首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A method is described for the preparation of ;free' and ;synaptosomal' brain mitochondria from fractions of guinea-pig cerebral cortex respectively depleted and enriched in synaptosomes. Both preparations of mitochondria have a low membrane H(+) conductance, a high capacity to phosphorylate ADP, and a capacity to accumulate Ca(2+) at rates limited by the activity of the respiratory chain. Ca(2+) transport by ;free' brain mitochondria is compared with that of heart mitochondria. The Ca(2+) conductance of ;free' brain mitochondria was at least 20 times that for rat heart mitochondria. Ca(2+) uptake by brain mitochondria increased the pH gradient and decreased membrane potential, whereas little change occurred during the much slower uptake by heart mitochondria. In the presence of ionophore A23187, dissipative Ca(2+) cycling decreased the H(+) electrochemical potential gradient of brain mitochondria from 190 to 60mV, but caused only a slight decrease with heart mitochondria, although the ionophore lowered the pH gradient and increased membrane potential. The Ca(2+) conductance of ;free' brain mitochondria is distinctive in showing a hyperbolic dependency on free Ca(2+) concentration. In the presence of Ruthenium Red, a rapid Na(+)-dependent Ca(2+) efflux occurs. The H(+) electrochemical potential gradient is maintained during this efflux, and membrane potential increases, with both ;free' brain and heart mitochondria. The Na(+) requirement for Ca(2+) efflux appears not to be related to the high Na(+)/H(+) exchange activity but may represent a direct exchange of Na(+) for Ca(2+).  相似文献   

2.
Permeability transition was examined in heart mitochondria isolated from neonate rats. We found that these mitochondria were more susceptible to Ca(2+)-induced membrane leakiness than mitochondria from adult rats. In K(+) containing medium, at 25?°C, mitochondria were unable to accumulate Ca(2+). Conversely, in Na(+) containing medium, mitochondria accumulated effectively Ca(2+). At 15?°C mitochondria accumulated Ca(2+) regardless of the presence of K(+). Kinetics of Ca(2+) accumulation showed a similar Vmax as that of adult mitochondria. Lipid milieu of inner membrane contained more unsaturated fatty acids than adult mitochondria. Aconitase inhibition and high thiobarbituric acid-reactive substances (TBARS) indicate that oxidative stress caused mitochondrial damage. In addition, proteomics analysis showed that there is a considerable diminution of succinate dehydrogenase C and subunit 4 of cytochrome oxidase in neonate mitochondria. Our proposal is that dysfunction of the respiratory chain makes neonate mitochondria more susceptible to damage by oxidative stress.  相似文献   

3.
Effects of a switched, time-varying 1.7 T magnetic field on Rb(+)(K+) uptake by HeLa S3 cells incubated in an isosmotic high K(+) medium were examined. The magnetic flux density was varied intermittently from 0.07-1.7 T at an interval of 3 s. K(+) uptake was activated by replacement of normal medium by high K(+) medium. A membrane-permeable Ca(2+) chelating agent (BAPTA-AM) and Ca(2+)-dependent K(+) channel inhibitors (quinine, charibdotoxin, and iberiotoxin) were found to reduce the Rb(+)(K+) uptake by about 30-40%. Uptake of K(+) that is sensitive to these drugs is possibly mediated by Ca(2+)-dependent K(+) channels. The intermittent magnetic field partly suppress ed the drug-sensitive K(+) uptake by about 30-40% (P < 0.05). To test the mechanism of inhibition by the magnetic fields, intracellular Ca(2+) concentration ([Ca(2+)]c) was measured using Fura 2-AM. When cells were placed in the high K(+) medium, [Ca(2+)]c increased to about 1.4 times the original level, but exposure to the magnetic fields completely suppressed the increase (P < 0.01). Addition of a Ca(2+) ionophore (ionomycin) to the high K(+) medium increased [Ca(2+)]c to the level of control cells, regardless of exposure to the magnetic field. But the inhibition of K(+) uptake by the magnetic fields was not restored by addition of ionomycin. Based on our previous results on magnetic field-induced changes in properties of the cell membrane, these results indicate that exposure to the magnetic fields partly suppresses K(+) influx, which may be mediated by Ca(2+)-dependent K(+) channels. The suppress ion of K(+) fluxes could relate to a change in electric properties of cell surface and an inhibition of Ca(2+) influx mediated by Ca(2+) channels of either the cell plasma membrane or the inner vesicular membrane of intracellular Ca(2+) stores.  相似文献   

