首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Physiological and molecular responses to phosphorus (P) supply and mycorrhizal infection by Glomus intraradices were compared in European (River) and African (H511) maize (Zea mays) cultivars to examine the extent to which these responses differed between plants developed for use in high- and low-nutrient-input agricultural systems. Biomass, photosynthetic rates, nutrient and carbohydrate contents, mycorrhizal colonization and nutrient-responsive phosphate transporter gene expression were measured in nonmycorrhizal and mycorrhizal plants grown at different inorganic phosphorus (P(i)) supply rates. Nonmycorrhizal River plants grew poorly at low P(i) but were highly responsive to mycorrhizal infection; there were large increases in biomass, tissue P content and the rate of photosynthesis and a decline in the expression of phosphate transporter genes. Nonmycorrhizal H511 plants grew better than River plants at low P(i), and had a higher root : shoot ratio. However, the responses of H511 plants to higher P(i) supplies and mycorrhizal infection were much more limited than those of River plants. The adaptations that allowed nonmycorrhizal H511 plants to perform well in low-P soils limited their ability to respond to higher nutrient supply rates and mycorrhizal infection. The European variety had not lost the ability to respond to mycorrhizas and may have traits useful for low-nutrient agriculture where mycorrhizal symbioses are established.  相似文献   

2.
3.
4.
5.
6.
7.
Expression divergence of duplicate genes is widely believedto be important for their retention and evolution of new function,although the mechanism that determines their expression divergenceremains unclear. We use a genetical genomics approach to exploredivergence in genetical control of yeast duplicate genes createdby a whole-genome duplication that occurred about 100 MYA andthose with a younger duplication age. The analysis reveals thatduplicate genes have a significantly higher probability of sharingcommon genetic control than pairs of singleton genes. The expressionquantitative trait loci (eQTLs) have diverged completely fora high proportion of duplicate pairs, whereas a substantiallylarger proportion of duplicates share common regulatory motifsafter 100 Myr of divergent evolution. The similarity in bothgenetical control and cis motif structure for a duplicate pairis a reflection of its evolutionary age. This study revealsthat up to 20% of variation in expression between ancient duplicategene pairs in the yeast genome can be explained by both cismotif divergence (8%) and by trans eQTL divergence (10%). Initially,divergence in all 3 aspects of cis motif structure, trans-geneticalcontrol, and expression evolves coordinately with the codingsequence divergence of both young and old duplicate pairs. Thesefindings highlight the importance of divergence in both cismotif structure and trans-genetical control in the diverse setof mechanisms underlying the expression divergence of yeastduplicate genes.  相似文献   

8.
9.
10.
11.
Phosphate (P(i)) is a major limiting factor for plant growth. Plants respond to limiting P(i) supplies by inducing a suite of adaptive responses comprising altered growth behaviour, enhanced P(i) acquisition and reduced P(i) demand that together define a distinct physiological state. In P(i)-starved plants, continued root growth is required for P(i) acquisition from new sources, yet meristem activity consumes P(i). Therefore, we analysed the relationship between organ growth, phosphate starvation-responsive (PSR) gene expression and P(i) content in Arabidopsis thaliana under growth-promoting or inhibitory conditions. Induction of PSR gene expression after transfer of plants to P(i)-depleted conditions quantitatively reflects prior levels of P(i) acquisition, and hence is sensitive to the balance of P(i) supply and demand. When plants are P(i)-starved, enhanced root or shoot growth exacerbates, whereas growth inhibition suppresses, P(i) starvation responses, suggesting that the magnitude of organ growth activity specifies the level of P(i) demand. Inhibition of cell-cycle activity, but not of cell expansion or cell growth, reduces P(i) starvation-responsive gene expression. Thus, the level of cell-cycle activity specifies the magnitude of P(i) demand in P(i)-starved plants. We propose that cell-cycle activity is the ultimate arbiter for P(i) demand in growing organs, and that other factors that influence levels of PSR gene expression do so by affecting growth through modulation of meristem activity.  相似文献   

12.
强继业 《广西植物》2004,24(1):52-54
应用3 2  P研究“合作 88”马铃薯对磷素营养的吸收和分布规律 ,结果显示 :马铃薯对磷素营养的吸收率随植株的生长而增加。吸收率与栽培生长时间呈显著正相关。磷素主要分布为茎 >根 >叶。随生育期茎中含量相对增加 ,而叶中含量相对减少 ,根的不变。黄豆对磷素的吸收在 6d水培时间内随时间的延长而增加 ,过后则衰退。  相似文献   

13.
韩利红  刘潮  赵明玉  胡丽娟  胡玉霜 《广西植物》2021,41(12):1955-1963
磷转运蛋白1(phosphate transporter protein 1, PHT1)家族在植物对磷的吸收及再利用过程中发挥重要作用。该研究对菠萝PHT1基因(AcoPHT1)进行全基因组鉴定,并对基因结构、编码蛋白保守功能域和基因表达进行了分析。结果表明:(1)共鉴定到9个AcoPHT1基因,位于基因组7个连锁群上,所有基因均含有1~3个内含子,内含子相位类型多样。(2)除AcoPHT1.8外,AcoPHT1蛋白均为碱性蛋白,所有蛋白属于亲水性蛋白,且含有10~13个跨膜功能域,均具有保守的PHT1蛋白标签序列GGDYPLSATIxSE,主要定位于叶绿体和细胞质中。(3)AcoPHT1蛋白聚类在单子叶植物组和单双子叶植物混合组中,相对于拟南芥,水稻PHT1与菠萝PHT1相似度更高。(4)AcoPHT1基因启动子区含有P1BS、W-box等与磷吸收和响应胁迫有关的多个顺式作用元件。(5)靶基因预测分析显示,基因AcoPHT1.2、AcoPHT1.8和AcoPHT1.9受多个miRNA调控。(6)AcoPHT1基因表达存在组织特异性和功能冗余性,不同PHT1基因可能在菠萝不同组织或发育阶段发挥作用。该研究结果为菠萝PHT1家族基因的功能鉴定和育种应用奠定理论基础。  相似文献   

