首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
W W Ward  S H Bokman 《Biochemistry》1982,21(19):4535-4540
The green-fluorescent protein (GFP) that functions as a bioluminescence energy transfer acceptor in the jellyfish Aequorea has been renatured with up to 90% yield following acid, base, or guanidine denaturation. Renaturation, following pH neutralization or simple dilution of guanidine, proceeds with a half-recovery time of less than 5 min as measured by the return of visible fluorescence. Residual unrenatured protein has been quantitatively removed by chromatography on Sephadex G-75. The chromatographed, renatured GFP has corrected fluorescence excitation and emission spectra identical with those of the native protein at pH 7.0 (excitation lambda max = 398 nm; emission lambda max = 508 nm) and also at pH 12.2 (excitation lambda max = 476 nm; emission lambda max = 505 nm). With its peak position red-shifted 78 nm at pH 12.2, the Aequorea GFP excitation spectrum more closely resembles the excitation spectra of Renilla (sea pansy) and Phialidium (hydromedusan) GFPs at neutral pH. Visible absorption spectra of the native and renatured Aequorea green-fluorescent proteins at pH 7.0 are also identical, suggesting that the chromophore binding site has returned to its native state. Small differences in far-UV absorption and circular dichroism spectra, however, indicate that the renatured protein has not fully regained its native secondary structure.  相似文献   

2.
The linear dichroism spectrum of rhodopsin in sonicated bovine disk membranes was measured 30, 60, 170, and 600 ns after room temperature photolysis with a linearly polarized, 7-ns laser pulse (lambda = 355 or 477 nm). A global exponential fitting procedure based on singular value decomposition was used to fit the linear dichroism data to two exponential processes which differed spectrally from one another and whose lifetimes were 42 +/- 7 ns and 225 +/- 40 ns. These results are interpreted in terms of a sequential model where bathorhodopsin (BATHO, lambda max = 543 nm) decays toward equilibrium with a blue shifted intermediate (BSI, lambda max = 478 nm). BSI then decays to lumirhodopsin (LUMI, lambda max = 492 nm). It has been suggested that two bathorhodopsins decay in parallel to their products. However, a Monte Carlo simulation of partial photolysis of solid-state visual pigment samples shows that one mechanism which creates populations of BATHO having different photolysis rates at 77 K may not be responsible for the two decay rates reported here at room temperature. The angle between the cis band and 498-nm band transition dipoles of rhodopsin is determined to be 38 degrees. The angles between both these transition dipoles and those of the long-wave-length bands of BATHO, BSI, and LUMI are also determined. It is shown that when BATHO is formed its transition dipole moves away from the original cis band transition dipole direction. The transition dipole then moves roughly twice as much towards the original cis band direction when BSI appears. Production of LUMI is associated with return of the transition dipole almost to the original orientation relative to the cis band, but with some displacement normal to the plane which contains the previous motions. The correlation between the lambda max of an intermediate and its transition dipole direction is discussed.  相似文献   

3.
Fluorescence excitation and emission spectra, relative fluorescence quantum yield phi r and fluorescence lifetime tau of methyl 8-(2-anthroyl)-octanoate have been studied in a set of organic solvents covering a large scale of polarity and in the presence of water. In this probe, the 2-anthroyl chromophore exhibits quite remarkable and unique fluorescence properties. Thus, when going from n-hexane to methanol, the maximum emission wavelength lambda em max shifts from 404 nm to 492 nm while phi r and tau increase from 1 to 17.7 and from 0.91 ns to 13.5 ns, respectively. These increments are still more accentuated in the presence of water with estimated values of 526 nm for lambda em max, 27 for phi r and 20 ns for tau in this solvent. Because of the presence of a keto group which is a hydrogen bond acceptor and which can conjugate with the aromatic ring so as to provide the chromophore with a high dipole moment, the fluorescence properties of the probe strongly depend on the polarity of the surrounding medium. They can be accounted for in terms of general solvent effects (dipolar solute/solvent interactions) in the presence of aprotic solvents and in terms of specific solvent effects (hydrogen bonding) in protic solvents. Such properties of solvatochromism make the 2-anthroyl chromophore, after 8-(2-anthroyl)octanoic acid has been attached to phospholipids (E. Perochon and J.F. Tocanne (1991) Chem. Phys. Lipids 58, 7-17) a potential tool for studying microenvironmental polarity in biological membranes.  相似文献   

