首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cardiac oxidative stress is developed following myocardial infarction (MI) particularly in the first week of MI. The influence of reactive oxygen species (ROS) on gene expression profiling and molecular pathways in the infarcted myocardium remains uncertain and is explored in the present study. Rats with MI were treated with or without antioxidants for 1 week. Normal rats served as controls. Cardiac oxidative stress and gene profiling were investigated. Compared to normal hearts, malondialdehyde, a marker of oxidative stress, was significantly increased in the infarcted myocardium, which was significantly suppressed by antioxidants. Microarray assay showed that over a thousand genes were differentially expressed in the infarcted myocardium. Antioxidants significantly altered the expression of 159 genes compared to untreated MI rats. Ingenuity pathway analysis indicated that multiple pathway networks were affected by antioxidants, including those related to cell movement, growth/development, death, and inflammatory/fibrotic responses. IPA further identified that these changes were primarily related to NFκB, p38 MAPK, and ERκ1/2 pathways. Hub genes were identified in the associated gene networks. This study reveals the gene networks associated with cardiac oxidative stress postMI. These observations indicate that ROS regulate various molecular and cellular actions related to cardiac repair/remodeling through multiple gene networks.  相似文献   

2.
Zeng H  Li L  Chen JX 《PloS one》2012,7(4):e35905
Hematopoietic progenitor CD133(+)/c-kit(+) cells have been shown to be involved in myocardial healing following myocardial infarction (MI). Previously we demonstrated that angiopoietin-1(Ang-1) is beneficial in the repair of diabetic infarcted hearts. We now investigate whether Ang-1 affects CD133(+)/c-kit(+) cell recruitment to the infarcted myocardium thereby mediating cardiac repair in type II (db/db) diabetic mice. db/db mice were administered either adenovirus Ang-1 (Ad-Ang-1) or Ad-β-gal systemically immediately after ligation of the left anterior descending coronary artery (LAD). Overexpression of Ang-1 resulted in a significant increase in CXCR-4/SDF-1α expression and promoted CD133(+)/c-kit(+), CD133(+)/CXCR-4(+) and CD133(+)/SDF-1α(+) cell recruitment into ischemic hearts. Overexpression of Ang-1 led to significant increases in number of CD31(+) and smooth muscle-like cells and VEGF expression in bone marrow (BM). This was accompanied by significant decreases in cardiac apoptosis and fibrosis and an increase in myocardial capillary density. Ang-1 also upregulated Jagged-1, Notch3 and apelin expression followed by increases in arteriole formation in the infarcted myocardium. Furthermore, overexpression of Ang-1 resulted in a significant improvement of cardiac functional recovery after 14 days of ischemia. Our data strongly suggest that Ang-1 attenuates cardiac apoptosis and promotes cardiac repair by a mechanism involving in promoting CD133(+)/c-kit(+) cells and angiogenesis in diabetic db/db mouse infarcted hearts.  相似文献   

3.
After a myocardial infarction (MI), the inflammatory responses are induced and assist to repair ischaemic injury and restore tissue integrity, but excessive inflammatory processes promote abnormal cardiac remodelling and progress towards heart failure. Thus, a timely resolution of inflammation and a firmly regulated balance between regulatory and inflammatory mechanisms can be helpful. Molecular- and cellular-based approaches modulating immune response post-MI have emerged as a promising therapeutic strategy. Exosomes are essential mediators of cell-to-cell communications, which are effective in modulating immune responses and immune cells following MI, improving the repair process of infarcted myocardium and maintaining ventricular function via the crosstalk among immune cells or between immune cells and myocardial cells. The present review aimed to seek the role of immune cell-secreted exosomes in infarcted myocardium post-MI, together with mechanisms behind their repairing impact on the damaged myocardium. The exosomes we focus on are secreted by classic immune cells including macrophages, dendritic cells, regulatory T cells and CD4+ T cells; however, further research is demanded to determine the role of exosomes secreted by other immune cells, such as B cells, neutrophils and mast cells, in infarcted myocardium after MI. This knowledge can assist in the development of future therapeutic strategies, which may benefit MI patients.  相似文献   