4.
The purpose of this study was establishing the basic energetic parameters of amoeba Acanthamoeba castellanii mitochondria respiring with malate and their response to oxidative stress caused by hydrogen peroxide in the presence of Fe(2+) ions. It appeared that, contrary to a previous report (Trocha LK, Stobienia O (2007) Acta Biochim Polon 54: 797), H(2)O(2)-treated mitochondria of A. castellanii did not display any substantial impairment. No marked changes in cytochrome pathway activity were found, as in the presence of an inhibitor of alternative oxidase no effects were observed on the rates of uncoupled and phosphorylating respiration and on coupling parameters. Only in the absence of the alternative oxidase inhibitor, non-phosphorylating respiration progressively decreased with increasing concentration of H(2)O(2), while the coupling parameters (respiratory control ratio and ADP/O ratio) slightly improved, which may indicate some inactivation of the alternative oxidase. Moreover, our results show no change in membrane potential, Ca(2+) uptake and accumulation ability, mitochondrial outer membrane integrity and cytochrome c release for 0.5-25 mM H(2)O(2)-treated versus control (H(2)O(2)-untreated) mitochondria. These results indicate that short (5 min) incubation of A. castellanii mitochondria with H(2)O(2) in the presence of Fe(2+) does not damage their basic energetics.  相似文献   

5.
Production of superoxide (O(2)(·-)) by NADPH oxidases contributes to the development of hypertension and atherosclerosis. Factors responsible for activation of NADPH oxidases are not well understood; interestingly, cardiovascular disease is associated with both altered NADPH oxidase activity and age-associated mitochondrial dysfunction. We hypothesized that mitochondrial dysfunction may contribute to activation of NADPH oxidase. The effect of mitochondrial inhibitors on phagocytic NADPH oxidase in human lymphoblasts and whole blood was measured at the basal state and upon PKC-dependent stimulation with PMA using extracellular 1-hydroxy-2,2,6,6-tetramethylpiperidin-4-yl-trimethylammonium or mitochondria-targeted 1-hydroxy-4-[2-triphenylphosphonio)-acetamido]-2,2,6,6-tetramethylpiperidine spin probes and electron spin resonance (ESR). Intracellular cytosolic calcium [Ca(2+)](i) was measured spectrofluorometrically using fura-2 AM. Incubation of lymphoblasts with the mitochondrial inhibitors rotenone, antimycin A, CCCP, or ruthenium red (an inhibitor of mitochondrial Ca(2+) uniporter) did not significantly change basal activity of NADPH oxidase. In contrast, preincubation with the mitochondrial inhibitors prior to PMA stimulation of lymphoblasts resulted in two- to three-fold increase of NADPH oxidase activity compared with stimulation with PMA alone. Most notably, the intracellular Ca(2+)-chelating agent BAPTA-AM abolished the effect of mitochondrial inhibitors on NADPH oxidase activity. Cytosolic Ca(2+) measurements with fura-2 AM showed that the mitochondrial inhibitors increased [Ca(2+)](i), while BAPTA-AM abolished the increase in [Ca(2+)](i). Furthermore, depletion of cellular Ca(2+) with thapsigargin attenuated CCCP- and antimycin A-mediated activation of NADPH oxidase in the presence of PMA by 42% and 31%, correspondingly. Our data suggest that mitochondria regulate PKC-dependent activation of phagocytic NADPH oxidase. In summary, increased mitochondrial O(2)(·-) and impaired buffering of cytosolic Ca(2+) by dysfunctional mitochondria result in enhanced NADPH oxidase activity, which may contribute to the development of cardiovascular diseases.  相似文献   