4.
Photoactive yellow protein (PYP) is a blue light sensor present in the purple photosynthetic bacterium Ectothiorhodospira halophila, which undergoes a cyclic series of absorbance changes upon illumination at its lambda(max) of 446 nm. The anionic p-hydroxycinnamoyl chromophore of PYP is covalently bound as a thiol ester to Cys69, buried in a hydrophobic pocket, and hydrogen-bonded via its phenolate oxygen to Glu46 and Tyr42. The chromophore becomes protonated in the photobleached state (I(2)) after it undergoes trans-cis isomerization, which results in breaking of the H-bond between Glu46 and the chromophore and partial exposure of the phenolic ring to the solvent. In previous mutagenesis studies of a Glu46Gln mutant, we have shown that a key factor in controlling the color and photocycle kinetics of PYP is this H-bonding system. To further investigate this, we have now characterized Glu46Asp and Glu46Ala mutants. The ground-state absorption spectrum of the Glu46Asp mutant shows a pH-dependent equilibrium (pK = 8.6) between two species: a protonated (acidic) form (lambda(max) = 345 nm), and a slightly blue-shifted deprotonated (basic) form (lambda(max) = 444 nm). Both of these species are photoactive. A similar transition was also observed for the Glu46Ala mutant (pK = 7.9), resulting in two photoactive red-shifted forms: a basic species (lambda(max) = 465 nm) and a protonated species (lambda(max) = 365 nm). We attribute these spectral transitions to protonation/deprotonation of the phenolate oxygen of the chromophore. This is demonstrated by FT Raman spectra. Dark recovery kinetics (return to the unphotolyzed state) were found to vary appreciably between these various photoactive species. These spectral and kinetic properties indicate that the hydrogen bond between Glu46 and the chromophore hydroxyl group is a dominant factor in controlling the pK values of the chromophore and the glutamate carboxyl.  相似文献   

5.
Polarized absorption and fluorescence measurements have been performed at 77 K on isotropic and anisotropic preparations of trimeric Light Harvesting Complex II (LHC-II) from spinach. The results enable a decomposition of the absorption spectrum into components parallel and perpendicular to the trimeric plane. For the first time, it is shown quantitatively that the strong absorption band around 676 nm is polarized essentially parallel to the plane of the trimer, i.e., the average angle between the corresponding transition dipole moments and this plane is at most 12 degrees. The different absorption bands for LHC-II should not be considered as corresponding to individual pigments but to collective excitations of different pigments. Nevertheless, the average angle between the Qy transition dipole moments of all chlorophyll a pigments in LHC-II and the trimeric plane could be determined and was found to be 17.5 degrees +/- 2.5 degrees. For the chlorophyll b pigments, this angle is significantly larger (close to 35 degrees). At 77 K, most of the fluorescence stems from a weak band above 676 nm and the corresponding transition dipole moments are oriented further out of plane than the dipole moments corresponding to the 676-nm band. The results are shown to be of crucial significance for understanding the relation between the LHC-II structure and its spectroscopy.  相似文献   

6.
Linear dichroism experiments are performed on light-adapted bacteriorhodopsin (BR568) films containing native retinal (A1) and its 3,4-dehydroretinal (A2) analogue to measure the angle between the chromophore transition dipole moment and the membrane normal. QCFF/pi calculations show that the angle between the transition moment and the long axis of the polyene is changed by 3.4 degrees when the C3-C4 bond is unsaturated. The difference vector between the two transition moments points in the same direction as the Schiff base (N----H) bond for the all-trans BR568 chromophore. Because the plane of the chromophore is perpendicular to the membrane plane, a comparison of the transition moment orientations in the A1- and A2-pigments enables us to determine the orientation of the N----H bond with respect to the absolute chromophore (N----C5 vector) orientation. The angles of the transition moments are 70.3 degrees +/- 0.4 degrees and 67.8 degrees +/- 0.4 degrees for the A1- and A2-pigments, respectively. The fact that the change in the transition moment angle (2.5 degrees) is close to the predicted 3.4 degrees supports the idea that the chromophore plane is nearly perpendicular to the membrane plane. The decreased transition moment angle in the A2-analogue requires that the N----H bond and the N----C5 vector point toward the same membrane surface. Available results indicate that the N----C5 vector points toward the exterior in BR568. With this assignment, we conclude that the N----H bond points toward the exterior surface and its most likely counterion Asp-212. This information makes possible the construction of a computer graphics model for the active site in BR568.  相似文献   