4.
Infarct healing is dependent on an inflammatory reaction that results in leukocyte infiltration and clearance of the wound from dead cells and matrix debris. However, optimal infarct healing requires timely activation of "stop signals" that suppress inflammatory mediator synthesis and mediate resolution of the inflammatory infiltrate, promoting formation of a scar. A growing body of evidence suggests that interactions involving the transmembrane receptor CD44 may play an important role in resolution of inflammation and migration of fibroblasts in injured tissues. We examined the role of CD44 signaling in infarct healing and cardiac remodeling using a mouse model of reperfused infarction. CD44 expression was markedly induced in the infarcted myocardium and was localized on infiltrating leukocytes, wound myofibroblasts, and vascular cells. In comparison with wild-type mice, CD44(-/-) animals showed enhanced and prolonged neutrophil and macrophage infiltration and increased expression of proinflammatory cytokines following myocardial infarction. In CD44(null) infarcts, the enhanced inflammatory phase was followed by decreased fibroblast infiltration, reduced collagen deposition, and diminished proliferative activity. Isolated CD44(null) cardiac fibroblasts had reduced proliferation upon stimulation with serum and decreased collagen synthesis in response to TGF-beta in comparison to wild-type fibroblasts. The healing defects in CD44(-/-) mice were associated with enhanced dilative remodeling of the infarcted ventricle, without affecting the size of the infarct. Our findings suggest that CD44-mediated interactions are critically involved in infarct healing. CD44 signaling is important for resolution of the postinfarction inflammatory reaction and regulates fibroblast function.  相似文献   

5.
6.
Fibrotic remodeling is an adverse consequence of immune response-driven phenotypic modulation of cardiac cells following myocardial infarction(Ml).MicroRNA-146b(miR-146b)is an active regulator of immunomodulation,but its function in the cardiac inflammatory cascade and its clinical implication in fibrotic remodeling following Ml remain largely unknown.Herein,miR-146b-5p was found to be upregulated in the infarcted myocardium of mice and the serum of myocardial ischemia patients.Gain-and loss-of-function experiments demonstrated that miR-146b-5p was a hypoxia-induced regulator that governed the pro-fibrotic phenotype transition of cardiac cells.Overexpression of miR-146b-5p activated fibroblast proliferation,migration,and fibroblast-to-myofibroblast transition,impaired endothelial cell function and stress survival,and disturbed macrophage paracrine signaling.Interestingly,the opposite effects were observed when miR-146b-5p expression was inhibited.Luciferase assays and rescue studies demonstrated that the miR-146b-5p target genes mediating the above phenotypic modulations included interleukin 1 receptor associated kinase 1(IRAKI)and carcinoembryonic antigen related cell adhesion molecule 1(CEACAM1).Local delivery of a miR-146b-5p antagomir significantly reduced fibrosis and cell death,and upregulated capillary and reparative macrophages in the infarcted myocardium to restore cardiac remodeling and function in both mouse and porcine Ml models.Local inhibition of miR-146b-5p may represent a novel therapeutic approach to treat cardiac fibrotic remodeling and dysfunction following Ml.  相似文献   

7.
microRNAs (miRs) have emerged as critical modulators of various physiological processes including stem cell differentiation. Indeed, miR-1 has been reported to play an integral role in the regulation of cardiac muscle progenitor cell differentiation. However, whether overexpression of miR-1 in embryonic stem (ES) cells (miR-1-ES cells) will enhance cardiac myocyte differentiation following transplantation into the infarcted myocardium is unknown. In the present study, myocardial infarction (MI) was produced in C57BL/6 mice by left anterior descending artery ligation. miR-1-ES cells, ES cells, or culture medium (control) was transplanted into the border zone of the infarcted heart, and 2 wk post-MI, cardiac myocyte differentiation, adverse ventricular remodeling, and cardiac function were assessed. We provide evidence demonstrating enhanced cardiac myocyte commitment of transplanted miR-1-ES cells in the mouse infarcted heart as compared with ES cells. Assessment of apoptosis revealed that overexpression of miR-1 in transplanted ES cells protected host myocardium from MI-induced apoptosis through activation of p-AKT and inhibition of caspase-3, phosphatase and tensin homolog, and superoxide production. A significant reduction in interstitial and vascular fibrosis was quantified in miR-1-ES cell and ES cell transplanted groups compared with control MI. However, no statistical significance between miR-1-ES cell and ES cell groups was observed. Finally, mice receiving miR-1-ES cell transplantation post-MI had significantly improved heart function compared with respective controls (P < 0.05). Our data suggest miR-1 drives cardiac myocyte differentiation from transplanted ES cells and inhibits apoptosis post-MI, ultimately giving rise to enhanced cardiac repair, regeneration, and function.  相似文献   

8.
Plasma adrenomedullin (AM) has been shown to increase in the early phase of acute myocardial infarction (MI). However, little information is available regarding cardiac AM synthesis after MI. Accordingly, we examined the time course of ventricular AM production and potential stimulation of AM in the infarcted and noninfarcted regions in MI rats produced by coronary artery ligation. Compared with sham-operated rats, the ventricular AM peptide level 6 h after MI increased 1.5-fold in the infarcted region and 1.7-fold in the noninfarcted region in association with increased left ventricular end-diastolic pressure (EDP). Northern blot analysis also showed marked induction of AM gene expression in the infarcted region (11-fold) and the noninfarcted region (6-fold) 6 h after MI. The AM peptide level in the infarcted region reached its peak (2. 6-fold) 1 wk postinfarction and thereafter decreased to normal. In the noninfarcted region, however, the AM level remained elevated for at least 4 wk. Immunohistochemical studies demonstrated that intense immunostaining for AM was limited to myocytes in both the infarcted and noninfarcted regions. Interestingly, the AM level in the noninfarcted region correlated positively with infarct size (r = 0. 40, P < 0.01) and EDP (r = 0.52, P < 0.001). An oral angiotensin-converting enzyme inhibitor suppressed the overproduction of AM 1 wk postinfarction in association with decreases in EDP and mean arterial pressure. In summary, cardiac AM synthesis was rapidly induced in both the infarcted and noninfarcted regions after MI. The subsequent ventricular AM in the two regions demonstrated different time-concentration curves during 4 wk after MI. AM may be synthesized predominantly by cardiac myocytes, but not by fibroblasts, at least in part, in association with increased ventricular load after MI.  相似文献   

