首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
H32 is a newly identified gene that confers resistance to the highly pervasive Biotype L of the Hessian fly [ Mayetiola destructor (Say)]. The gene was identified in a synthetic amphihexaploid wheat, W-7984, that was constructed from the durum ‘Altar 84’ and Aegilops tauschii. This synthetic wheat is one of the parents of the marker-rich ITMI population, which consists of 150 recombinant inbred lines (RILs) derived by single-seed descent from a cross with ‘Opata 85’. Linkage analysis of the H32 locus in the ITMI population placed the gene between flanking microsatellite (SSR) markers, Xgwm3 and Xcfd223, at distances of 3.7 and 1.7 cM, respectively, on the long arm of chromosome 3D. The Xgwm3 primers amplified codominant SSR alleles, a 72 bp fragment linked in coupling to the resistance allele and an 84 bp fragment linked in repulsion. Primers for the SSR Xcfd223 amplified a 153 bp fragment from the resistant Synthetic parent and a 183 bp fragment from the susceptible Opata line. Deletion mapping of the flanking Xgwm3 and Xcfd223 markers located them within the 3DL-3 deletion on the distal 19% of the long arm of chromosome 3D. This location is at least 20 cM proximal to the reported 3DL location of H24, a gene that confers resistance to Biotype D of the Hessian fly. Tight linkage of the markers will provide a means of detecting H32 presence in marker-assisted selection and gene pyramiding as an effective strategy for extending durability of deployed resistance.  相似文献   

2.
Huang XQ  Röder MS 《Genetica》2011,139(9):1179-1187
Genetic maps of wheat chromosome 1D consisting of 57 microsatellite marker loci were constructed using Chinese Spring (CS) × Chiyacao F2 and the International Triticeae Mapping Initiative (ITMI) recombinant inbred lines (RILs) mapping populations. Marker order was consistent, but genetic distances of neighboring markers were different in two populations. Physical bin map of 57 microsatellite marker loci was generated by means of 10 CS 1D deletion lines. The physical bin mapping indicated that microsatellite marker loci were not randomly distributed on chromosome 1D. Nineteen of the 24 (79.2%) microsatellite markers were mapped in the distal 30% genomic region of 1DS, whereas 25 of the 33 (75.8%) markers were assigned to the distal 59% region of 1DL. The powdery mildew resistance gene Pm24, originating from the Chinese wheat landrace Chiyacao, was previously mapped in the vicinity of the centromere on the short arm of chromosome 1D. A high density genetic map of chromosome 1D was constructed, consisting of 36 markers and Pm24, with a total map length of 292.7 cM. Twelve marker loci were found to be closely linked to Pm24. Pm24 was flanked by Xgwm789 (Xgwm603) and Xbarc229 with genetic distances of 2.4 and 3.6 cM, respectively, whereas a microsatellite marker Xgwm1291 co-segregated with Pm24. The microsatellite marker Xgwm1291 was assigned to the bin 1DS5-0.70-1.00 of the chromosome arm 1DS. It could be concluded that Pm24 is located in the ‘1S0.8 gene-rich region’, a highly recombinogenic region of wheat. The results presented here would provide a start point for the map-based cloning of Pm24.  相似文献   

3.
Molecular mapping of genes for crop resistance to the greenbug, Schizaphis graminum Rondani, will facilitate selection of greenbug resistance in breeding through marker-assisted selection and provide information for map-based gene cloning. In the present study, microsatellite marker and deletion line analyses were used to map greenbug resistance genes in five newly identified wheat germplasms derived from Aegilops tauschii. Our results indicate that the Gb genes in these germplasms are inherited as single dominant traits. Microsatellite markers Xwmc157 and Xgdm150 flank Gbx1 at 2.7 and 3.3 cM, respectively. Xwmc671 is proximately linked to Gba, Gbb, Gbc and Gbd at 34.3, 5.4, 13.7, 7.9 cM, respectively. Xbarc53 is linked distally to Gba and Gbb at 20.7 and 20.2 cM, respectively. Xgdm150 is distal to Gbc at 17.9 cM, and Xwmc157 is distal to Gbd at 1.9 cM. Gbx1, Gba, Gbb, Gbc, Gbd and the previously characterized Gbz are located in the distal 18% region of wheat chromosome 7DL. Gbd appears to be a new greenbug resistance gene different from Gbx1 or Gbz. Gbx1, Gbz Gba, Gbb, Gbc and Gbd are either allelic or linked to Gb3.  相似文献   