7.
E Pérochon  A Lopez  J F Tocanne 《Biochemistry》1992,31(33):7672-7682
Through steady-state and time-resolved fluorescence experiments, the polarity of the bilayers of egg phosphatidylcholine vesicles was studied by means of the solvatochromic 2-anthroyl fluorophore which we have recently introduced for investigating the environmental micropolarity of membranes and which was incorporated synthetically in phosphatidylcholine molecules (anthroyl-PC) in the form of 8-(2-anthroyl)octanoic acid. Fluorescence quenching experiments carried out with N,N-dimethylaniline and 12-doxylstearic acid as quenchers showed that the 2-anthroyl chromophore was located in depth in the hydrophobic region of the lipid bilayer corresponding to the C9-C16 segment of the acyl chains. Steady-state fluorescence spectroscopy revealed a nonstructured and red-shifted (lambda em(max) = 464 nm) spectrum for the probe in egg-PC bilayers, which greatly differed from the structured and blue (lambda em(max) = 404 nm) spectrum the fluorophore was shown to display in n-hexane. While the fluorescence decays of the fluorophore in organic solvents were monoexponential, three exponentials were required to account for the fluorescence decays of anthroyl-PC in egg-PC vesicles, with average characteristic times of 1.5 ns, 5.5 ns, and 20 ns. These lifetime values were independent of the emission wavelength used. Addition of cholesterol to the lipid did not alter these tau values. One just observed an increase in the fractional population of the 1.5-ns short-living species detrimental to the population of the 20-ns long-living ones. These observations enabled time-resolved fluorescence spectroscopy measurements to be achieved in the case of the 1/1 (mol/mol) egg-PC/cholesterol mixture. Three distinct decay associated spectra (DAS) were recorded, with maximum emission wavelengths, respectively, of 410 nm, 440 nm, and 477 nm for the 1.5-ns, 6-ns, and 20-ns lifetimes found in this system. On account of the properties and the polarity scale previously established for the 2-anthroyl chromophore in organic solvents, these data strongly suggest the occurrence of three distinct excited states for anthroyl-PC in egg-PC bilayers, corresponding to three environments for the 2-anthroyl chromophore, differing in polarity. The lifetime of 1.5 ns and the corresponding structured and blue (lambda em(max) = 410 nm) DAS account for a hydrophobic environment, with an apparent dielectric constant of 2, which is that expected for the hydrophobic core of the lipid bilayer.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
The photobleaching pathway of a short-wavelength cone opsin purified in delipidated form (lambda(max) = 425 nm) is reported. The batho intermediate of the violet cone opsin generated at 45 K has an absorption maximum at 450 nm. The batho intermediate thermally decays to the lumi intermediate (lambda(max) = 435 nm) at 200 K. The lumi intermediate decays to the meta I (lambda(max) = 420 nm) and meta II (lambda(max) = 388 nm) intermediates at 258 and 263 K, respectively. The meta II intermediate decays to free retinal and opsin at >270 K. At 45, 75, and 140 K, the photochemical excitation of the violet cone opsin at 425 nm generates the batho intermediate at high concentrations under moderate illumination. The batho intermediate spectra, generated via decomposing the photostationary state spectra at 45 and 140 K, are identical and have properties typical of batho intermediates of other visual pigments. Extended illumination of the violet cone opsin at 75 K, however, generates a red-shifted photostationary state (relative to both the dark and the batho intermediates) that has as absorption maximum at approximately 470 nm, and thermally reverts to form the normal batho intermediate when warmed to 140 K. We conclude that this red-shifted photostationary state is a metastable state, characterized by a higher-energy protein conformation that allows relaxation of the all-trans chromophore into a more planar conformation. FTIR spectroscopy of violet cone opsin indicates conclusively that the chromophore is protonated. A similar transformation of the rhodopsin binding site generates a model for the VCOP binding site that predicts roughly 75% of the observed blue shift of the violet cone pigment relative to rhodopsin. MNDO-PSDCI calculations indicate that secondary interactions involving the binding site residues are as important as the first-order chromophore protein interactions in mediating the wavelength maximum.  相似文献   