14.
15.
16.
In luminous bacteria NAD(P)H:flavin-oxidoreductases LuxG and Fre, there are homologous enzymes that could provide a luciferase with reduced flavin. Although Fre functions as a housekeeping enzyme, LuxG appears to be a source of reduced flavin for bioluminescence as it is transcribed together with luciferase. This study is aimed at providing the basic conception of Fre and LuxG evolution and revealing the peculiarities of the active site structure resulted from a functional variation within the oxidoreductase family. A phylogenetic analysis has demonstrated that Fre and LuxG oxidoreductases have evolved separately after the gene duplication event, and consequently, they have acquired changes in the conservation of functionally related sites. Namely, different evolutionary rates have been observed at the site responsible for specificity to flavin substrate (Arg 46). Also, Tyr 72 forming a part of a mobile loop involved in FAD binding has been found to be conserved among Fre in contrast to LuxG oxidoreductases. The conservation of different amino acid types in NAD(P)H binding site has been defined for Fre (arginine) and LuxG (proline) oxidoreductases.  相似文献   

17.
Current hypotheses of gene duplicate divergence propose that surviving members of a gene duplicate pair may evolve, under conditions of purifying or nearly neutral selection, in one of two ways: with new function arising in one duplicate while the other retains original function (neofunctionalization [NF]) or partitioning of the original function between the 2 paralogs (subfunctionalization [SF]). More recent studies propose that SF followed by NF (subneofunctionalization [SNF]) explains the divergence of many duplicate genes. In this analysis, we evaluate these hypotheses in the context of the large monosaccharide transporter (MST) gene families in Arabidopsis and rice. MSTs have an ancient origin, predating plants, and have evolved in the seed plant lineage to comprise 7 subfamilies. In Arabidopsis, 53 putative MST genes have been identified, with one subfamily greatly expanded by tandem gene duplications. We searched the rice genome for members of the MST gene family and compared them with the MST gene family in Arabidopsis to determine subfamily expansion patterns and estimate gene duplicate divergence times. We tested hypotheses of gene duplicate divergence in 24 paralog pairs by comparing protein sequence divergence rates, estimating positive selection on codon sites, and analyzing tissue expression patterns. Results reveal the MST gene family to be significantly larger (65) in rice with 2 subfamilies greatly expanded by tandem duplications. Gene duplicate divergence time estimates indicate that early diversification of most subfamilies occurred in the Proterozoic (2500-540 Myr) and that expansion of large subfamilies continued through the Cenozoic (65-0 Myr). Two-thirds of paralog pairs show statistically symmetric rates of sequence evolution, most consistent with the SF model, with half of those showing evidence for positive selection in one or both genes. Among 8 paralog pairs showing asymmetric divergence rates, most consistent with the NF model, nearly half show evidence of positive selection. Positive selection does not appear in any duplicate pairs younger than approximately 34 Myr. Our data suggest that the NF, SF, and SNF models describe different outcomes along a continuum of divergence resulting from initial conditions of relaxed constraint after duplication.  相似文献   

18.
19.
One of the most fundamental questions for understanding the origin of species is why genes that function to cause fertility in a pure-species genetic background fail to produce fertility in a hybrid genetic background. A related question is why the sex that is most often sterile or inviable in hybrids is the heterogametic (usually male) sex. In this survey, we have examined the extent and nature of differences in gene expression between fertile adult males of two Drosophila species and sterile hybrid males produced from crosses between these species. Using oligonucleotide microarrays and real-time quantitative polymerase chain reaction, we have identified and confirmed that differences in gene expression exist between pure species and hybrid males, and many of these differences are quantitative rather than qualitative. Furthermore, genes that are expressed primarily or exclusively in males, including several involved in spermatogenesis, are disproportionately misexpressed in hybrids, suggesting a possible genetic cause for their sterility.  相似文献   

20.
Han W  Fang J  Guo D  Zhang Y 《The New phytologist》2005,168(2):377-385
Leaf nitrogen and phosphorus stoichiometry of Chinese terrestrial plants was studied based on a national data set including 753 species across the country. Geometric means were calculated for functional groups based on life form, phylogeny and photosynthetic pathway, as well as for all 753 species. The relationships between leaf N and P stoichiometric traits and latitude (and temperature) were analysed. The geometric means of leaf N, P, and N : P ratio for the 753 species were 18.6 and 1.21 mg g(-1) and 14.4, respectively. With increasing latitude (decreasing mean annual temperature, MAT), leaf N and P increased, but the N : P ratio did not show significant changes. Although patterns of leaf N, P and N : P ratios across the functional groups were generally consistent with those reported previously, the overall N : P ratio of China's flora was considerably higher than the global averages, probably caused by a greater shortage of soil P in China than elsewhere. The relationships between leaf N, P and N : P ratio and latitude (and MAT) also suggested the existence of broad biogeographical patterns of these leaf traits in Chinese flora.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号