4.
Wheat yellow mosaic disease, which is caused by wheat yellow mosaic bymovirus (WYMV) and transmitted by soil-borne fungus, results in severe damage on wheat (Triticum aestivum L.) production in China. For development of resistant cultivars to reduce wheat yield losses due to wheat yellow mosaic disease, resistance test and genetic analysis indicated that a single dominant gene in wheat cultivar Yangfu 9311 contributed to the resistance. Bulk segregant analysis was used to identify microsatellite markers linked to the resistance gene in an F2 population derived from the cross Yangfu 9311 (resistant) × Yangmai 10 (susceptible). Microsatellite markers Xwmc41, Xwmc181, Xpsp3039, and Xgwm349 were co-dominantly or dominantly linked with the gene responsible for WYMV resistance at a distance of 8.1–11.6 cM. Based on the wheat microsatellite consensus map and the results from amplification of the cultivar Chinese Spring nulli-tetrasomic stocks, the resistance gene to wheat yellow mosaic disease derived from Yangfu 9311, temporarily named as YmYF, was thus mapped on the long arm of chromosome 2D (2DL).  相似文献   

5.
The greenbug, Schizaphis graminum (Rondani), is one of the major pests of wheat worldwide. The efficient utilization of wheat genes expressing resistance to greenbug infestation is highly dependent on a clear understanding of their relationships. The use of such genes will be further facilitated through the use of molecular markers linked to resistance genes. The present study involved several F2 wheat populations derived from crosses between susceptible cultivars and resistant germplasm carrying different greenbug resistance genes. These populations were used to characterize the inheritance of a wheat gene (Gbz) conferring tolerance to greenbug biotype I, to identify molecular markers linked to Gbz, and to investigate the relationship between Gbz and Gb3, a previously identified greenbug resistance gene. Our results indicated that Gbz is inherited as a single dominant gene. Microsatellite marker Xwmc157 is completely linked to Gbz, and Xbarc53 and Xgdm46 flank Gbz at distances of 5.1 and 9.5 cM, respectively. Selection of Gbz using marker Xwmc157 alone gives breeders 100% selection accuracy. Gbz may be placed in the distal region of the long arm of the wheat chromosome 7D. The results of allelism tests indicated that Gbz is either allelic or tightly linked to Gb3.Communicated by D.A. Hoisington  相似文献   

6.
The greenbug, Schizaphis graminum (Rondani), is an important aphid pest of small grain crops especially wheat (Triticum aestivum L., 2n = 6x = 42, genomes AABBDD) in many parts of the world. The greenbug-resistance gene Gb3 originated from Aegilops tauschii Coss. (2n = 2x = 14, genome DtDt) has shown consistent and durable resistance against prevailing greenbug biotypes in wheat fields. We previously mapped Gb3 in a recombination-rich, telomeric bin of wheat chromosome arm 7DL. In this study, high-resolution genetic mapping was carried out using an F2:3 segregating population derived from two Ae. tauschii accessions, the resistant PI 268210 (original donor of Gb3 in the hexaploid wheat germplasm line ‘Largo’) and susceptible AL8/78. Molecular markers were developed by exploring bin-mapped wheat RFLPs, SSRs, ESTs and the Ae. tauschii physical map (BAC contigs). Wheat EST and Ae. tauschii BAC end sequences located in the deletion bin 7DL3-0.82–1.00 were used to design STS (sequence tagged site) or CAPS (Cleaved Amplified Polymorphic Sequence) markers. Forty-five PCR-based markers were developed and mapped to the chromosomal region spanning the Gb3 locus. The greenbug-resistance gene Gb3 now was delimited in an interval of 1.1 cM by two molecular markers (HI067J6-R and HI009B3-R). This localized high-resolution genetic map with markers closely linked to Gb3 lays a solid foundation for map based cloning of Gb3 and marker-assisted selection of this gene in wheat breeding.  相似文献   

7.