9.
A low molecular weight protein (approximately 25,000 D) exhibiting a yellow fluorescence emission peaking at approximately 540 nm was isolated from Vibrio fischeri (strain Y-1) and purified to apparent homogeneity. FMN is the chromophore, but it exhibits marked red shifts in both the absorption (lambda max = 380, 460 nm) and the fluorescence emission. When added to purified luciferase from the same strain, which itself catalyzes an emission of blue-green light (lambda max approximately 495 nm), this protein induces a bright yellow luminescence (lambda max approximately 540 nm); this corresponds to the emission of the Y-1 strain in vivo. This yellow bioluminescence emission is thus ascribed to the interaction of these two proteins, and to the excitation of the singlet FMN bound to this fluorescent protein.  相似文献   

10.
Tyr-72 is included in the hydrophobic cleft which is formed in the histone H1 globular head. Tyr-72 is screened against polar aqueous environment and its intramolecular mobility is sharply retarded. This microenvironment causes a red shift (lambda max = 279 nm) and a sharpening of the longer wavelength shoulder of absorption spectra, a high fluoresence anisotropy value (A = 0,11), high quantum yield of fluoresence (approximately 0.2) and a decrease of the Stern-Volmer Constant during quenching of histone H1 fluorescence by acrylamide. It has been found that the change in the intensity of histone fluorescence at lambda excit = 265 nm, but not at lambda excit = 280 nm, is due to the changes in the quantum yield of fluorescence. The increase of fluorescence intensity at lambda excit = 280 nm depends on the changes in the quantum yield and molar extinction coefficient of histone H1 tyrosyl chromophore. The change in the ratio of fluorescence intensity exited at 280 nm (F280) to the fluorescence intensity excited at 265 nm (F265) corresponds to the change of delta epsilon 286 in difference absorption spectra. The introduction of the parameter Cf = F280/F265 allows one to go over to studying excitation spectrum shifts instead of histone absorption spectrum shifts, which is much more convenient methodologically since in this case it is possible to carry out research using lower protein concentrations and turbid solutions. The results make it possible to designate Tyr-72 of histone H1 as a special class of fluorescent tyrosyls whose properties differ from those of tyrosyls of other tryptophane-free proteins: RNAase, insulin, core histones--H2A, H2B, H3, H4 and some others.  相似文献   

11.
In parts 1 and 2 of this series [Hanson, G. T., McAnaney, T. B., Park, E. S., Rendell, M. E. P., Yarbrough, D. K., Chu, S. Y., Xi, L. X., Boxer, S. G., Montrose, M. H., and Remington, S. J. (2002) Biochemistry 41, 15477-15488; McAnaney, T. B., Park, E. S., Hanson, G. T., Remington, S. J., and Boxer, S. G. (2002) Biochemistry 41, 15489-15494], we described the structure, excited-state dynamics, and applications of pH-sensitive, ratiometric dual emission green fluorescent protein (deGFP) variants with fluorescence emission that is modulated between blue (lambda(max) approximately equal 465 nm) and green (lambda(max) approximately equal 515 nm) depending on the pH of the bulk solvent. In this paper, we consider the energetic origin of the dual emission properties of these GFP variants by examining the temperature dependence of the steady-state absorption and fluorescence emission. In most cases, the quantum yield of the green emission decreased as the temperature was lowered, indicating that the excited-state proton transfer (ESPT) which produces the green emitting form is an activated process. The activation energies of ESPT, determined by modeling the quantum yields of both blue and green emissions between 260 and 298 K in the context of a simple photocycle, were found to be larger at low pH than at high pH. These results indicate that the ratiometric dual emission properties of deGFP mutants are due to this pH-sensitive ESPT rate, combined with a modulation of the ground-state neutral and anionic chromophore populations with pH. The time-resolved fluorescence of one of the deGFP mutants was studied in detail. The time-resolved emission spectra of this mutant are the first ultrafast spectra obtained for a GFP. These spectra demonstrate that the rising kinetics for green emission, considered a hallmark of ESPT, is the sum of the contribution from both the neutral and intermediate anionic forms of the chromophore at the probe wavelength and may not be observed in all mutants that undergo ESPT, depending on the relative contributions of the two forms.  相似文献   

