH release, whereas the opposite effects were obtained at 3.0 mM Ca2+. The transition from inhibition to stimulation occurred at a higher Ca2+ concentration in the human cells and the right-shift in the dose-effect relationship for Ca2+-inhibited PTH release tended to be normalized by D-600. It is suggested that K+ stimulates PTH release by increasing the intracellular sequestration of Ca2+ and that the reduced response in the parathyroid human cells is due to the fact that Ca2+i already is lowered. D-600 appears to have both Ca2+ agonistic and antagonistic actions in facilitating and inhibiting Ca2+ influx into the parathyroid cells at low and high concentrations of extracellular Ca2+, respectively. D-600 and related drugs are considered potentially important for the treatment of hyperparathyroidism.  相似文献   

4.
Entry of ionic Ca2+ into the vascular smooth muscle cell for contraction is thought to be mediated by two major membrane channels. The first are designated as potential-sensitive channels (PSCs), which are opened by membrane depolarization, and the second, as receptor-operated channels (ROCs), which are activated by alpha 1-receptor-ligand interactions. This study was designed to determine the presence of these 2 distinct populations of Ca2+ entry channels in smooth muscle cells of the uterine arteries in pigs. This was studied by measuring the baseline tone and contractile properties of uterine arteries in in vitro perfusion studies, as well as their specific Ca2+ uptakes. These parameters showed markedly different sensitivities towards two smooth muscle inhibitors used in this study: D-600 and amrinone. D-600 specifically inhibits uptake of extracellular Ca2+ through PSCs, while amrinone specifically inhibits Ca2+ uptake through ROCs. By choosing an appropriate concentration of D-600 or amrinone, Ca2+ uptake and contractions of uterine arterial segments induced by high-K+ (PSC activator) and phenylephrine (ROC activator) could be selectively inhibited. Furthermore, it was demonstrated that the blockade of Ca2+ uptake by D-600 and amrinone was additive, excluding the interpretation of a common Ca2+ pathway with two separate mechanisms for opening it. It was also determined that 4-hydroxylated estradiol (4OH-E2), a compound known to increase uterine blood flow in pigs, decreased Ca2+ uptake through the PSCs and exhibited no effect on ROCs. The presence of separate Ca2+ pathways that can be activated independently by agonists may indicate a refined system for controlling uterine blood flow.  相似文献   

5.
In the presence of 0.5 mM extracellular Ca2+ concentration both 1-34 human parathyroid hormone fragment (0.5 micrograms/ml) as well as 0.1 mM dibutyryl cAMP stimulated gluconeogenesis from lactate in renal tubules isolated from fed rabbits. However, these two compounds did not affect glucose synthesis from pyruvate as substrate. When 2.5 mM Ca2+ was present the stimulatory effect of the hormone fragment on gluconeogenesis from lactate was not detected but dibutyryl cAMP increased markedly the rate of glucose formation from lactate, dihydroxyacetone and glutamate, and inhibited this process from pyruvate and malate. Moreover, dibutyryl cAMP was ineffective in the presence of either 2-oxoglutarate or fructose as substrate. Similar changes in glucose formation were caused by 0.1 mM cAMP. As concluded from the 'crossover' plot the stimulatory effect of dibutyryl cAMP on glucose formation from lactate may result from an acceleration of pyruvate carboxylation due to an increase of intramitochondrial acetyl-CoA, while an inhibition by this compound of gluconeogenesis from pyruvate is likely due to an elevation of mitochondrial NADH/NAD+ ratio, resulting in a decrease of generation of oxaloacetate, the substrate of phosphoenolpyruvate carboxykinase. Dibutyryl cAMP decreased the conversion of fracture 1,6-bisphosphate to fructose 6-phosphate in the presence of both substrates which may be secondary to an inhibition of fructose 1,6-bisphosphatase.  相似文献   