Key message

Greenbug and Hessian fly are important pests that decrease wheat production worldwide. We developed and validated breeder-friendly KASP markers for marker-assisted breeding to increase selection efficiency.

Abstract

Greenbug (Schizaphis graminum Rondani) and Hessian fly [Mayetiola destructor (Say)] are two major destructive insect pests of wheat (Triticum aestivum L.) throughout wheat production regions in the USA and worldwide. Greenbug and Hessian fly infestation can significantly reduce grain yield and quality. Breeding for resistance to these two pests using marker-assisted selection (MAS) is the most economical strategy to minimize losses. In this study, doubled haploid lines from the Synthetic W7984 × Opata M85 wheat reference population were used to construct linkage maps for the greenbug resistance gene Gb7 and the Hessian fly resistance gene H32 with genotyping-by-sequencing (GBS) and 90K array-based single nucleotide polymorphism (SNP) marker data. Flanking markers were closely linked to Gb7 and H32 and were located on chromosome 7DL and 3DL, respectively. Gb7-linked markers (synopGBS773 and synopGBS1141) and H32-linked markers (synopGBS901 and IWB65911) were converted into Kompetitive Allele Specific PCR (KASP) assays for MAS in wheat breeding. In addition, comparative mapping identified syntenic regions in Brachypodium distachyon, rice (Oryza sativa), and sorghum (Sorghum bicolor) for Gb7 and H32 that can be used for fine mapping and map-based cloning of the genes. The KASP markers developed in this study are the first set of SNPs tightly linked to Gb7 and H32 and will be very useful for MAS in wheat breeding programs and future genetic studies of greenbug and Hessian fly resistance.
  相似文献   

8.
Genetic mapping of 66 new microsatellite (SSR) loci in bread wheat   总被引:39,自引:12,他引:27  
In hexaploid bread wheat ( Triticum aestivum L. em. Thell), ten members of the IWMMN ( International Wheat Microsatellites Mapping Network) collaborated in extending the microsatellite (SSR = simple sequence repeat) genetic map. Among a much larger number of microsatellite primer pairs developed as a part of the WMC ( Wheat Microsatellite Consortium), 58 out of 176 primer pairs tested were found to be polymorphic between the parents of the ITMI ( International Triticeae Mapping Initiative) mapping population W7984 x Opata 85 (ITMI pop). This population was used earlier for the construction of RFLP ( Restriction Fragment Length Polymorphism) maps in bread wheat (ITMI map). Using the ITMI pop and a framework map (having 266 anchor markers) prepared for this purpose, a total of 66 microsatellite loci were mapped, which were distributed on 20 of the 21 chromosomes (no marker on chromosome 6D). These 66 mapped microsatellite (SSR) loci add to the existing 384 microsatellite loci earlier mapped in bread wheat.  相似文献   

9.
Two dominant powdery mildew resistance genes introduced from Triticum carthlicum accession PS5 to common wheat were identified and tagged using microsatellite markers. The gene designated PmPS5A was placed on wheat chromosome 2AL and linked to the microsatellite marker Xgwm356 at a genetic distance of 10.2 cM. Based on the information of its origin, chromosome location, and reactions to 5 powdery mildew isolates, this gene could be a member of the complex Pm4 locus. The 2nd gene designated PmPS5B was located on wheat chromosome 2BL with 3 microsatellite markers mapping proximally to the gene: Xwmc317 at 1.1 cM; Xgwm111 at 2.2 cM; and Xgwm382 at 4.0 cM; and 1 marker, Xgwm526, mapping distally to the gene at a distance of 18.1 cM. Since this gene showed no linkage to the other 2 known powdery mildew resistance genes on wheat chromosome 2B, Pm6 and Pm26, we believe it is a novel powdery mildew resistance gene and propose to designate this gene as Pm33.  相似文献   