12.
The absorption spectra of two photoactive yellow protein model chromophores have been measured in vacuum using an electrostatic ion storage ring. The absorption spectrum of the isolated chromophore is an important reference for deducing the influence of the protein environment on the electronic energy levels of the chromophore and separating the intrinsic properties of the chromophore from properties induced by the protein environment. In vacuum the deprotonated trans-thiophenyl-p-coumarate model chromophore has an absorption maximum at 460 nm, whereas the photoactive yellow protein absorbs maximally at 446 nm. The protein environment thus only slightly blue-shifts the absorption. In contrast, the absorption of the model chromophore in aqueous solution is significantly blue-shifted (lambda(max) = 395 nm). A deprotonated trans-p-coumaric acid has also been studied to elucidate the effect of thioester formation and phenol deprotonation. The sum of these two changes on the chromophore induces a red shift both in vacuum and in aqueous solution.  相似文献   

13.
We have investigated properties relevant to quantitative imaging in living cells of five green fluorescent protein (GFP) variants that have been used extensively or are potentially useful. We measured the extinction coefficients, quantum yields, pH effects, photobleaching effects, and temperature-dependent chromophore formation of wtGFP, alphaGFP (F99S/M153T/V163A), S65T, EGFP (F64L/S65T), and a blue-shifted variant, EBFP (F64L/S65T/Y66H/Y145F). Absorbance and fluorescence spectroscopy showed little difference between the extinction coefficients and quantum yields of wtGFP and alphaGFP. In contrast, S65T and EGFP extinction coefficients made them both approximately 6-fold brighter than wtGFP when excited at 488 nm, and EBFP absorbed more strongly than the wtGFP when excited in the near-UV wavelength region, although it had a much lower quantum efficiency. When excited at 488 nm, the GFPs were all more resistant to photobleaching than fluorescein. However, the wtGFP and alphaGFP photobleaching patterns showed initial increases in fluorescence emission caused by photoconversion of the protein chromophore. The wtGFP fluorescence decreased more quickly when excited at 395 nm than 488 nm, but it was still more photostable than the EBFP when excited at this wavelength. The wtGFP and alphaGFP were quite stable over a broad pH range, but fluorescence of the other variants decreased rapidly below pH 7. When expressed in bacteria, chromophore formation in wtGFP and S65T was found to be less efficient at 37 degrees C than at 28 degrees C, but the other three variants showed little differences between 37 degrees C and 28 degrees C. In conclusion, no single GFP variant is ideal for every application, but each one offers advantages and disadvantages for quantitative imaging in living cells.  相似文献   

14.
Polarized, low-temperature Fourier transform infrared (FTIR) difference spectroscopy has been used to investigate the structure of bacteriorhodopsin (bR) as it undergoes phototransitions from the light-adapted state, bR570, to the K630 and M412 intermediates. The orientations of specific retinal chromophore and protein groups relative to the membrane plane were calculated from the linear dichroism of the infrared bands, which correspond to the vibrational modes of those groups. The linear dichroism of the chromophore C=C and C-C stretching modes indicates that the long axis of the polyene chain is oriented at 20-25 degrees from the membrane plane at 250 K and that it orients more in-plane when the temperature is reduced to 81 K. The polyene plane is found to be approximately perpendicular to the membrane plane from the linear dichroism calculations of the HOOP (hydrogen out-of-plane) wags. The orientation of the transition dipole moments of chromophore vibrations in the K630 and M412 intermediates has been probed, and the dipole moment direction of the C=O bond of an aspartic acid that is protonated in the bR570----M412 transition has been measured.  相似文献   

15.
Glutamic acid at position 113 in bovine rhodopsin ionizes to form the counterion to the protonated Schiff base (PSB), which links the 11-cis-retinylidene chromophore to opsin. Photoactivation of rhodopsin requires both Schiff base deprotonation and neutralization of Glu-113. To better understand the role of electrostatic interactions in receptor photoactivation, absorbance difference spectra were collected at time delays from 30 ns to 690 ms after photolysis of rhodopsin mutant E113Q solubilized in dodecyl maltoside at different pH values at 20 degrees C. The PSB form (pH 5. 5, lambda(max) = 496 nm) and the unprotonated Schiff base form (pH 8. 2, lambda(max) = 384 nm) of E113Q rhodopsin were excited using 477 nm or 355 nm light, respectively. Early photointermediates of both forms of E113Q were qualitatively similar to those of wild-type rhodopsin. In particular, early photoproducts with spectral shifts to longer wavelengths analogous to wild-type bathorhodopsin were seen. In the case of the basic form of E113Q, the absorption maximum of this intermediate was at 408 nm. These results suggest that steric interaction between the retinylidene chromophore and opsin, rather than charge separation, plays the dominant role in energy storage in bathorhodopsin. After lumirhodopsin, instead of deprotonating to form metarhodopsin I(380) on the submillisecond time scale as is the case for wild type, the acidic form of E113Q produced metarhodopsin I(480), which decayed very slowly (exponential lifetime = 12 ms). These results show that Glu-113 must be present for efficient deprotonation of the Schiff base and rapid visual transduction in vertebrate visual pigments.  相似文献   

