首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
SR proteins are essential splicing factors whose function is controlled by multi-site phosphorylation of a C-terminal domain rich in arginine-serine repeats (RS domain). The protein kinase SRPK1 has been shown to polyphosphorylate the N-terminal portion of the RS domain (RS1) of the SR protein ASF/SF2, a modification that promotes nuclear entry of this splicing factor and engagement in splicing function. Later, dephosphorylation is required for maturation of the spliceosome and other RNA processing steps. While phosphates are attached to RS1 in a sequential manner by SRPK1, little is known about how they are removed. To investigate factors that control dephosphorylation, we monitored region-specific mapping of phosphorylation sites in ASF/SF2 as a function of the protein phosphatase PP1. We showed that 10 phosphates added to the RS1 segment by SRPK1 are removed in a preferred N-to-C manner, directly opposing the C-to-N phosphorylation by SRPK1. Two N-terminal RNA recognition motifs in ASF/SF2 control access to the RS domain and guide the directional mechanism. Binding of RNA to the RNA recognition motifs protects against dephosphorylation, suggesting that engagement of the SR protein with exonic splicing enhancers can regulate phosphoryl content in the RS domain. In addition to regulation by N-terminal domains, phosphorylation of the C-terminal portion of the RS domain (RS2) by the nuclear protein kinase Clk/Sty inhibits RS1 dephosphorylation and disrupts the directional mechanism. The data indicate that both RNA-protein interactions and phosphorylation in flanking sequences induce conformations of ASF/SF2 that increase the lifetime of phosphates in the RS domain.  相似文献   

3.
Ghosh G  Adams JA 《The FEBS journal》2011,278(4):587-597
The splicing of mRNA requires a group of essential factors known as SR proteins, which participate in the maturation of the spliceosome. These proteins contain one or two RNA recognition motifs and a C-terminal domain rich in Arg-Ser repeats (RS domain). SR proteins are phosphorylated at numerous serines in the RS domain by the SR-specific protein kinase (SRPK) family of protein kinases. RS domain phosphorylation is necessary for entry of SR proteins into the nucleus, and may also play important roles in alternative splicing, mRNA export, and other processing events. Although SR proteins are polyphosphorylated in vivo, the mechanism underlying this complex reaction has only been recently elucidated. Human alternative splicing factor [serine/arginine-rich splicing factor 1 (SRSF1)], a prototype for the SR protein family, is regiospecifically phosphorylated by SRPK1, a post-translational modification that controls cytoplasmic-nuclear localization. SRPK1 binds SRSF1 with unusually high affinity, and rapidly modifies about 10-12 serines in the N-terminal region of the RS domain (RS1), using a mechanism that incorporates sequential, C-terminal to N-terminal phosphorylation and several processive steps. SRPK1 employs a highly dynamic feeding mechanism for RS domain phosphorylation in which the N-terminal portion of RS1 is initially bound to a docking groove in the large lobe of the kinase domain. Upon subsequent rounds of phosphorylation, this N-terminal segment translocates into the active site, and a β-strand in RNA recognition motif 2 unfolds and occupies the docking groove. These studies indicate that efficient regiospecific phosphorylation of SRSF1 is the result of a contoured binding cavity in SRPK1, a lengthy Arg-Ser repetitive segment in the RS domain, and a highly directional processing mechanism.  相似文献   

4.
Abstract. Reversible phosphorylation plays an important role in pre-mRNA splicing in mammalian cells. Two kinases, SR protein-specific kinase (SRPK1) and Clk/Sty, have been shown to phosphorylate the SR family of splicing factors. We report here the cloning and characterization of SRPK2, which is highly related to SRPK1 in sequence, kinase activity, and substrate specificity. Random peptide selection for preferred phosphorylation sites revealed a stringent preference of SRPK2 for SR dipeptides, and the consensus derived may be used to predict potential phosphorylation sites in candidate arginine and serine-rich (RS) domain–containing proteins. Phosphorylation of an SR protein (ASF/SF2) by either SRPK1 or 2 enhanced its interaction with another RS domain–containing protein (U1 70K), and overexpression of either kinase induced specific redistribution of splicing factors in the nucleus. These observations likely reflect the function of the SRPK family of kinases in spliceosome assembly and in mediating the trafficking of splicing factors in mammalian cells. The biochemical and functional similarities between SRPK1 and 2, however, are in contrast to their differences in expression. SRPK1 is highly expressed in pancreas, whereas SRPK2 is highly expressed in brain, although both are coexpressed in other human tissues and in many experimental cell lines. Interestingly, SRPK2 also contains a proline-rich sequence at its NH2 terminus, and a recent study showed that this NH2-terminal sequence has the capacity to interact with a WW domain protein in vitro. Together, our studies suggest that different SRPK family members may be uniquely regulated and targeted, thereby contributing to splicing regulation in different tissues, during development, or in response to signaling.  相似文献   

