首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The effect of product gases, H2 and CO2, on solvent production was studied using a continuous culture of alginate-immobilized Clostridium acetobutylicum. Initially, in order to find the optimum dilution rate for aceton--butanol production in this system, fermentations were carried out at various dilution rates. With 10% H2 and 10% CO2 in the sparging gas, a dilution rate of 0.07 h–1 was found to maximize volumetric productivity (0.58 g·l–1·h–1), while the maximum specific productivity of 0.27 g·h–1 occured at 0.12 h–1. Continuous cultures with vigorous sparging of N2 produced only acids. It was concluded that in the case of continuous fermentation H2 is essential for good solvent production, although good solvent production is possible in an H2-absent environment in the case of batch fermentations. When the fermentation was carried out at atmospheric pressure under H2-enriched conditions, the presence of CO2 in the sparging gas did not slow down glucose metabolism; rather it changed the direction of the phosphoroclastic reaction and as a result increased the butanol/acetone ratio.  相似文献   

2.
Summary The production of solvent by Clostridium acetobutylicum was studied, using fed-batch fermentations. Different specific rates of carbohydrate utilisation were obtained by variations in feeding rates of sugar. At slow catabolic rates of sugar, addition of acetic acid or butyric acid, alone or together, increased the rate of the metabolic transition by a factor 10 to 20, the amount of solvents by a factor 6 and the percentage of fermented glucose to solvents by a factor 3. The same results were obtained with both glucose and xylose fermentations. Depending on the rates of growth, butanol production began at acid levels of 3–4 g·l-1 for fast metabolism and at acid levels of 8–10 g·l-1 for slow metabolism. Associated with slow metabolism, reassimilation of acids required values as high as 6.5 g·l-1 of acetic acid and 7.5 g·l-1 of butyric acid. At a high rate of metabolism, acetic and butyric acids were reassimilated at concentrations of 4.5 g·l-1.  相似文献   

3.
Summary Direct alcoholic fermentation of dextrin or soluble starch with selected amylolytic yeasts was studied in both batch and immobilized cell systems. In batch fermentations, Saccharomyces diastaticus was capable of fermenting high dextrin concentrations much more efficiently than Schwanniomyces castellii. From 200 g·l–1 of dextrin S. diastaticus produced 77 g·l–1 of ethanol (75% conversion efficiency). The conversion efficiency decreased to 59% but a higher final ethanol concentration of 120 g·l–1 was obtained with a medium containing 400 g·l–1 of dextrin. With a mixed culture of S. diastaticus and Schw. castellii 136 g·l–1 of ethanol was produced from 400 g·l–1 of dextrin (67% conversion efficiency). S. diastaticus cells attached well to polyurethane foam cubes and a S. diastaticus immobilized cell reactor produced 69 g·l–1 of ethanol from 200 g·l–1 of dextrin, corresponding to an ethanol productivity of 7.6g·l–1·h–1. The effluent from a two-stage immobilized cell reactor with S. diastaticus and Endomycopsis fibuligera contained 70 g·l–1 and 80 g·l–1 of ethanol using initial dextrin concentrations of 200 and 250 g·l–1 respectively. The corresponding values for ethanol productivity were 12.7 and 9.6 g·l–1·h–1. The productivity of the immobilized cell systems was higher than for the batch systems, but much lower than for glucose fermentation.  相似文献   

4.
The technical possibilities of the microbial production of acetone, butanol and ethanol (ABE) from potato waste using in-line solvent recovery, are evaluated. Clostridium acetobutylicum DSM 1731 produces up to 20 g·l–1 of solvents when grown on a medium containing 14% (w/v) potato powder. Using a polypropylene perstraction system and a oleyl alcohol/decane mixture as the extractant, the product yield (based on total solvents and potato dry weight) increased from 0.13 g·g–1 to 0.23 g·g–1. The recovery system worked well for 50 h, after which membrane fouling frustrated proper operation. In the second system a microfiltration step was incorporated whereas the solvents were extracted through a hydrophilic membrane using fatty acid methyl esters from sunflower oil as an extractant. This process configuration resulted in a comparable increase of ABE production. Correspondence to: G. Eggink  相似文献   