10.
Septoria tritici blotch, caused by Mycosphaerella graminicola, is a serious foliar disease of wheat worldwide. Qualitative, race-specific resistance sources have been identified and utilized for resistant cultivar development. However, septoria tritici blotch resistant varieties have succumbed to changes in virulence of M. graminicola on at least three continents. The use of resistance gene pyramids may slow or prevent the breakdown of resistance. A clear understanding of the genetics of resistance and the identification of linked PCR-based markers will facilitate the recovery of wheat lines carrying multiple septoria tritici blotch resistance genes. The resistance gene in ST6 to isolate MG2 of M. graminicola was mapped with microsatellite markers in two populations, ST6/Erik and ST6/Katepwa. Bulk segregant analysis identified a marker on chromosome 4AL putatively linked to the resistance gene. A large linkage group was identified in each population using additional microsatellite markers mapping to chromosome 4AL. The resistance gene in ST6 mapped to the distal end of chromosome 4AL in each mapping population and was designated Stb7. Three of the microsatellite loci, Xwmc313, Xwmc219 and Xgwm160, mapped within 3.5 cM of Stb7; however, none flanked Stb7. Xwmc313 was the closest and mapped 0.3 and 0.5 cM from Stb7 in the crosses ST6/Katepwa and ST6/Erik, respectively. WMC313 will be very useful for marker-assisted selection of Stb7 in Canadian breeding programs because the ST6 allele of Xwmc313 was not identified in any of the Canadian common wheat cultivars tested.Communicated by P. Langridge  相似文献   

11.
Powdery mildew resistance from Thinopyrum intermedium was introgressed into common wheat (Triticum aestivum L.). Genetic analysis of the F1, F2, F3 and BC1 populations from powdery mildew resistant line CH5025 revealed that resistance was controlled by a single dominant allele. The gene responsible for powdery mildew resistance was mapped by the linkage analysis of a segregating F2 population. The resistance gene was linked to five co-dominant genomic SSR markers (Xcfd233, Xwmc41, Xbarc11, Xgwm539 and Xwmc175) and their most likely order was Xcfd233Xwmc41Pm43Xbarc11Xgwm539Xwmc175 at 2.6, 2.3, 4.2, 3.5 and 7.0 cM, respectively. Using the Chinese Spring nullisomic-tetrasomic and ditelosomic lines, the polymorphic markers and the resistance gene were assigned to chromosome 2DL. As no powdery mildew resistance gene was previously assigned to chromosome 2DL, this new resistance gene was designated Pm43. Pm43, together with the identified closely linked markers, could be useful in marker-assisted selection for pyramiding powdery mildew resistance genes. Runli He and Zhijian Chang contributed equally to this work.  相似文献   

12.
Leaf rust, caused by Puccinia triticina, is one of the most damaging diseases of wheat worldwide. Lr16 is a widely deployed leaf rust resistance gene effective at the seedling stage. Although virulence to Lr16 exists in the Canadian P. triticina population, Lr16 provides a level of partial resistance in the field. The primary objective of this study was to identify markers linked to Lr16 that are suitable for marker-assisted selection (MAS). Lr16 was tagged with microsatellite markers on the distal end of chromosome 2BS in three mapping populations. Seven microsatellite loci mapped within 10 cM of Lr16, with the map distances varying among populations. Xwmc764 was the closest microsatellite locus to Lr16, and mapped 1, 9, and 3 cM away in the RL4452/AC Domain, BW278/AC Foremost, and HY644/McKenzie mapping populations, respectively. Lr16 was the terminal locus mapped in all three populations. Xwmc764, Xgwm210, and Xwmc661 were the most suitable markers for selection of Lr16 because they had simple PCR profiles, numerous alleles, high polymorphism information content (PIC), and were tightly linked to Lr16. Twenty-eight spring wheat lines were evaluated for leaf rust reaction with the P. triticina virulence phenotypes MBDS, MBRJ, and MGBJ, and analyzed with five microsatellite markers tightly linked to Lr16. There was good agreement between leaf rust infection type (IT) data and the microsatellite allele data. Microsatellite markers were useful for postulating Lr16 in wheat lines with multiple leaf rust resistance genes.  相似文献   