5.
SR proteins are essential pre-mRNA splicing factors that have been shown to bind a number of exonic splicing enhancers where they function to stimulate the splicing of adjacent introns. Members of the SR protein family contain one or two N-terminal RNA binding domains, as well as a C-terminal arginine–serine (RS) rich domain. The RS domains mediate protein–protein interactions with other RS domain containing proteins and are essential for many, but not all, SR protein functions. Hybrid proteins containing an RS domain fused to the bacteriophage MS2 coat protein are sufficient to activate enhancer-dependent splicing in HeLa cell nuclear extract when bound to the pre-mRNA. Here we report progress towards determining the protein sequence requirements for RS domain function. We show that the RS domains from non-SR proteins can also function as splicing activation domains when tethered to the pre-mRNA. Truncation experiments with the RS domain of the human SR protein 9G8 identified a 29 amino acid segment, containing 26 arginine or serine residues, that is sufficient to activate splicing when fused to MS2. We also show that synthetic domains composed solely of RS dipeptides are capable of activating splicing, although their potency is proportional to their size.  相似文献   

6.
Schizosaccharomyces pombe Dsk1 is an SR protein-specific kinase (SRPK), whose homologs have been identified in every eukaryotic organism examined. Although discovered as a mitotic regulator with protein kinase activity toward SR splicing factors, it remains largely unknown about what and how Dsk1 contributes to cell cycle and pre-mRNA splicing. In this study, we investigated the Dsk1 function by determining interacting factors and cellular localization of the kinase. Consistent with its reported functions, we found that pre-mRNA processing and cell cycle factors are prominent among the proteins co-purified with Dsk1. The identification of these factors led us to find Rsd1 as a novel Dsk1 substrate, as well as the involvement of Dsk1 in cellular distribution of poly(A)(+) RNA. In agreement with its role in nuclear events, we also found that Dsk1 is mainly localized in the nucleus during G(2) phase and at mitosis. Furthermore, we revealed the oscillation of Dsk1 protein in a cell cycle-dependent manner. This paper marks the first comprehensive analysis of in vivo Dsk1-associated proteins in fission yeast. Our results reflect the conserved role of SRPK family in eukaryotic organisms, and provide information about how Dsk1 functions in pre-mRNA processing and cell-division cycle.  相似文献   

7.
Axo-glial interactions regulate the localization of axonal paranodal proteins   总被引:10,自引:0,他引:10  
The SR proteins, a group of abundant arginine/serine (RS)-rich proteins, are essential pre-mRNA splicing factors that are localized in the nucleus. The RS domain of these proteins serves as a nuclear localization signal. We found that RS domain-bearing proteins do not utilize any of the known nuclear import receptors and identified a novel nuclear import receptor specific for SR proteins. The SR protein import receptor, termed transportin-SR (TRN-SR), binds specifically and directly to the RS domains of ASF/SF2 and SC35 as well as several other SR proteins. The nuclear transport regulator RanGTP abolishes this interaction. Recombinant TRN-SR mediates nuclear import of RS domain- bearing proteins in vitro. TRN-SR has amino acid sequence similarity to several members of the importin beta/transportin family. These findings strongly suggest that TRN-SR is a nuclear import receptor for the SR protein family.  相似文献   