6.
The secondary active Cl(-) secretion in seawater (SW) teleost fish gills and elasmobranch rectal gland involves basolateral Na(+),K(+)-ATPase and NKCC, apical membrane CFTR anion channels, and a paracellular Na(+)-selective conductance. In freshwater (FW) teleost gill, the mechanism of NaCl uptake is more controversial and involves apical V-type H(+)-ATPase linked to an apical Na(+) channel, apical Cl(-)-HCO-3 exchange and basolateral Na(+),K(+)-ATPase. Ca(2+) uptake (in FW and SW) is via Ca(2+) channels in the apical membrane and Ca(2+)-ATPase in the basolateral membrane. Mainly this transport occurs in mitochondria rich (MR) chloride cells, but there is a role for the pavement cells also. Future research will likely expand in two major directions, molded by methodology: first in physiological genomics of all the transporters, including their expression, trafficking, operation, and regulation at the molecular level, and second in biotelemetry to examine multivariable components in behavioral physiological ecology, thus widening the integration of physiology from the molecular to the environmental levels while deepening understanding at all levels.  相似文献   

7.
8.
Trypanosomatids of the genus Herpetomonas comprises monoxenic parasites of insects that present pro- and opisthomastigotes forms in their life cycles. In this study, we investigated the Ca(2+) transport and the mitochondrial bioenergetic of digitonin-permeabilized Herpetomonas sp. promastigotes. The response of promastigotes mitochondrial membrane potential to ADP, oligomycin, Ca(2+), and antimycin A indicates that these mitochondria behave similarly to vertebrate and Trypanosoma cruzi mitochondria regarding the properties of their electrochemical proton gradient. Ca(2+) transport by permeabilized cells appears to be performed mainly by the mitochondria. Unlike T. cruzi, it was not possible to observe Ca(2+) release from Herpetomonas sp. mitochondria, probably due to the simultaneous Ca(2+) uptake by the endoplasmic reticulum. In addition, a vanadate-sensitive Ca(2+) transport system, attributed to the endoplasmic reticulum, was also detected. Nigericin (1 microM), FCCP (1 microM), or bafilomycin A(1) (5 microM) had no effect on the vanadate-sensitive Ca(2+) transport. These data suggest the absence of a Ca(2+) transport mediated by a Ca(2+)/H(+) antiport. No evidence of a third Ca(2+) compartment with the characteristics of the acidocalcisomes described by A. E. Vercesi et al. (1994, Biochem. J. 304, 227-233) was observed. Thapsigargin and IP(3) were not able to affect the vanadate-sensitive Ca(2+) transport. Ruthenium red was able to inhibit the Ca(2+) uniport of mitochondria, inducing a slow mitochondrial Ca(2+) efflux, compatible with the presence of a Ca(2+)/H(+) antiport. Moreover, this efflux was not stimulated by the addition of NaCl, which suggests the absence of a Ca(2+)/Na(+) antiport in mitochondria.  相似文献   

9.
Pituitary gonadotropes transduce hormonal input into cytoplasmic calcium ([Ca(2+)](cyt)) oscillations that drive rhythmic exocytosis of gonadotropins. Using Calcium Green-1 and rhod-2 as optical measures of cytoplasmic and mitochondrial free Ca(2+), we show that mitochondria sequester Ca(2+) and tune the frequency of [Ca(2+)](cyt) oscillations in rat gonadotropes. Mitochondria accumulated Ca(2+) rapidly and in phase with elevations of [Ca(2+)](cyt) after GnRH stimulation or membrane depolarization. Inhibiting mitochondrial Ca(2+) uptake by the protonophore CCCP reduced the frequency of GnRH-induced [Ca(2+)](cyt) oscillations or, occasionally, stopped them. Much of the Ca(2+) that entered mitochondria is bound by intramitochondrial Ca(2+) buffering systems. The mitochondrial Ca(2+) binding ratio may be dynamic because [Ca(2+)](mit) appeared to reach a plateau as mitochondrial Ca(2+) accumulation continued. Entry of Ca(2+) into mitochondria was associated with a small drop in the mitochondrial membrane potential. Ca(2+) was extruded from mitochondria more slowly than it entered, and much of this efflux could be blocked by CGP-37157, a selective inhibitor of mitochondrial Na(+)-Ca(2+) exchange. Plasma membrane capacitance changes in response to depolarizing voltage trains were increased when CCCP was added, showing that mitochondria lower the local [Ca(2+)](cyt) near sites that trigger exocytosis. Thus, we demonstrate a central role for mitochondria in a significant physiological response.  相似文献   