13.
Three chromosomal regions associated with scab resistance were detected in a common cultivar, Ning7840, by microsatellite and AFLP analysis. Six microsatellites on chromosome 3BS, Xgwm389, Xgwm533, Xbarc147, Xgwm493, Xbarc102, and Xbarc131, were integrated into an amplified fragment length polymorphism (AFLP) linkage group containing a major quantitative trait locus (QTL) for scab resistance in a mapping population of 133 recombinant inbred lines (RILs) derived from 'Ning7840' x 'Clark'. Based on single-factor analysis of variance of scab infection data from four experiments, Xgwm533 and Xbarc147 were the two microsatellite markers most tightly associated with the major scab resistance QTL. Interval analysis based on the integrated map of AFLP and microsatellite markers showed that the major QTL was located in a chromosome region about 8 cM in length around Xgwm533 and Xbarc147. Based on mapping of six microsatellite markers on eight 3BS deletion lines, the major QTL was located distal to breakage point 3BS-8. In total, 18 microsatellites were physically located on different subarm regions on 3BS. Two microsatellites, Xgwm120 and Xgwm614, were significantly associated with QTL for scab resistance on chromosome 2BL and 2AS, respectively. The resistance alleles on 3BS, 2BL, and 2AS were all derived from 'Ning7840'. Significant interaction between the major QTL on 3BS and the QTL on 2BL was detected based on microsatellite markers linked to them. Using these microsatellite markers would facilitate marker-assisted selection to improve scab resistance in wheat.  相似文献   

14.
Powdery mildew, caused by Blumeria graminis f. sp. tritici, is a very destructive wheat (Triticum aestivum) disease. Resistance was transferred from Elytrigia intermedium to common wheat by crossing and backcrossing, and line GRY19, that was subsequently selected, possessed a single dominant gene for seedling resistance. Five polymorphic microsatellite markers, Xgwm297, Xwmc335, Xwmc364, Xwmc426 and Xwmc476, on chromosome arm 7BS, were mapped relative to the powdery mildew resistance locus in an F2 population of Mianyang 11/GRY19. The loci order Xwmc426Xwmc335Pm40Xgwm297Xwmc364Xwmc476, with 5.9, 0.2, 0.7, 1.2 and 2.9 cM genetic distances, was consistent with published maps. The resistance gene transferred from Elytrigia intermedium into wheat line GRY19 was novel, and was designated Pm40. The close flanking markers will enable marker assisted transfer of this gene into wheat breeding populations. P.G. Luo and H.Y. Luo contributed equally to the work.  相似文献   

15.
Development and mapping of microsatellite (SSR) markers in wheat   总被引:46,自引:9,他引:37  
Microsatellite DNA markers are consistently found to be more informative than other classes of markers in hexaploid wheat. The objectives of this research were to develop new primers flanking wheat microsatellites and to position the associated loci on the wheat genome map by genetic linkage mapping in the ITMI W7984 × Opata85 recombinant inbred line (RIL) population and/or by physical mapping with cytogenetic stocks. We observed that the efficiency of marker development could be increased in wheat by creating libraries from sheared rather than enzyme-digested DNA fragments for microsatellite screening, by focusing on microsatellites with the [ATT/TAA]n motif, and by adding an untemplated G-C clamp to the 5-end of primers. A total of 540 microsatellite-flanking primer pairs were developed, tested, and annotated from random genomic libraries. Primer pairs and associated loci were assigned identifiers prefixed with BARC (the acronym for the USDA-ARS Beltsville Agricultural Research Center) or Xbarc, respectively. A subset of 315 primer sets was used to map 347 loci. One hundred and twenty-five loci were localized by physical mapping alone. Of the 222 loci mapped with the ITMI population, 126 were also physically mapped. Considering all mapped loci, 126, 125, and 96 mapped to the A, B, and D genomes, respectively. Twenty-three of the new loci were positioned in gaps larger than 10 cM in the map based on pre-existing markers, and 14 mapped to the ends of chromosomes. The length of the linkage map was extended by 80.7 cM. Map positions were consistent for 111 of the 126 loci positioned by both genetic and physical mapping. The majority of the 15 discrepancies between genetic and physical mapping involved chromosome group 5.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