8.
Reversible phosphorylation of the SR family of splicing factors plays an important role in pre-mRNA processing in the nucleus. Interestingly, the SRPK family of kinases specific for SR proteins is localized in the cytoplasm, which is critical for nuclear import of SR proteins in a phosphorylation-dependent manner. Here, we report molecular dissection of the mechanism involved in partitioning SRPKs in the cytoplasm. Common among all SRPKs, the bipartite kinase catalytic core is separated by a unique spacer sequence. The spacers in mammalian SRPK1 and SRPK2 share little sequence homology, but they function interchangeably in restricting the kinases in the cytoplasm. Removal of the spacer in SRPK1 had little effect on the kinase activity, but it caused a quantitative translocation of the kinase to the nucleus and consequently induced aggregation of splicing factors in the nucleus. Rather than carrying a nuclear export signal as suggested previously, we found multiple redundant signals in the spacer that act together to anchor the kinase in the cytoplasm. Interestingly, a cell cycle signal induced nuclear translocation of the kinase at the G2/M boundary. These findings suggest that SRPKs may play an important role in linking signaling to RNA metabolism in higher eukaryotic cells.  相似文献   

9.
SR proteins (splicing factors containing arginine-serine repeats) are essential factors that control the splicing of precursor mRNA by regulating multiple steps in spliceosome development. The prototypical SR protein ASF/SF2 (human alternative splicing factor) contains two N-terminal RNA recognition motifs (RRMs) (RRM1 and RRM2) and a 50-residue C-terminal RS (arginine-serine-rich) domain that can be phosphorylated at numerous serines by the protein kinase SR-specific protein kinase (SRPK) 1. The RS domain [C-terminal domain that is rich in arginine-serine repeats (residues 198-248)] is further divided into N-terminal [RS1: N-terminal portion of the RS domain (residues 198-227)] and C-terminal [RS2: C-terminal portion of the RS domain (residues 228-248)] segments whose modification guides the nuclear localization of ASF/SF2. While previous studies revealed that SRPK1 phosphorylates RS1, regiospecific and temporal-specific control within the largely redundant RS domain is not well understood. To address this issue, we performed engineered footprinting and single-turnover experiments to determine where and how SRPK1 initiates phosphorylation within the RS domain. The data show that local sequence elements in the RS domain control the strong kinetic preference for RS1 phosphorylation. SRPK1 initiates phosphorylation in a small region of serines (initiation box) in the middle of the RS domain at the C-terminal end of RS1 and then proceeds in an N-terminal direction. This initiation process requires both a viable docking groove in the large lobe of SRPK1 and one RRM (RRM2) on the N-terminal flank of the RS domain. Thus, while local RS/SR content steers regional preferences in the RS domain, distal contacts with SRPK1 guide initiation and directional phosphorylation within these regions.  相似文献   

10.
Domains rich in alternating arginine and serine residues (RS domains) are found in a large number of eukaryotic proteins involved in several cellular processes. According to the prevailing view RS domains function as protein interaction domains, thereby promoting the assembly of higher-order cellular structures. Furthermore, recent data demonstrated that the RS regions of several SR splicing factors directly contact the pre-mRNA in a nonsequence specific but functionally important fashion. Using a variety of biochemical approaches, we now demonstrate that the RS domains of three proteins, not directly associated with the splicing reaction, such as lamin b receptor, acinus and peroxisome proliferator-activated receptor gamma coactivator-1 alpha, associate mainly with nuclear RNA and that this association is conducive in retaining the proteins in a soluble form. Phosphorylation by SRPK1 prevents RNA association, yet it greatly increases the fraction of the proteins recovered in soluble form, thereby mimicking the RNA effect. Based on these results we propose that the tendency to self-associate and form aggregates is a general property of RS domain-containing proteins and could be attributed to their disordered structure. RNA binding or SRPK1-mediated phosphorylation prevents aggregation and may serve to modulate the RS domain interaction modes.  相似文献   

11.

Background

Arginine/serine (RS) repeats are found in several proteins in metazoans with a wide variety of functions, many of which are regulated by SR protein kinase 1 (SRPK1)-mediated phosphorylation. Lamin B receptor (LBR) is such a protein implicated in chromatin anchorage to the nuclear envelope.