10.
We have previously shown that there is high Na(+)/Ca(2+) exchange (NCX) activity in bovine adrenal chromaffin cells. In this study, by monitoring the [Ca(2+)](i) change in single cells and in a population of chromaffin cells, when the reverse mode of exchanger activity has been initiated, we have shown that the NCX activity is enhanced by K(+). The K(+)-enhanced activity accounted for a significant proportion of the Na(+)-dependent Ca(2+) uptake activity in the chromaffin cells. The results support the hypothesis that both NCX and Na(+)/Ca(2+)-K(+) exchanger (NCKX) are co-present in chromaffin cells. The expression of NCKX in chromaffin cells was further confirmed using PCR and northern blotting. In addition to the plasma membrane, the exchanger activity, measured by Na(+)-dependent (45)Ca(2+) uptake, was also present in membrane isolated from the chromaffin granules enriched fraction and the mitochondria enriched fraction. The results support that both NCX and NCKX are present in bovine chromaffin cells and that the regulation of [Ca(2+)](i) is probably more efficient with the participation of NCKX.  相似文献   

11.
A rise in cytosolic Ca(2+) concentration is used as a key activation signal in virtually all animal cells, where it triggers a range of responses including neurotransmitter release, muscle contraction, and cell growth and proliferation [1]. During intracellular Ca(2+) signaling, mitochondria rapidly take up significant amounts of Ca(2+) from the cytosol, and this stimulates energy production, alters the spatial and temporal profile of the intracellular Ca(2+) signal, and triggers cell death [2-10]. Mitochondrial Ca(2+) uptake occurs via a ruthenium-red-sensitive uniporter channel found in the inner membrane [11]. In spite of its critical importance, little is known about how the uniporter is regulated. Here, we report that the mitochondrial Ca(2+) uniporter is gated by cytosolic Ca(2+). Ca(2+) uptake into mitochondria is a Ca(2+)-activated process with a requirement for functional calmodulin. However, cytosolic Ca(2+) subsequently inactivates the uniporter, preventing further Ca(2+) uptake. The uptake pathway and the inactivation process have relatively low Ca(2+) affinities of approximately 10-20 microM. However, numerous mitochondria are within 20-100 nm of the endoplasmic reticulum, thereby enabling rapid and efficient transmission of Ca(2+) release into adjacent mitochondria by InsP(3) receptors on the endoplasmic reticulum. Hence, biphasic control of mitochondrial Ca(2+) uptake by Ca(2+) provides a novel basis for complex physiological patterns of intracellular Ca(2+) signaling.  相似文献   

12.
Mitochondria extrude protons across their inner membrane to generate the mitochondrial membrane potential (ΔΨ(m)) and pH gradient (ΔpH(m)) that both power ATP synthesis. Mitochondrial uptake and efflux of many ions and metabolites are driven exclusively by ΔpH(m), whose in situ regulation is poorly characterized. Here, we report the first dynamic measurements of ΔpH(m) in living cells, using a mitochondrially targeted, pH-sensitive YFP (SypHer) combined with a cytosolic pH indicator (5-(and 6)-carboxy-SNARF-1). The resting matrix pH (~7.6) and ΔpH(m) (~0.45) of HeLa cells at 37 °C were lower than previously reported. Unexpectedly, mitochondrial pH and ΔpH(m) decreased during cytosolic Ca(2+) elevations. The drop in matrix pH was due to cytosolic acid generated by plasma membrane Ca(2+)-ATPases and transmitted to mitochondria by P(i)/H(+) symport and K(+)/H(+) exchange, whereas the decrease in ΔpH(m) reflected the low H(+)-buffering power of mitochondria (~5 mm, pH 7.8) compared with the cytosol (~20 mm, pH 7.4). Upon agonist washout and restoration of cytosolic Ca(2+) and pH, mitochondria alkalinized and ΔpH(m) increased. In permeabilized cells, a decrease in bath pH from 7.4 to 7.2 rapidly decreased mitochondrial pH, whereas the addition of 10 μm Ca(2+) caused a delayed and smaller alkalinization. These findings indicate that the mitochondrial matrix pH and ΔpH(m) are regulated by opposing Ca(2+)-dependent processes of stimulated mitochondrial respiration and cytosolic acidification.  相似文献   