5.
Acetone butanol ethanol (ABE) was produced in an integrated fed-batch fermentation-gas stripping product-recovery system using Clostridium beijerinckii BA101, with H2 and CO2 as the carrier gases. This technique was applied in order to eliminate the substrate and product inhibition that normally restricts ABE production and sugar utilization to less than 20 g l–1 and 60 g l–1, respectively. In the integrated fed-batch fermentation and product recovery system, solvent productivities were improved to 400% of the control batch fermentation productivities. In a control batch reactor, the culture used 45.4 g glucose l–1 and produced 17.6 g total solvents l–1 (yield 0.39 g g–1, productivity 0.29 g l–1 h–1). Using the integrated fermentation-gas stripping product-recovery system with CO2 and H2 as carrier gases, we carried out fed-batch fermentation experiments and measured various characteristics of the fermentation, including ABE production, selectivity, yield and productivity. The fed-batch reactor was operated for 201 h. At the end of the fermentation, an unusually high concentration of total acids (8.5 g l–1) was observed. A total of 500 g glucose was used to produce 232.8 g solvents (77.7 g acetone, 151.7 g butanol, 3.4 g ethanol) in 1 l culture broth. The average solvent yield and productivity were 0.47 g g–1 and 1.16 g l–1 h–1, respectively.  相似文献   

6.
Summary In cooperation with the company Copersucar (Brazil), several variants of a fermentation system for the continuous production of butanol and acetone from high-test or invert molasses were developed. These fermentation systems involve a relatively economic batch fermentation requiring little investment, using a continuous culture as the inoculation culture, as well as a modern two-stage continuous culture with cell recycling. For example, 13.3 g·1–1 of solvent (acetone and butanol) are produced with a productivity of 3.3 g·1–1 ·h–1 by two-stage continuous molasses fermentation with cell recycling in the second stage. High-test molasses is converted completely into the products. Butanol and acetone production from molasses is economic in Brazil and the construction of a production plant is planned.Offprint requests to: A. S. Afschar  相似文献   

7.
Summary To investigate simultaneous alcoholic fermentation of glucose and xylose derived from lignocellulosic material by separate or co-culture processes, the effect of oxygen transfer rate (OTR) on the fermentation of 50 g/l xylose by Pichia stipitis NRRL Y 7124 and Candida shehatae ATCC 22984, and the fermentation of 50 g/l glucose by Saccharomyces cerevisiae CBS 1200 and Zymomonas mobilis ATCC 10988 was carried out in batch cultures. The kinetic parameters of the xylose-fermenting yeasts were greatly dependent on the OTR. The optimum OTR values were found to be 3.9 and 1.75 mmol·1–1·h–1 for C. shehatae and P. stipitis, respectively. By contrast the fermentative parameters of S. cerevisiae were poorly affected by the OTR range tested (0.0–3.5 mmol·l–1·h–1) Under these conditions the ethanol yields ranged from 0.41 g·g–1 to 0.45 g·g–1 and the specific ethanol productivity was around 0.70 g·g–1·h–1. Z. mobilis gave the highest fermentative performance under strictly anaerobic conditions (medium continually flushed with nitrogen): under these conditions, the ethanol yield was 0.43 g·g–1 and the average specific ethanol productivity was 2.3 g·g–1·h–1. Process considerations in relation to the effect of OTR on the fermentative performance of the tested strains are discussed. Offprint requests to: J. P. Delgenes  相似文献   

8.
The production of 2,3-butanediol by fermentation of high test molasses   总被引:6,自引:0,他引:6  
Summary Klebsiella oxytoca fermented 199 g·l–1 high test or invert molasses using batch fermentation with substrate shift to produce 95.2–98.6 g 2,3-butanediol·l–1 and 2,4–4.3 g acetoin·l–1 with a diol yield of 96–100% of the theoretical value and a diol productivity of 1.0–1.1 g·l–1·h–1. Fermentation was performed numerous times with molasses in repeated batch culture with cell recovery. Such repeated batch fermentation, in addition to a high product yield, also showed a very high product concentration. For example, 118 g 2,3-butanediol·l–1 and 2.3 g acetoin·l–1 were produced from 280 g·l–1 of high test molasses. The diol productivity in this fermentation amounted to 2.4 g·l–1·h–1 and can undoubtedly be further increased by increasing the cell concentration. Because the Klebsiella cultures ferment 2,3-butanediol at an extremely high rate once the sugar has been consumed, the culture was inhibited completely by the addition of 15 g ethanol·l–1 and switching off aeration. Offprint requests to: A. S. Afschar  相似文献   