Methods

Molecular dynamics simulations were used to investigate the conformation of two LBR peptides containing four (human-) and five (turkey-orthologue) consecutive RS dipeptides, in their unphosphorylated and phosphorylated forms and of a conserved peptide, in isolation and in complex with SRPK1. GST pull-down assays were employed to study LBR interactions.

Results

Unphosphorylated RS repeats adopt short, transient helical conformations, whereas serine phosphorylation induces Arginine-claw-like structures. The SRSRSRSPGR peptide, overlapping with the LBR RS repeats, docks into the known, acidic docking groove of SRPK1, in an extended conformation. Phosphorylation by SRPK1 is necessary for the association of LBR with histone H3.

Conclusions

The C-terminal region of the LBR RS domain constitutes a recognition platform for SRPK1, which uses the same recognition mechanism for LBR as for substrates with long RS domains. This docking may promote unfolding of the RS repeats destined to be phosphorylated. Phosphorylation induces Arginine-claw-like conformations, irrespective of the RS-repeat length, that may facilitate interactions with basic partners.

General significance

Our results shed light on the conformational preferences of an important class of repeats before and after their phosphorylation and support the idea that even short RS domains may be constituents of recognition platforms for SRPK1, thus adding to knowledge towards a full understanding of their phosphorylation mechanism.  相似文献   

12.
13.
Dysregulation of pre-mRNA splicing machinery activity has been related to the biogenesis of several diseases. The serine/arginine-rich protein kinase family (SRPKs) plays a critical role in regulating pre-mRNA splicing events through the extensive phosphorylation of splicing factors from the family of serine/arginine-rich proteins (SR proteins). Previous investigations have described the overexpression of SRPK1 and SRPK2 in leukemia and other cancer types, suggesting that they would be useful targets for developing novel antitumor strategies. Herein, we evaluated the effect of selective pharmacological SRPK inhibition by N-(2-(piperidin-1-yl)-5-(trifluoromethyl)phenyl)isonicotinamide (SRPIN340) on the viability of lymphoid and myeloid leukemia cell lines. Along with significant cytotoxic activity, the effect of treatments in regulating the phosphorylation of the SR protein family and in altering the expression of MAP2K1, MAP2K2, VEGF and FAS genes were also assessed. Furthermore, we found that pharmacological inhibition of SRPKs can trigger early and late events of apoptosis. Finally, intrinsic tryptophan fluorescence emission, molecular docking and molecular dynamics were analyzed to gain structural information on the SRPK/SRPIN340 complex. These data suggest that SRPK pharmacological inhibition should be considered as an alternative therapeutic strategy for fighting leukemias. Moreover, the obtained SRPK-ligand interaction data provide useful structural information to guide further medicinal chemistry efforts towards the development of novel drug candidates.  相似文献   

14.
SRSF2 is a serine/arginine-rich protein belonging to the family of SR proteins that are crucial regulators of constitutive and alternative pre-mRNA splicing. Although it is well known that phosphorylation inside RS domain controls activity of SR proteins, other post-translational modifications regulating SRSF2 functions have not been described to date. In this study, we provide the first evidence that the acetyltransferase Tip60 acetylates SRSF2 on its lysine 52 residue inside the RNA recognition motif, and promotes its proteasomal degradation. We also demonstrate that the deacetylase HDAC6 counters this acetylation and acts as a positive regulator of SRSF2 protein level. In addition, we show that Tip60 downregulates SRSF2 phosphorylation by inhibiting the nuclear translocation of both SRPK1 and SRPK2 kinases. Finally, we demonstrate that this acetylation/phosphorylation signalling network controls SRSF2 accumulation as well as caspase-8 pre-mRNA splicing in response to cisplatin and determines whether cells undergo apoptosis or G(2)/M cell cycle arrest. Taken together, these results unravel lysine acetylation as a crucial post-translational modification regulating SRSF2 protein level and activity in response to genotoxic stress.  相似文献   