13.
Cytosolic Ca(2+) signals are transferred into mitochondria over a huge concentration range. In our recent work we described uncoupling proteins 2 and 3 (UCP2/3) to be fundamental for mitochondrial uptake of high Ca(2+) domains in mitochondria-ER junctions. On the other hand, the leucine zipper EF hand-containing transmembrane protein 1 (Letm1) was identified as a mitochondrial Ca(2+)/H(+) antiporter that achieved mitochondrial Ca(2+) sequestration at small Ca(2+) increases. Thus, the contributions of Letm1 and UCP2/3 to mitochondrial Ca(2+) uptake were compared in endothelial cells. Knock-down of Letm1 did not affect the UCP2/3-dependent mitochondrial uptake of intracellularly released Ca(2+) but strongly diminished the transfer of entering Ca(2+) into mitochondria, subsequently, resulting in a reduction of store-operated Ca(2+) entry (SOCE). Knock-down of Letm1 and UCP2/3 did neither impact on cellular ATP levels nor the membrane potential. The enhanced mitochondrial Ca(2+) signals in cells overexpressing UCP2/3 rescued SOCE upon Letm1 knock-down. In digitonin-permeabilized cells, Letm1 exclusively contributed to mitochondrial Ca(2+) uptake at low Ca(2+) conditions. Neither the Letm1- nor the UCP2/3-dependent mitochondrial Ca(2+) uptake was affected by a knock-down of mRNA levels of mitochondrial calcium uptake 1 (MICU1), a protein that triggers mitochondrial Ca(2+) uptake in HeLa cells. Our data indicate that Letm1 and UCP2/3 independently contribute to two distinct, mitochondrial Ca(2+) uptake pathways in intact endothelial cells.  相似文献   

14.
There is an emerging consensus that pharmacological opening of the mitochondrial ATP-sensitive K(+) (K(ATP)) channel protects the heart against ischemia-reperfusion damage; however, there are widely divergent views on the effects of openers on isolated heart mitochondria. We have examined the effects of diazoxide and pinacidil on the bioenergetic properties of rat heart mitochondria. As expected of hydrophobic compounds, these drugs have toxic, as well as pharmacological, effects on mitochondria. Both drugs inhibit respiration and increase membrane proton permeability as a function of concentration, causing a decrease in mitochondrial membrane potential and a consequent decrease in Ca(2+) uptake, but these effects are not caused by opening mitochondrial K(ATP) channels. In pharmacological doses (<50 microM), both drugs open mitochondrial K(ATP) channels, and resulting changes in membrane potential and respiration are minimal. The increased K(+) influx associated with mitochondrial K(ATP) channel opening is approximately 30 nmol. min(-1). mg(-1), a very low rate that will depolarize by only 1-2 mV. However, this increase in K(+) influx causes a significant increase in matrix volume. The volume increase is sufficient to reverse matrix contraction caused by oxidative phosphorylation and can be observed even when respiration is inhibited and the membrane potential is supported by ATP hydrolysis, conditions expected during ischemia. Thus opening mitochondrial K(ATP) channels has little direct effect on respiration, membrane potential, or Ca(2+) uptake but has important effects on matrix and intermembrane space volumes.  相似文献   