16.
Folding and chromophore cyclization-oxidation processes of green and cyan fluorescent fusion proteins (GFP and CFP) in subcellular microenvironments of transfected C6 glioma cells were studied by multipixel spectrally resolved microscopy (SRM). Discrete time-dependent spectral transitions were characterized during protein folding and chromophore maturation in the cytosol, nucleus, mitochondria, endoplasmic reticulum (ER), and Golgi. Spectral similarity mapping of fluorophore transition phases demarcated spatio-temporal fluorescence correlation at a subcellular level. Folding stages were characterized by a transition from red-shifted spectral populations in the time interval of 7-10 hr after transfection to a fully matured fluorophore emitting typical GFP or CFP fluorescence after 10-15 hr. The nascent protein revealed an initial focal accumulation in cytosol emitting in the range of 580-680 nm. After 10 hr, mixed pixel population spectra were measured and at 15 hr GFP was visualized in the cytoplasm by its specific spectral fingerprints with maxima at 545 nm. For nucleus- and mitochondrion-targeted CFPs, the mature conformer was discovered only in its final destination, whereas intermediate steps of fluorophore synthesis (at 10 hr) were found in the cytoplasm. Enhanced fluorescence maturation was manifested only by the ER-Golgi-targeted CFP after 10 hr post transfection by spectral imaging. Moreover, only remnants of initial intermediate fluorescent pixels were localized externally to the Golgi framework at 15 hr. SRM assessed the competence of ER-Golgi to maintain efficient CFP folding in comparison to the rest of the cellular compartments.  相似文献   

17.
When the nonfluorescent chromoprotein asFP595 from Anemonia sulcata is subjected to sufficiently intense illumination near the absorbance maximum (lambda(abs)(max) = 568 nm), it undergoes a remarkable transition, termed "kindling", to a long-lived fluorescent state (lambda(em)(max) = 595 nm). In the dark recovery phase, the kindled state relaxes thermally on a time scale of seconds or can instantly be reverted upon illumination at 450 nm. The kindling phenomenon is enhanced by the Ala143 --> Gly point mutation, which slows the dark recovery time constant to 100 s at room temperature and increases the fluorescence quantum yield. To investigate the chemical nature of the chromophore and the possible role of chromophore isomerization in the kindling phenomenon, we determined the crystal structure of the "kindling fluorescent protein" asFP595-A143G (KFP) in the dark-adapted state at 1.38 A resolution and 100 K. The chromophore, derived from the Met63-Tyr64-Gly65 tripeptide, closely resembles that of the nonfluorescent chromoprotein Rtms5 in that the configuration is trans about the methylene bridge and there is substantial distortion from planarity. Unlike in Rtms5, in the native protein the polypeptide backbone is cleaved between Cys62 and Met63. The size and shape of the chromophore pocket suggest that the cis isomer of the chromophore could also be accommodated. Within the pocket, partially disordered His197 displays two conformations, which may constitute a binary switch that stabilizes different chromophore configurations. The energy barrier for thermal relaxation was found by Arrhenius plot analysis to be approximately 71 kJ/mol, somewhat higher than the value of approximately 55 kJ/mol observed for cis-trans isomerization of a model chromophore in solution.  相似文献   