15.
The SR (arginine-serine rich) protein ASF/SF2 (also called human alternative splicing factor), an essential splicing factor, contains two functional modules consisting of tandem RNA recognition motifs (RRMs; RRM1-RRM2) and a C-terminal arginine-serine repeat region (RS domain, a domain rich in arginine-serine repeats). The SR-specific protein kinase (SRPK) 1 phosphorylates the RS domain at multiple serines using a directional (C-terminal-to-N-terminal) and processive mechanism—a process that directs the SR protein to the nucleus and influences protein-protein interactions associated with splicing function. To investigate how SRPK1 accomplishes this feat, the enzyme-substrate complex was analyzed using single-turnover and multiturnover kinetic methods. Deletion studies revealed that while recognition of the RS domain by a docking groove on SRPK1 is sufficient to initiate the processive and directional mechanism, continued processive phosphorylation in the presence of building repulsive charge relies on the fine-tuning of contacts with the RRM1-RRM2 module. An electropositive pocket in SRPK1 that stabilizes newly phosphorylated serines enhanced processive phosphorylation of later serines. These data indicate that SRPK1 uses stable, yet highly flexible protein-protein interactions to facilitate both early and late phases of the processive phosphorylation of SR proteins.  相似文献   

16.
17.
Infection with some viruses can alter cellular mRNA processing to favor viral gene expression. We present evidence that herpes simplex virus 1 (HSV-1) protein ICP27, which contributes to host shut-off by inhibiting pre-mRNA splicing, interacts with essential splicing factors termed SR proteins and affects their phosphorylation. During HSV-1 infection, phosphorylation of several SR proteins was reduced and this correlated with a subnuclear redistribution. Exogenous SR proteins restored splicing in ICP27-inhibited nuclear extracts and SR proteins isolated from HSV-1-infected cells activated splicing in uninfected S100 extracts, indicating that inhibition occurs by a reversible mechanism. Spliceosome assembly was blocked at the pre-spliceosomal complex A stage. Furthermore, we show that ICP27 interacts with SRPK1 and relocalizes it to the nucleus; moreover, SRPK1 activity was altered in the presence of ICP27 in vitro. We propose that ICP27 modifies SRPK1 activity resulting in hypophosphorylation of SR proteins impairing their ability to function in spliceosome assembly.  相似文献   

18.
19.
Paraquat (PQ) is a neurotoxic herbicide that induces superoxide formation. Although it is known that its toxic properties are linked to ROS production, the cellular response to PQ is still poorly understood. We reported previously that treatment with PQ induced genome-wide changes in pre-mRNA splicing. Here, we investigated the molecular mechanism underlying PQ-induced pre-mRNA splicing alterations. We show that PQ treatment leads to the phosphorylation and nuclear accumulation of SRPK2, a member of the family of serine/arginine (SR) protein-specific kinases. Concomitantly, we observed increased phosphorylation of SR proteins. Site-specific mutagenesis identified a single serine residue that is necessary and sufficient for nuclear localization of SRPK2. Transfection of a phosphomimetic mutant modified splice site selection of the E1A minigene splicing reporter similar to PQ-treatment. Finally, we found that PQ induces DNA damage and vice versa that genotoxic treatments are also able to promote SRPK2 phosphorylation and nuclear localization. Consistent with these observations, treatment with PQ, cisplatin or γ-radiation promote changes in the splicing pattern of genes involved in DNA repair, cell cycle control, and apoptosis. Altogether, our findings reveal a novel regulatory mechanism that connects PQ to the DNA damage response and to the modulation of alternative splicing via SRPK2 phosphorylation.  相似文献   

20.
SRPK1 (serine-arginine protein kinase 1) is a protein kinase that specifically phosphorylates proteins containing serine-arginine-rich domains. Its substrates include a family of SR proteins that are key regulators of mRNA AS (alternative splicing). VEGF (vascular endothelial growth factor), a principal angiogenesis factor contains an alternative 3' splice site in the terminal exon that defines a family of isoforms with a different amino acid sequence at the C-terminal end, resulting in anti-angiogenic activity in the context of VEGF165-driven neovascularization. It has been shown recently in our laboratories that SRPK1 regulates the choice of this splice site through phosphorylation of the splicing factor SRSF1 (serine/arginine-rich splicing factor 1). The present review summarizes progress that has been made to understand how SRPK1 inhibition may be used to manipulate the balance of pro- and anti-angiogenic VEGF isoforms in animal models in vivo and therefore control abnormal angiogenesis and other pathophysiological processes in multiple disease states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号