15.
Nemorosone, a natural-occurring polycyclic polyprenylated acylphloroglucinol, has received increasing attention due to its strong in vitro anti-cancer action. Here, we have demonstrated the toxic effect of nemorosone (1-25 μM) on HepG2 cells by means of the MTT assay, as well as early mitochondrial membrane potential dissipation and ATP depletion in this cancer cell line. In mitochondria isolated from rat liver, nemorosone (50-500 nM) displayed a protonophoric uncoupling activity, showing potency comparable to the classic protonophore, carbonyl cyanide m-chlorophenyl hydrazone (CCCP). Nemorosone enhanced the succinate-supported state 4 respiration rate, dissipated mitochondrial membrane potential, released Ca(2+) from Ca(2+)-loaded mitochondria, decreased Ca(2+) uptake and depleted ATP. The protonophoric property of nemorosone was attested by the induction of mitochondrial swelling in hyposmotic K(+)-acetate medium in the presence of valinomycin. In addition, uncoupling concentrations of nemorosone in the presence of Ca(2+) plus ruthenium red induced the mitochondrial permeability transition process. Therefore, nemorosone is a new potent protonophoric mitochondrial uncoupler and this property is potentially involved in its toxicity on cancer cells.  相似文献   

16.
Total membrane vesicles isolated from Tritrichomonas foetus showed an ATP-dependent Ca(2+) uptake, which was not sensitive to 10 microM protonophore FCCP but was blocked by orthovanadate, the inhibitor of P-type ATPases (I(50)=130 microM), and by the Ca(2+)/H(+) exchanger, A-23187. The Ca(2+) uptake was prevented also by thapsigargin, an inhibitor of the SERCA Ca(2+)-ATPases. The sensitivity of the Ca(2+) uptake by the protozoan membrane vesicles to thapsigargin was similar to that of Ca(2+)-ATPase from rabbit muscle sarcoplasmic reticulum. Fractionation of the total membrane vesicles in sucrose density gradient revealed a considerable peak of Ca(2+) transport activity that co-migrated with the Golgi marker guanosine diphosphatase (GDPase). Electron microscopy confirmed that membrane fractions of the peak were enriched with the Golgi membranes. The Golgi Ca(2+)-ATPase contributed to the Ca(2+) uptake by all membrane vesicles 80-85%. We conclude that: (i) the Golgi and/or Golgi-like vesicles form the main Ca(2+) store compartment in T. foetus; (ii) Ca(2+) ATPase is responsible for the Ca(2+) sequestering in this protozoan, while Ca(2+)/H(+) antiporter is not involved in the process; (iii) the Golgi pump of this ancient eukaryotic microorganism appears to be similar to the enzymes of the SERCA family by its sensitivity to thapsigargin.  相似文献   

17.
Yan L  Lee AK  Tse FW  Tse A 《Cell calcium》2012,51(2):155-163
In oxygen sensing carotid glomus (type 1) cells, the hypoxia-triggered depolarization can be mimicked by mitochondrial inhibitors. We examined the possibility that, other than causing glomus cell depolarization, mitochondrial inhibition can regulate transmitter release via changes in Ca(2+) dynamics. Under whole-cell voltage clamp conditions, application of the mitochondrial inhibitors, carbonyl cyanide m-chlorophenylhydrazone (CCCP) or cyanide caused a dramatic slowing in the decay of the depolarization-triggered Ca(2+) signal in glomus cells. In contrast, inhibition of the Na(+)/Ca(2+) exchanger (NCX), plasma membrane Ca(2+)-ATPase (PMCA) pump or sarco-endoplasmic reticulum Ca(2+)-ATPase (SERCA) pump had much smaller effects. Consistent with the notion that mitochondrial Ca(2+) uptake is the dominant mechanism in cytosolic Ca(2+) removal, inhibition of the mitochondrial uniporter with ruthenium red slowed the decay of the depolarization-triggered Ca(2+) signal. Hypoxia also slowed cytosolic Ca(2+) removal, suggesting a partial impairment of mitochondrial Ca(2+) uptake. Using membrane capacitance measurement, we found that the increase in the duration of the depolarization-triggered Ca(2+) signal after mitochondrial inhibition was associated with an enhancement of the exocytotic response. The role of mitochondria in the regulation of Ca(2+) signal and transmitter release from glomus cells highlights the importance of mitochondria in hypoxic chemotransduction in the carotid bodies.  相似文献   