9.
The growth of surplus brewers' yeast in a fed-batch process was studied with the aim of increasing the fermentation activity of the yeast cells and of optimizing the growth conditions: 20 h cultivation at 30° C and pH 5.0–5.5 using beet molasses as substrate, with a regulated feeding rate, showed satisfactory results. Under the chosen conditions, the final amount of biomass increased more than fivefold, achieving a specific growth rate of 0.1 h–1 and substrate yield coefficient of 0.54 g·g–1. The increase in fermentation activity of yeast cells during cultivation correlated very well with the concentration of reduced glutathione, which increased from 1.2 to 2.7 mg·g–1 (dry matter). At the same time the fermentation activity increased fivefold, which related to the nitrogen content of the yeast cells. Ethanol formation throughout the cultivation did not exceed 0.5 g·l–1. Correspondence to: B. Strel  相似文献   

10.
The performance of a continuous bioreactor containing Clostridium beijerinckii BA101 adsorbed onto clay brick was examined for the fermentation of acetone, butanol, and ethanol (ABE). Dilution rates from 0.3 to 2.5 h–1 were investigated with the highest solvent productivity of 15.8 g l–1 h–1 being obtained at 2.0 h–1. The solvent yield at this dilution rate was found to be 0.38 g g–1 and total solvent concentration was 7.9 g l–1. The solvent yield was maximum at 0.45 at a dilution rate of 0.3 h–1. The maximum solvent productivity obtained was found to be 2.5 times greater than most other immobilized continuous and cell recycle systems previously reported for ABE fermentation. A higher dilution rate (above 2.0 h–1) resulted in acid production rather than solvent production. This reactor was found to be stable for over 550 h. Scanning electron micrographs (SEM) demonstrated that a large amount of C. beijerinckii cells were adsorbed onto the brick support.  相似文献   

11.
Summary Submerged batch cultivation under controlled environmental conditions of pH 3.8, temperature 30°C, and KLa200 h–1 (above 180 mMO2 l –1 h–1 oxygen supply rate) produced a maximum (12.0 g·l –1) SCP (Candida utilis) yield on the deseeded nopal fruit juice medium containing C/N ratio of 7.0 (initial sugar concentration 25 g·l –1) with a yield coefficient of 0.52 g cells/g sugar. In continuous cultivation, 19.9 g·l –1 cell mass could be obtained at a dilution rate (D) of 0.36 h–1 under identical environmental conditions, showing a productivity of 7.2 g·l –1·h–1. This corresponded to a gain of 9.0 in productivity in continuous culture over batch culture. Starting with steady state values of state variables, cell mass (CX–19.9 g·l –1), limiting nutrient concentration (Cln–2.5 g·l –1) and sugar concentration (CS–1.5 g·l –1) at control variable conditions of pH 3.8, 30°C, and KLa 200 h–1 keeping D=0.36 h–1 as reference, transient response studies by step changes of these control variables also showed that this pH, temperature and KLa conditions are most suitable for SCP cultivation on nopal fruit juice. Kinetic equations obtained from experimental data were analysed and kinetic parameters determined graphically. Results of SCP production from nopal fruit juice are described.Nomenclature Cln concentration of ammonium sulfate (g·l –1) - CS concentration of total sugar (g·l –1) - CX cell concentration (g·l –1) - D dilution rate (h–1) - Kln Monod's constant (g·l –1) - m maintenance coefficient (g ammonium sulfate cell–1 h–1) - m(S) maintenance coefficient (g sugar g cell–1 h–1) - t time, h - Y yield coefficient (g cells/g ammonium sulfate) - Ym maximum of Y - YS yield coefficient based on sugar consumed (g cells · g sugar–1) - YS(m) maximum value of YS - µm maximum specific growth rate constant (h–1)  相似文献   