6.
1. Tubule fragments were isolated after treatment of rat kidney cortex with collagenase. The formation of glucose and lactate on incubation with 5mM-pyruvate was then measured under various conditions. 2. When tubule fragments were isolated from fed rats in the absence of Ca2+ and then incubated with various Ca2+ concentrations, an incubation period of 15--30 min was necessary to establish a metabolic steady state. Under these conditions glucose formation was increased by Ca2+, adrenaline or 3':5'-cyclic AMP to a greater extent than was lactate formation. Data show that appreciable lactate formation could not have resulted from glycolytic metabolism of glucose formed by gluconeogenesis during incubation. 3. When tubule fragments were isolated from fed rats in the presence of 1.27 mM-Ca2+ and adjustments made to the Ca2+ concentration at the commencement of incubation, metabolic steady state was rapidly established. Under these conditions lactate formation was almost insensitive to Ca2+ concentration (0.16--4.5 mM), whereas glucose formation varied with Ca2+ concentration in a sigmoidal manner. 3':5'-Cyclic AMP decreased this sigmoidicity. 4. Ca2+ depletion of the tissue before incubation appeared to change permanently the relationship between extracellular Ca2+ concentration and the measured rates of metabolic processes. 5. Under conditions of metabolic steady state, glucose formation by tubule fragments from fed rats was less sensitive than lactate formation to inhibition by 3-mercaptopicolinate or 2-n-butylmalonate. Lactate formation by tubule fragments prepared from 48 h-starved rats was more sensitive to these inhibitors. 6. Estimates were made of the rate of futile cycling of C3 species through pyruvate kinase. This was greater in the starved than in the fed state, was decreased by 3':5'-cyclic AMP in both the fed and the starved state, but was unaffected by Ca2+. 7. These results suggested that formation of lactate and glucose is less tightly linked in kidney cortex than in liver. A considerable amount of the supply of reducing equivalents for lactate formation did not appear to be associated with an energy-dependent translocation from mitochondria to cytosol involving a pyruvate leads to oxaloacetate leads to phosphoenolpyruvate leads to pyruvate cycle.  相似文献   

7.
Ouabain increases the enzyme secretion from the isolated rabbit pancreas and pancreatic fragments, but not from isolated pancreatic acini. The increase occurs after a delay of 45-60 min and is not accompanied by an increase in lactate dehydrogenase release. The stimulatory effect of ouabain (10(-5) M) is dependent on the presence of extracellular calcium, and is not antagonized by 10(-4) M atropin, 10(-4) M propranolol, 10(-5) M phentolamine, 10(-3) M dibutyryl-cyclic GMP, 10(-6) M tetrodotoxin, 10(-4) M verapamil or 10(-4) M D-600. Elevation of the extracellular potassium concentration to 120 mM in the presence of 10(-4) M atropin also increases the enzyme secretion from rabbit pancreatic fragments. The increase is again dependent on the presence of extracellular calcium and is resistant to adrenergic blockade and to tetrodotoxin, verapamil or D-600. Forskolin also stimulates a Ca2+-dependent release of amylase from pancreatic fragments but not from pancreatic acini. In the presence of the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IMX), ouabain (10(-5) M) and K+ (120 mM) cause an immediate increase in the cyclic AMP content of pancreatic fragments which does not occur in the absence of extracellular calcium. In pancreatic acini, the cAMP production is only slightly increased by ouabain. In the absence of IMX, the cAMP levels in fragments or acini are not detectably altered by ouabain or K+. The results suggest that the stimulation of enzyme secretion by ouabain and high K+ is an indirect effect, mediated by the release of an endogenous transmitter from non-cholinergic, non-adrenergic nerves in the intact preparations. The release and/or the effect of the transmitter appears to be mediated primarily by Ca2+ and secondarily by cyclic AMP.  相似文献   

8.
The effects of procedures which diminish Ca2+ influx into myocardial cells on responses of isolated cardiac preparations to cAMP-independent histamine H1 receptor stimulation and cAMP-generating beta-receptor stimulation were measured. The histamine response of guinea pig left atria, which appears to be primarily mediated by H1 receptors, was depressed to a greater extent than was the response of this preparation to isoproterenol by decreasing the extracellular Ca2+ concentration, and by the Ca2+ influx blocker D-600. Similarly, while the H1 agonist 2-pyridylethylamine dihydrochloride (PEA) produced increases in tension of a similar magnitude as the partial beta-agonist salbutamol in both left atria and in papillary muscles, responses of both preparations to PEA were depressed to a significantly greater extent by decreasing the extracellular Ca2+ concentration than were responses to salbutamol. Overall, both the basal developed force of papillary muscles and the responses of these preparations to H1 and beta-receptor stimulation appeared to be less depressed by decreasing the extracellular Ca2+ concentration than were those of left atria. These results indicate that responses mediated via cAMP-independent H1 receptors, like those arising from alpha-receptor stimulation, are more sensitive to procedures which diminish Ca2+ influx than are responses arising from stimulation of cAMP-generating beta-receptors. This may reflect differences in the mechanisms by which stimulation of H1, alpha-, and beta-receptors give rise to positive inotropic responses. In addition, left atria may be more dependent than papillary muscles on extracellular Ca2+ for the support of contraction.  相似文献   