18.
The kinetics of uptake of Ca(2+) by rat heart mitochondria were studied by a spectrophotometric method with Arsenazo III indicator. The exponential rate coefficients measured with or without added phosphate increase with the amount of Ca(2+) added up to about 24mum. Evidence is given that the effect is attributable to a combination of formation of chelates at low concentrations to act as Ca(2+) buffers, with co-transport of substrate to provide more respiratory fuel. The inhibitory effect of Mg(2+) depends on the Ca(2+) concentration, so with a constant [Mg(2+)] the low concentrations of Ca(2+) are most inhibited, and the rate coefficients are still more Ca(2+)-dependent. Ca(2+) uptake is slowed by local anaesthetics such as butacaine and dibucaine, and also by propranolol and palmitoyl-CoA. After an uptake, the release of Ca(2+) was investigated. The spontaneous release involves an initially slow and small appearance of free Ca(2+) and is followed by an auto-accelerated phase. The release is accompanied by a gradual decrease in internal ATP; it is initiated by palmitoyl-CoA (reversed by carnitine), by lysophosphatidylcholine, by Na(+) salts (reversed by oligomycin) and by K(+) salts added to a K(+)-free medium containing valinomycin. The process is probably a response to an increased energy load imposed on the mitochondria by the various conditions, which include the spontaneous action of phospholipase activated by traces of Ca(2+). The problem of how much mitochondrial activity is participating in normal heart Ca(2+) turnover is discussed, and experiments showing only 7-14% exchange of the mitochondrial Ca(2+) occurring in vivo in 10 or 20min are reported.  相似文献   

19.
Palty R  Sekler I 《Cell calcium》2012,52(1):9-15
Powered by the steep mitochondrial membrane potential Ca(2+) permeates into the mitochondria via the Ca(2+) uniporter and is then extruded by a mitochondrial Na(+)/Ca(2+) exchanger. This mitochondrial Ca(2+) shuttling regulates the rate of ATP production and participates in cellular Ca(2+) signaling. Despite the fact that the exchanger was functionally identified 40 years ago its molecular identity remained a mystery. Early studies on isolated mitochondria and intact cells characterized the functional properties of a mitochondrial Na(+)/Ca(2+) exchanger, and showed that it possess unique functional fingerprints such as Li(+)/Ca(2+) exchange and that it is displaying selective sensitivity to inhibitors. Purification of mitochondria proteins combined with functional reconstitution led to the isolation of a polypeptide candidate of the exchanger but failed to molecularly identify it. A turning point in the search for the exchanger molecule came with the recent cloning of the last member of the Na(+)/Ca(2+) exchanger superfamily termed NCLX (Na(+)/Ca(2+)/Li(+) exchanger). NCLX is localized in the inner mitochondria membrane and its expression is linked to mitochondria Na(+)/Ca(2+) exchange matching the functional fingerprints of the putative mitochondrial Na(+)/Ca(2+) exchanger. Thus NCLX emerges as the long sought mitochondria Na(+)/Ca(2+) exchanger and provide a critical molecular handle to study mitochondrial Ca(2+) signaling and transport. Here we summarize some of the main topics related to the molecular properties of the Na(+)/Ca(2+) exchanger, beginning with the early days of its functional identification, its kinetic properties and regulation, and culminating in its molecular identification.  相似文献   

20.
We have identified three distinct groups of mitochondria in normal living pancreatic acinar cells, located (i) in the peripheral basolateral region close to the plasma membrane, (ii) around the nucleus and (iii) in the periphery of the granular region separating the granules from the basolateral area. Three-dimensional reconstruction of confocal slices showed that the perigranular mitochondria form a barrier surrounding the whole of the granular region. Cytosolic Ca(2+) oscillations initiated in the granular area triggered mitochondrial Ca(2+) uptake mainly in the perigranular area. The most intensive uptake occurred in the mitochondria close to the apical plasma membrane. Store-operated Ca(2+) influx through the basolateral membrane caused preferential Ca(2+) uptake into sub-plasmalemmal mitochondria. The perinuclear mitochondria were activated specifically by local uncaging of Ca(2+) in the nucleus. These mitochondria could isolate nuclear and cytosolic Ca(2+) signalling. Photobleaching experiments indicated that different groups of mitochondria were not luminally connected. The three mitochondrial groups are activated independently by specific spatiotemporal patterns of cytosolic Ca(2+) signals and can therefore participate in the local regulation of Ca(2+) homeostasis and energy supply.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号