12.
Kim TB  Lee YJ  Kim P  Kim CS  Oh DK 《Biotechnology letters》2004,26(8):623-627
Long-term cell recycle fermentations of Candida tropicalis were performed over 14 rounds of fermentation. The average xylitol concentrations, fermentation times, volumetric productivities and product yields for 14 rounds were 105 g l–1, 333 h, 4.4 g l–1 h–1 and 78%, respectively, in complex medium; and 110 g l–1, 284 h, 5.4 g l–1 h–1 and 81%, respectively, in a chemically defined medium. These productivities were 1.7 and 2.4 times those with batch fermentation in the complex and chemically defined media, respectively. The xylitol yield from xylose with cell recycle fermentation using the chemically defined medium was 81% (w/w), which was 7% greater than the xylitol yield with batch fermentation (74%); both modes of fermentation gave the same yield using the complex medium. These results suggest that the chemically defined medium is more suitable for production of xylitol than complex medium.  相似文献   

13.
Summary The sugar content of an apple juice was continuously converted into ethanol bySaccharomyces cerevisiae entrapped in Ca-alginate gel. The average values characterizing the process were: fermentation efficiency, 84.7±4.2%, ethanol concentration in the mash, 38.9–1.9 g·l–1 and volumetric productivity, 6.3±0.5 g·l–1·h–1.  相似文献   

14.
Summary A series of continuous fermentations were carried out with a production strain of the yeast Saccharomyces cerevisiae in a membrane bioreactor. A membrane separation module composed of ultrafiltration tubular membranes retained all biomass in a fermentation zone of the bioreactor and allowed continuous removal of fermentation products into a cell-free permeate. In a system with total (100%) cell recycle the impact of fermentation conditions [dilution rate (0.03–0.3 h–1); substrate concentration in the feed (50–300 g·1–1); biomass concentration (depending on the experimental conditions)] was studied on the behaviour of the immobilized cell population and on ethanol formation. Maximum ethanol productivity (15 g·1–1·h–1) was attained at an ethanol concentration of 81 g·1–1. The highest demands of cells for maintenance energy were found at the maximum feed substrate concentration (300 g·1–1) and at very low concentrations of cells in the broth.  相似文献   

15.
Summary Continuous ethanol fermentations were conducted in single-stage and three-stage Horizontal Parallel Flow (HOPAF) bioreactor systems. Biological entrapment of yeast could be achieved by virtue of its growth and flocculence in reusable porous stainless steel fiber sheets. Twenty-five g·l–1·h–1 productivity was obtained in three-stage system. Distributions of ethanol and glucose in reactors were examined.  相似文献   

16.
Summary An amylolytic lactic acid bacterium identified as Lactobacillus plantarum was isolated from cassava roots (Manihot esculenta var. Ngansa) during reting. The amylolytic enzyme synthesized was an extracellular -amylase with an optimum pH of 5.0 and an optimum temperature of 55° C. Cultured on starch, the strain displayed a growth rate of 0.43 h–1, a biomass yield of 0.19 g·g–1 and a lactate yield of 0.81 g·g–1. The growth kinetics were similar on starch and glucose. Sufficient enzyme was synthesized and starch hydrolysis was not a limiting factor for growth. Biosynthesis of the enzyme was observed when the glucose concentration was less than 6.7 g·l–1 and reached up to 4 IU·ml–1 at the end of the fermentation. Offprint requests to: M. Raimbault  相似文献   