9.
Thioridazine (0.1-10 mumol l-1) inhibited shortening of specimens of human vasa deferentia induced by noradrenaline (100 mumol l-1) or high extracellular potassium (136 mmol l-1). Thioridazine did not inhibit the lengthening response. In Ca(2+)-free media with EGTA (0.5 mmol l-1) similar results were obtained with responses to noradrenaline, but exposure to potassium elicited small contractions that were potentiated by thioridazine. Both shortening and lengthening responses to noradrenaline were antagonized by the alpha-adrenoceptor blockers prazosin (1-10 mumol l-1) and phentolamine (1-10 mumol l-1) and by the Ca2+ antagonists verapamil (10 mumol l-1) and diltiazem (10 mumol l-1). Responses to potassium were virtually abolished by the Ca2+ antagonists. These results show that thioridazine specifically inhibits longitudinal muscle of the human vas deferens and that its action cannot be entirely accounted for by a blockade of voltage-gated Ca2+ channels.  相似文献   

10.
Atractyloside inhibited gluconeogenesis from dihydroxyacetone in hepatocytes from fasted rats and increased lactate synthesis. In the presence of atractyloside, lactate/pyruvate and beta-hydroxybutyrate/aceto-acetate ratios were increased and the accumulation of Fru-2,6-P2 was prevented. In the absence of atractyloside, gluconeogenesis from dihydroxyacetone was stimulated by dibutyryl-cAMP and, to a much lesser extent, by norepinephrine and vasopressin. Omission of Ca2+ increased the stimulation by norepinephrine but prevented that by vasopressin. High concentrations (greater than or equal to 40 microM) of atractyloside abolished the stimulation of gluconeogenesis by dibutyryl-cAMP but not that by norepinephrine or vasopressin. Exogenous Ca2+ was not required for hormonal stimulation in the presence of atractyloside. The stimulation by norepinephrine was inhibited by ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N-tetraacetic acid or prazosin but not by propranolol. Atractyloside caused decreases of all glycolytic intermediates and an activation of pyruvate kinase. Norepinephrine partially reversed these effects. The mitochondrial and cytosolic ATP/ADP ratios were determined by digitonin fractionation of hepatocytes. Norepinephrine or vasopressin increased the cytosolic ATP/ADP in the presence of atractyloside. We suggest that the increased availability of cytosolic ATP could be responsible for the stimulation of gluconeogenesis by these hormones.  相似文献   

11.
1. In incubated tubule fragments from renal cortex of fed rats gluconeogenesis from pyruvate was stimulated by adrenaline (1mum optimum) and by the selective alpha-adrenergic agonists oxymetazoline and amidephrine. The selective beta-agonists isoproterenol and salbutamol were ineffective at concentrations up to 10mum. 2. Stimulation of gluconeogenesis by 1mum-adrenaline was almost completely blocked by 10mum-phentolamine (alpha-antagonist), partially blocked by 10mum-phenoxybenzamine (alpha-antagonist) and unaffected by 10mum-propranolol (beta-antagonist). 3. Adrenaline stimulation of gluconeogenesis was rapid and was sustained for at least 1h. 4. Oxymetazoline (alpha-agonist) was extremely potent in stimulation of gluconeogenesis. This compound stimulated glucose production from pyruvate, lactate and glutamate, but not from succinate or glycerol. 5. In the absence of Ca(2+) oxymetazoline was ineffective, whereas some stimulatory effect of adrenaline on gluconeogenesis was still observed. 6. Glucagon had no effect on gluconeogenesis from pyruvate in the presence of 1.27mm-Ca(2+) and inhibited the process in the presence of 0.25mm-Ca(2+). Parathyrin (parathyroid hormone) stimulated gluconeogenesis at 1.27mm-Ca(2+). 7. In short incubations of tubule fragments glucagon, papaverine and adrenaline significantly increased 3':5'-cyclic AMP. Adrenaline also slightly decreased 3':5'-cyclic GMP. Oxymetazoline had no effect on the amount of either cyclic nucleotide. 8. At all concentrations tested, theophylline and papaverine decreased gluconeogenesis from pyruvate. 9. It is concluded that renal gluconeogenesis may be increased by alpha- but not beta-adrenergic stimuli and that this is probably independent of changes in 3':5'-cyclic AMP or 3':5'-cyclic GMP. An involvement of Ca(2+) in the action of oxymetazoline appears likely, but this is less certain with adrenaline.  相似文献   