18.
The fluorescence spectra of 6-propionyl-2-(dimethylamino)naphthalene (Prodan) and 6-dodecanoyl-2-(dimethylamino)naphthalene (Laurdan) in bilayer membranes of 1,2-distearoylphosphatidylcholine (DSPC) were observed as a function of pressure at constant temperature. The emission spectra of Prodan and Laurdan varied with the pressure-induced states of bilayer membranes. The maximum emission wavelength (lambda(max)) of Prodan characteristic of the liquid crystalline (L(alpha)), lamellar gel (L(beta)') and pressure-induced interdigitated gel (L(beta)I) phases of the DSPC bilayer was 480, 440 and 500 nm, respectively. On the other hand, the lambda(max) of Laurdan characteristic of the L(alpha) and L(beta)' phases was 480 and 440 nm in a similar manner as Prodan probe. However, no change in the lambda(max) was observed in spite of the occurrence of the interdigitation of bilayer. Since the lambda(max) reflects the solvent property around the probe molecules, we could speculate about the location of fluorescent probe in the bilayer membranes. In the L(alpha) phase the same chromophore group of Prodan and Laurdan probes distributes around phosphate group of lipid (i.e., polar region). The transformation of bilayer into the L(beta)' phase causes the Prodan and Laurdan molecules to move into the glycerol backbone (i.e., less polar) region. In the ripple gel (P(beta)') phase, the emission spectrum of Prodan shows a broad peak at about 480 nm and a shoulder around 440 nm, which means that the Prodan molecules are widespread over the wide range from the glycerol backbone to the hydrophilic part of bilayer. The P(beta)'/L(beta)I phase transition causes the Prodan molecule to squeeze out from the glycerol backbone region and to move the hydrophilic region near the bilayer surface. Contrarily, the Laurdan molecule was not squeezed out from the glycerol backbone region because the long acyl chain of Laurdan serves as an anchor in the hydrophobic core of bilayer. The ratio of fluorescence intensity of Prodan at 480 nm to that at 440 nm, F(480)/F(440), is available to observation of bilayer phase transitions. The plot of F(480)/F(440) versus pressure seems to be useful for the recognition of bilayer phase transition, especially the bilayer interdigitation.  相似文献   

19.
S N Krapunov  A I Dragan 《Biofizika》1989,34(3):357-363
Absorption and fluorescence spectra of some tyrosine-containing proteins were analysed. Comparison of the peculiarities of fluorescence and absorption of the tyrosine chromophore in the model compounds and proteins suggested a new classification of the states of tyrosine residues in proteins: I -- tyrosyls with hydrated OH-group (lambda mf approximately equal to 304 nm); II -- tyrosyls, whose hydroxyl group forms the hydrogen bond inside the protein in a hydrophobic surrounding or in the globular fold in structured water layer (lambda mf = 306-307 nm); III -- tyrosyls whose OH-group is deprotonated in the excited state (lambda mf approximately equal to 330-350 nm).  相似文献   

20.
Resonance raman spectroscopy of an ultraviolet-sensitive insect rhodopsin   总被引:1,自引:0,他引:1  
C Pande  H Deng  P Rath  R H Callender  J Schwemer 《Biochemistry》1987,26(23):7426-7430
We present the first visual pigment resonance Raman spectra from the UV-sensitive eyes of an insect, Ascalaphus macaronius (owlfly). This pigment contains 11-cis-retinal as the chromophore. Raman data have been obtained for the acid metarhodopsin at 10 degrees C in both H2O and D2O. The C = N stretching mode at 1660 cm-1 in H2O shifts to 1631 cm-1 upon deuteriation of the sample, clearly showing a protonated Schiff base linkage between the chromophore and the protein. The structure-sensitive fingerprint region shows similarities to the all-trans-protonated Schiff base of model retinal chromophores, as well as to the octopus acid metarhodopsin and bovine metarhodopsin I. Although spectra measured at -100 degrees C with 406.7-nm excitation, to enhance scattering from rhodopsin (lambda max 345 nm), contain a significant contribution from a small amount of contaminants [cytochrome(s) and/or accessory pigment] in the sample, the C = N stretch at 1664 cm-1 suggests a protonated Schiff base linkage between the chromophore and the protein in rhodopsin as well. For comparison, this mode also appears at approximately 1660 cm-1 in both the vertebrate (bovine) and the invertebrate (octopus) rhodopsins. These data are particularly interesting since the absorption maximum of 345 nm for rhodopsin might be expected to originate from an unprotonated Schiff base linkage. That the Schiff base linkage in the owlfly rhodopsin, like in bovine and in octopus, is protonated suggests that a charged chromophore is essential to visual transduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号