17.
Summary Some environmental affects on cell aggregation described in the literature are briefly summarized. By means of a biomass recirculation culture (Contact system), using the yeast Torulopsis glabrata, the aggregation behavior of cells in static and in dynamic test systems is described. Sedimentation times required to obtain 50 g · l–1 yeast dry matter in static systems were always higher than in dynamic ones.In addition to, influencing the biomass yield, the specific growth rate of the yeast also affected cell aggregation. The specific growth rate and therefore the aggregation could be regulated by the biomass recirculation rate as well as by the sedimenter volume.Abbreviations fo Overflow flow rate (l·h–1) - fR Recycle flow rate (l·h–1) - ft0t Total flow rate through the fermenter (l·h–1) - g Gram - h Hour - DR Fermenter dilution rate due to recycle (h–1) - DS Fermeter dilution rate due to substrate (h–1) - Dtot Total fermenter dilution rate (h–1) - l Liter - Specific growth rate (h–1) - PF Fermenter productivity (g·l–1·h–1) - PFS Overall productivity (g·l–1·h–1) - RpM Rates per minute - RS Residual sugar content in the effluent with respect to the substrate concentration (%) - Y Yield of biomass with respect to sugar concentration (%) - Sed 50 Sedimentation time to reach a YDM of 50 g·l–1 (min) - V Volume (l) - VF Fermenter volume (l) - VSed Sedimenter volume (l) - VVM Volumes per volume and minute - XF YDM in the fermenter (g·l–1) - XF YDM in the recycle (g·l–1) - XS Yeast dry matter due to substrate concentration (g·l–1) - YDM Yeast dry matter (g·l–1)  相似文献   

18.
Butanol, a four-carbon primary alcohol (C4H10O), is an important industrial chemical and has a good potential to be used as a superior biofuel. Bio-based production of butanol from renewable feedstock is a promising and sustainable alternative to substitute petroleum-based fuels. Here, we report the development of a process for butanol production from glycerol, which is abundantly available as a byproduct of biodiesel production. First, a hyper butanol producing strain of Clostridium pasteurianum was isolated by chemical mutagenesis. The best mutant strain, C. pasteurianum MBEL_GLY2, was able to produce 10.8 g l−1 butanol from 80 g l−1 glycerol as compared to 7.6 g l−1 butanol produced by the parent strain. Next, the process parameters were optimized to maximize butanol production from glycerol. Under the optimized batch condition, the butanol concentration, yield, and productivity of 17.8 g l−1, 0.30 g g−1, and 0.43 g l−1 h−1 could be achieved. Finally, continuous fermentation of C. pasteurianum MBEL_GLY2 with cell recycling was carried out using glycerol as a major carbon source at several different dilution rates. The continuous fermentation was run for 710 h without strain degeneration. The acetone–butanol–ethanol productivity and the butanol productivity of 8.3 and 7.8 g l−1 h−1, respectively, could be achieved at the dilution rate of 0.9 h−1. This study reports continuous production of butanol with reduced byproducts formation from glycerol using C. pasteurianum, and thus could help design a bioprocess for the improved production of butanol.  相似文献   

19.
The conversion of glycerol to 1,3-propanediol by Citrobacter freundii DSM 30040 was optimized in single- and two-stage continuous cultures. The productivity of 1,3-propanediol formation was highest under glycerol limitation and increased with the dilution rate (D) to a maximum of 3.7 g·l–1·h–1. Glycerol dehydratase seemed to be the rate-limiting step in 1,3-propanediol formation. Conditions for the two-stage fermentation process were as follows: first stage, glycerol limitation (250mM), pH 7.2, D=0.1 h, 31° C; second stage, additional glycerol, pH 6.6, D=0.05 h–1, 28° C. Under these conditions 875mM glycerol were consumed, the final 1,3-propanediol concentration was 545mM, and the overall productivity 1.38 g·1–1·h–1. Correspondence to: G. Gottschalk  相似文献   

20.
Corn stalk was used as a support to immobilize Clostridia beijerinckii ATCC 55025 in the fermentation process of acetone, butanol, and ethanol production. The effect of the dilution rate on solvent production was examined in a steady-state 20-day continuous flow operation. The maximum total solvent concentration of 8.99 g l−1 was obtained at a dilution rate of 0.2 h−1. Increasing the dilution rate between 0.2 and 1.0 h−1 resulted in an increased solvent productivity, and the highest solvent productivity was obtained at 5.06 g l−1 h−1 with a dilution rate of 1 h−1. The maximum solvent yield from glucose of 0.32 g g−1 was observed at 0.25 h−1. The cell adsorption and morphology change during the growth on corn stalk support were examined by the SEM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号