12.
Vasopressin stimulated gluconeogenesis from proline in hepatocytes from starved rats; this was attributed to an activation of oxoglutarate dehydrogenase (EC 1.2.4.2) [Staddon & McGivan (1984) Biochem. J. 217, 477-483]. The role of Ca2+ in the activation mechanism was investigated. (1) In the absence of extracellular Ca2+, vasopressin caused a stimulation of gluconeogenesis and a decrease in cell oxoglutarate content that were markedly transient when compared with the effects in the presence of Ca2+. (2) Ca2+ added to cells stimulated for 2 min by vasopressin in the absence of extracellular Ca2+ sustained the initial effects of vasopressin. Ca2+ added 15 min after vasopressin, a time at which both the rate of gluconeogenesis and the cell oxoglutarate content were close to the control values, caused a stimulation of gluconeogenesis and a decrease in cell oxoglutarate content. (3) Under conditions of cell-Ca2+ depletion, vasopressin had no effect on gluconeogenesis or cell oxoglutarate content. (4) Ionophore A23187 stimulated gluconeogenesis and caused a decrease in cell oxoglutarate content, but the phorbol ester 4 beta-phorbol 12-myristate 13-acetate had no effects. (5) These data suggest that the initial activation of oxoglutarate dehydrogenase by vasopressin is dependent on an intracellular Ca2+ pool and independent of extracellular Ca2+. For activation of a greater duration, a requirement for extracellular Ca2+ occurs. The activation of oxoglutarate dehydrogenase by A23187 is consistent with a mechanism involving Ca2+, but the lack of effect of 4 beta-phorbol 12-myristate 13-acetate indicates that protein kinase C is not involved in the mechanism of activation by vasopressin.  相似文献   

13.
Glucose output from perfused livers of 48 h-starved rats was stimulated by phenylephrine (2 microM) when lactate, pyruvate, alanine, glycerol, sorbitol, dihydroxyacetone or fructose were used as gluconeogenic precursors. Phenylephrine-induced increases in glucose output were immediately preceded by a transient efflux of Ca2+ and a sustained increase in oxygen uptake. Phenylephrine decreased the perfusate [lactate]/[pyruvate] ratio when sorbitol or glycerol was present, but increased the ratio when alanine, dihydroxyacetone or fructose was present. Phenylephrine induced a rapid increase in the perfusate [beta-hydroxybutyrate]/[acetoacetate] ratio and increased total ketone-body output by 40-50% with all substrates. The oxidation of [1-14C]octanoate or 2-oxo[1-14C]glutarate to 14CO2 was increased by up to 200% by phenylephrine. All responses to phenylephrine infusion were diminished after depletion of the hepatic alpha-agonist-sensitive pool of Ca2+ and returned toward maximal responses after Ca2+ re-addition. Phenylephrine-induced increases in glucose output from lactate, sorbitol and glycerol were inhibited by the transaminase inhibitor amino-oxyacetate by 95%, 75% and 66% respectively. Data presented suggest that the mobilization of an intracellular pool of Ca2+ is involved in the activation of gluconeogenesis by alpha-adrenergic agonists in perfused rat liver. alpha-Adrenergic activation of gluconeogenesis is apparently accompanied by increases in fatty acid oxidation and tricarboxylic acid-cycle flux. An enhanced transfer of reducing equivalents from the cytoplasmic to the mitochondrial compartment may also be involved in the stimulation of glucose output from the relatively reduced substrates glycerol and sorbitol and may arise principally from an increased flux through the malate-aspartate shuttle.  相似文献   