16.
The Chinese winter wheat cultivar Zhoumai 22 is highly resistant to powdery mildew. The objectives of this study were to map a powdery mildew resistance gene in Zhoumai 22 using molecular markers and investigate its allelism with Pm13. A total of 278 F2 and 30 BC1 plants, and 143 F3 lines derived from the cross between resistant cultivar Zhoumai 22 and susceptible cultivar Chinese Spring were used for resistance gene tagging. The 137 F2 plants from the cross Zhoumai 22/2761-5 (Pm13) were employed for the allelic test of the resistance genes. Two hundred and ten simple sequence repeat (SSR) markers were used to test the two parents, and resistant and susceptible bulks. Subsequently, seven polymorphic markers were used for genotyping the F2 and F3 populations. The results indicated that the powdery mildew resistance in Zhoumai 22 was conferred by a single dominant gene, designated PmHNK tentatively, flanked by seven SSR markers Xgwm299, Xgwm108, Xbarc77, Xbarc84, Xwmc326, Xwmc291 and Xwmc687 on chromosome 3BL. The resistance gene was closely linked to Xwmc291 and Xgwm108, with genetic distances of 3.8 and 10.3 cM, respectively, and located on the chromosome bin 3BL-7-0.63-1.0 in the test with a set of deletion lines. Seedling tests with seven isolates of Blumeria graminis f. sp. tritici (Bgt) and allellic test indicated that PmHNK is different from Pm13, and Pm41 seems also to be different from PmHNK due to its origin from T. dicoccoides and molecular evidence. These results indicate that PmHNK is likely to be a novel powdery mildew resistance gene in wheat.  相似文献   

17.
Wheat is prone to strawbreaker foot rot (eyespot), a fungal disease caused by Oculimacula yallundae and O. acuformis. The most effective source of genetic resistance is Pch1, a gene derived from Aegilops ventricosa. The endopeptidase isozyme marker allele Ep-D1b, linked to Pch1, has been shown to be more effective for tracking resistance than DNA-based markers developed to date. Therefore, we sought to identify a candidate gene for Ep-D1 as a basis for a DNA-based marker. Comparative mapping suggested that the endopeptidase loci Ep-D1 (wheat), enp1 (maize), and Enp (rice) were orthologous. Since the product of the maize endopeptidase locus enp1 has been shown to exhibit biochemical properties similar to oligopeptidase B purified from E. coli, we reasoned that Ep-D1 may also encode an oligopeptidase B. Consistent with this hypothesis, a sequence-tagged-site (STS) marker, Xorw1, derived from an oligopeptidase B-encoding wheat expressed-sequence-tag (EST) showed complete linkage with Ep-D1 and Pch1 in a population of 254 recombinant inbred lines (RILs) derived from a cross between wheat cultivars Coda and Brundage. Two other STS markers, Xorw5 and Xorw6, and three microsatellite markers (Xwmc14, Xbarc97, and Xcfd175) were also completely linked to Pch1. On the other hand, Xwmc14, Xbarc97, and Xcfd175 showed recombination in the W7984 × Opata85 RIL population suggesting that recombination near Pch1 is reduced in the Coda/Brundage population. In a panel of 44 wheat varieties with known eyespot reactions, Xorw1, Xorw5, and Xorw6 were 100% accurate in predicting the presence or absence of Pch1 whereas Xwmc14, Xbarc97, and Xcfd175 were less effective. Thus, linkage mapping and a germplasm survey suggest that the STS markers identified here should be useful for indirect selection of Pch1.  相似文献   

18.
A spontaneous wheat-barley translocation line was previously detected in the progenies of the Mv9kr1?×?‘Igri’ wheat-barley hybrid and the translocation was identified as 5HS-7DS.7DL. Multicolor genomic in situ hybridization (mcGISH) with D and H genomic DNA probes and three-color fluorescence in situ hybridization (FISH) with repetitive DNA probes (Afa-family, pSc119.2, and pTa71) were performed to characterize the rearranged chromosome. The effect of 5HS and the deleted 7DS fragment on the morphological traits (plant height, fertility, yield, and spike characteristics) of wheat was assessed. Despite the non-compensating nature of the translocation, the plants showed good viability. The aim of the study was to physically localize SSR markers to the telomeric and subtelomeric regions of the 7DS chromosome arm. Of the 45 microsatellite markers analyzed, ten (Xbarc0184, Xwmc0506, Xgdm0130, Xgwm0735, Xgwm1258, Xgwm1123, Xgwm1250, Xgwm1055, Xgwm1220, and Xgwm0635) failed to amplify any 7DS-specific fragments, signaling the elimination of a short chromosome segment in the telomeric region. The breakpoint of the 5HS-7DS.7DL translocation appeared to be more distal than that of reported deletion lines, which provides a new physical landmark for future deletion mapping studies.  相似文献   