14.
The blocking action of Mg++ on catecholamine release induced by the substitution of extracellular Na+ by an osmotic equivalent amount of sucrose was studied in isolated, perfused bovine adrenal glands. Perfusing glands with 10 mM Mg++ produced at 51.1% inhibition on catecholamine release evoked by Na+ omission. Increasing the concentration of Mg++ to 20 mM this inhibitory effect was enhanced to 90.3%. D-600 (0.3 mM) promoted a marked blockade of acetylcholine-induced release of catechol hormones that was partially and significantly reverted increasing the concentration of Ca++ in the perfusion medium. D-600 (0.3 mM) failed to inhibit the catecholamine-releasing effect of Na+ deprivation. In adrenal glands previously perfused with D-600 (0.3 mM) and then exposed to a Locke solution containing D-600 (0.3 mM) + Mg++ (10 or 20 mM) the inhibition of the secretory responses evoked by the omission of Na+ was of the same magnitude as that obtained when the glands were perfused with Mg++ (10 or 20 mM) in the absence of D-600. These results are compatible with the view that the blocking effect of Mg++ may involve an intracellular site of action and that the access of Mg++ into the chromaffin cell may not be mediated through the Ca++ channels.  相似文献   

15.
We have pharmacologically characterized voltage sensitive calcium channels (VSCCs) in GH3 cells, an anterior pituitary clonal cell line known to secrete prolactin and growth hormone. Raising the medium K+ concentration from 5 to 50 mM caused an immediate increase in net 45Ca2+ uptake which remained apparent over a 15 minute time course. 45Ca2+ uptake was maximally stimulated nearly 10-fold over basal levels. This K+-induced stimulation of Ca2+ uptake was not prevented by 10-5M tetrodotoxin or by replacing sodium with choline in the assay medium. Ca2+ uptake was, however, inhibited by several VSCC antagonists: nitrendipine, D-600, diltiazem and Cd2+. Further, the novel dihydropyridine VSCC agonists, BAY K8644 and CGP 28392, enhanced 50 mM K+-stimulated 45Ca2+ uptake and these effects were blocked by nitrendipine.  相似文献   

16.
Rat brain slices, prelabeled with [3H]noradrenaline, were superfused and exposed to K+ depolarization (10-120 mM K+) or to veratrine (1-25 microM). In the absence of extracellular Ca2+ veratrine, in contrast to K+-depolarization, caused a substantial release of [3H]noradrenaline, which was completely blocked by tetrodotoxin (0.3 microM). The Ca2+ antagonist Cd2+ (50 microM), which strongly reduced K+-induced release in the presence of 1.2 mM Ca2+, did not affect release induced by veratrine in the absence of extracellular Ca2+. Ruthenium red (10 microM), known to inhibit Ca2+-entry into mitochondria, enhanced veratrine-induced [3H]noradrenaline release. Compared with K+ depolarization in the presence of 1.2 mM Ca2+, veratrine in the absence of Ca2+ caused a somewhat delayed release of [3H]noradrenaline. Further, in contrast to the fractional release of [3H]noradrenaline induced by continuous K+ depolarization in the presence of 1.2 mM Ca2+, that induced by prolonged veratrine stimulation in the absence of Ca2+ appeared to be more sustained. The data strongly suggest that veratrine-induced [3H]noradrenaline release in the absence of extracellular Ca2+ is brought about by a mobilization of Ca2+ from intracellular stores, e.g., mitochondria, subsequent to a strongly increased intracellular Na+ concentration. This provides a model for establishing the site of action of drugs that alter the stimulus-secretion coupling process in central noradrenergic nerve terminals.  相似文献   

17.
The cytosolic Ca2+ activity of mouse pancreatic beta-cells was studied with the intracellular fluorescent indicator quin2 . When the extracellular Ca2+ concentration was 1.20 mM, the basal cytosolic Ca2+ activity was 162 +/- 9 nM. Stimulation with 20 mM glucose increased this Ca2+ activity by 40%. In the presence of only 0.20 mM Ca2+ or after the addition of the voltage-dependent Ca2+ -channel blocker D-600, glucose had an opposite and more prompt effect in reducing cytosolic Ca2+ by about 15%. It is concluded that an early result of glucose exposure is a lowering of the cytosolic Ca2+ activity and that this effect tends to be masked by a subsequent increase of the Ca2+ activity due to influx of Ca2+ through the voltage-dependent Ca2+ channels.  相似文献   

18.
Calcium channel activation in vascular smooth muscle by BAY K 8644   总被引:8,自引:0,他引:8  
BAY K 8644 (methyl-1,4-dihydro-2,6-dimethyl-3-nitro-4-(2-trifluoromethylphenyl) pyridine-5-carboxylate) and CGP 28 392 (ethyl-4(2-difluoromethoxyphenyl)-1,4,5,7-tetrahydro-2-methyl-5-++ +oxofuro- [3,4-b]pyridine-3-carboxylate) are closely related in structure to nifedipine and other 1,4-dihydropyridine Ca2+ channel antagonists. However, both BAY K 8644 and CGP 28 392 serve as activators of Ca2+ channels. In the rat tail artery, responses to BAY K 8644 are dependent upon Ca2+ext and prior stimulation by K+ or by the alpha-adrenoceptor agonists, phenylephrine and BHT 920 (6-allyl-2-amino-5,6,7,8,-tetrahydro-4H-thiazolo[4,5-d]azepin dihydrochloride). Responses are blocked noncompetitively by the Ca2+ channel antagonists D-600 [-)-D-600 greater than (+)-D-600) and diltiazem, but competitively by nifedipine (pA2 = 8.27). This suggests that activator and inhibitor 1,4-dihydropyridines interact at the same site. BAY K 8644 potentiates K+ responses and Ca2+ responses in K+-depolarizing media. The leftward shift of the K+ dose--response curve produced by BAY K 8644 suggests that this ligand facilitates the voltage-dependent activation of the Ca2+ channel. The pA2 value for nifedipine antagonism of BAY K 8644 responses is significantly lower than that for nifedipine antagonism of Ca2+ responses in K+ (25-80 mM) depolarizing media (9.4-9.6), suggesting that the state of the channel may differ according to the activating stimulus.  相似文献   

19.
Postsynaptic alpha-adrenoceptors in the rat tail artery have been examined by determining the pA2 values for antagonists against several alpha-adrenoceptor agonists. In this tissue the alpha-adrenoceptor agonists all produce concentration-dependent mechanical responses with the following rank order of potency: clonidine greater than norepinephrine greater than phenylephrine greater than UK 14304 greater than B-HT 920. Antagonism by prazosin and yohimbine of phenylephrine, norepinephrine, and clonidine responses does not reveal the anticipated discrimination between alpha 1- and alpha 2-adrenoceptors. Thus, pA2 values for prazosin (9.1-9.5), yohimbine (7.2-7.4), and corynanthine (7.0-7.1) and idazoxan (7.6) do not show large differences between these receptor agonists and suggests the predominance of alpha 1-adrenoceptor mediated contractile responses in this preparation. Significant differences between antagonist activities (pA2 values) in Wistar Kyoto (WKY) and spontaneously hypertensive rats (SHR) artery preparations have not been observed. The sensitivity sequence of alpha-adrenoceptor agonist-induced responses to nifedipine and D 600 is B-HT 920 greater than clonidine greater than phenylephrine greater than norepinephrine. Dependence of agonist response upon extracellular Ca2+ parallels the sensitivity to Ca2+ channel antagonists. Sensitivity to D 600 of phenylephrine responses increased with decreasing concentration of phenylephrine or with receptor blockade by phenoxybenzamine: sensitivity of responses to B-HT 920 was not affected by these procedures. Tail artery strips from WKY and SHR do not exhibit major differences in sensitivity to D 600 or to Ca2+ depletion. Bay k 8644, a Ca2+ channel activator, produces concentration-dependent mechanical responses in the tail artery in the presence of modestly elevated K+ concentrations (10-15 mM): these actions of elevated K+ can be mimicked by both alpha 1- and alpha 2-adrenoceptor agonists including methoxamine, St 587, UK 14304, and clonidine. These studies do not provide clear evidence for the existence of discrete postsynaptic alpha 1- and alpha 2-adrenoceptor populations in rat tail artery as indicated by pA2 values or Ca2+ dependence of response.  相似文献   

20.
1. Gluconeogenesis from pyruvate was measured in renal-cortical-tubules fragments prepared from fed male rats 6-8 days after adrenalectomy or sham adrenalectomy. The response of this process to 3':5'-cyclic AMP and adrenaline was compared in these two states at two Ca2+ concentrations. 2. Adrenalectomy decreased the percentage stimulation of gluconeogenesis by 3':5'-cyclic AMP, but increased percentage stimulation by adrenaline. Cortisol treatment of adrenalectomized rats (50 mg/kg, twice daily for 2 days) did not reverse the change in responsiveness to 3':5'-cyclic AMP and adrenaline. 3. Stimulation of gluconeogenesis by 1 micron-adrenaline was unaffected by 10 micron-propranolol (beta-blocker) in either state. Phentolamine (alpha-blocker; 10 micron) totally blocked stimulation of gluconeogenesis by 1 micron-adrenaline in the sham-operated condition, but was only partially effective in this respect after adrenalectomy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号