19.
Stripe rust, caused by Puccinia striiformis f. sp. tritici (PST), is one of the most devastating diseases in common wheat (Triticum aestivum L.) worldwide. The objectives of this study were to map a stripe rust resistance gene in Chinese wheat cultivar Chuanmai 42 using molecular markers and to investigate its allelism with Yr24 and Yr26. A total of 787 F2 plants and 186 F3 lines derived from a cross between resistant cultivar Chuanmai 42 and susceptible line Taichung 29 were used for resistance gene tagging. Also 197 F2 plants from the cross Chuanmai 42×Yr24/3*Avocet S and 726 F2 plants from Chuanmai 42×Yr26/3*Avocet S were employed for allelic test of the resistance genes. In all, 819 pairs of wheat SSR primers were used to test the two parents, as well as resistant and susceptible bulks. Subsequently, nine polymorphic markers were employed for genotyping the F2 and F3 populations. Results indicated that the stripe rust resistance in Chuanmai 42 was conferred by a single dominant gene, temporarily designated YrCH42, located close to the centromere of chromosome 1B and flanked by nine SSR markers Xwmc626, Xgwm273, Xgwm11, Xgwm18, Xbarc137, Xbarc187, Xgwm498, Xbarc240 and Xwmc216. The resistance gene was closely linked to Xgwm498 and Xbarc187 with genetic distances of 1.6 and 2.3 cM, respectively. The seedling tests with 26 PST isolates and allelic tests indicated that YrCH42, Yr24 and Yr26 are likely to be the same gene.G.Q. Li and Z.F. Li contributed equally to the work.  相似文献   

20.
Stem rust has become a renewed threat to global wheat production after the emergence and spread of race TTKSK (also known as Ug99) and related races from Africa. To elucidate U.S. winter wheat resistance genes to stem rust, association mapping was conducted using a panel of 137 lines from cooperative U.S. winter wheat nurseries from 2008 and simple sequence repeat (SSR) and sequence tagged site (STS) markers across the wheat genome. Seedling infection types were evaluated in a greenhouse experiment using six U.S. stem rust races (QFCSC, QTHJC, RCRSC, RKQQC, TPMKC and TTTTF) and TTKSK, and adult plant responses to bulked U.S. races were evaluated in a field experiment. A linearization algorithm was used to convert the qualitative Stakman scale seedling infection types for quantitative analysis. Association mapping successfully detected six known stem rust seedling resistance genes in U.S. winter wheat lines with frequencies: Sr6 (12%), Sr24 (9%), Sr31 (15%), Sr36 (9%), Sr38 (19%), and Sr1RSAmigo (8%). Adult plant resistance gene Sr2 was present in 4% of lines. SrTmp was postulated to be present in several hard winter wheat lines, but the frequency could not be accurately determined. Sr38 was the most prevalent Sr gene in both hard and soft winter wheat and was the most effective Sr gene in the adult plant field test. Resistance to TTKSK was associated with nine markers on chromosome 2B that were in linkage disequilibrium and all of the resistance was attributed to the Triticum timopheevii chromosome segment carrying Sr36. Potential novel rust resistance alleles were associated with markers Xwmc326-203 on 3BL, Xgwm160-195 and Xwmc313-225 on 4AL near Sr7, Xgwm495-182 on 4BL, Xwmc622-147 and Xgwm624-146 on 4DL, and Xgwm334-123 on 6AS near Sr8. Xwmc326-203 was associated with adult plant resistance to bulked U.S. races and Xgwm495-182 was associated with seedling resistance to TTKSK.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号