9.
To evaluate the hypothesis that increasing the potential for glycolytic metabolism would benefit the functioning of infarcted myocardium, we investigated whether mild exercise training would increase the activities of oxidative enzymes, expression of carbohydrate-related transport proteins (monocarboxylate transporter MCT1 and glucose transporter GLUT4), and myosin heavy chain (MHC) isoforms. Myocardial infarction (MI) was produced by occluding the proximal left coronary artery in rat hearts for 30 min. After the rats performed 6 wk of run training on a treadmill, the wall of the left ventricle was dissected and divided into the anterior wall (AW; infarcted region) and posterior wall (PW; noninfarcted region). MI impaired citrate synthase and 3-hydroxyacyl-CoA dehydrogenase activities in the AW (P < 0.01) but not in the noninfarcted PW. No differences in the expression of MCT1 were found in either tissues of AW and PW after MI, whereas exercise training significantly increased the MCT1 expression in all conditions, except AW in the MI rats. Exercise training resulted in an increased expression of GLUT4 protein in the AW in the sham rats and in the PW in the MI rats. The relative amount of MHC-beta was significantly increased in the AW and PW in MI rats compared with sham rats. However, exercise training resulted in a significant increase of MHC-alpha expression in both AW and PW in both sham and MI rats (P < 0.01). These findings suggest that mild exercise training enhanced the potential for glycolytic metabolism and ATPase activity of the myocardium, even in the MI rats, ensuring a beneficial role in the remodeling of the heart.  相似文献   

10.
Peroxisome proliferator-activated receptor-delta (PPAR-δ)-dependent signaling is associated with rapid wound healing in the skin. Here, we investigated the therapeutic effects of PPAR-δ-agonist treatment on cardiac healing in post-myocardial infarction (MI) rats. Animals were assigned to the following groups: sham-operated control group, left anterior descending coronary artery ligation (MI) group, or MI with administration of the PPAR-δ agonist GW610742 group. GW610742 (1 mg/kg) was administrated intraperitoneally after the operation and repeated every 3 days. Echocardiographic data showed no differences between the two groups in terms of cardiac function and remodeling until 4 weeks. However, the degrees of angiogenesis and fibrosis after MI were significantly higher in the GW610742-treated rats than in the untreated MI rats at 1 week following MI, which changes were not different at 2 weeks after MI. Naturally, PPAR-δ expression in infarcted myocardium was highest increased in 3 day after MI and then disappeared in 14 day after MI. GW610742 increased myofibroblast differentiation and transforming growth factor-beta 2 expression in the infarct zone at 7 days after MI. GW610742 also increased bone marrow-derived mesenchymal stem cell (MSC) recruitment in whole myocardium, and increased serum platelet-derived growth factor B, stromal-derived factor-1 alpha, and matrix metallopeptidase 9 levels at day 3 after MI. PPAR-δ agonists treatment have the temporal effect on early fibrosis of infarcted myocardium, which might not sustain the functional and structural beneficial effect.  相似文献   

11.
Myocardial infarction (MI) is a major cause of morbidity and mortality worldwide. Until recently, it was thought that myocardium was not able to repair itself, but studies have now shown that resident cardiac stem cells have regenerative capacity, and stem cell therapy may be a novel approach for cardiac muscle repair and regeneration. Stem cell-derived paracrine factors have been shown to regulate ventricular remodeling, inflammation, apoptosis, cardiomyocytes regeneration, and neovascularization in regions of infarcted cardiac tissue. In this review, we summarize the evidence from cellular, animal, and clinical studies supporting the potential clinical significance of stem cell therapy as a novel therapeutic approach for the treatment of MI.  相似文献   

12.
13.

Background

We have previously demonstrated that the chronic intervention in the cholinergic system by donepezil, an acetylcholinesterase inhibitor, plays a beneficial role in suppressing long-term cardiac remodeling after myocardial infarction (MI). In comparison with such a chronic effect, however, the acute effect of donepezil during an acute phase of MI remains unclear. Noticing recent findings of a cholinergic mechanism for anti-inflammatory actions, we tested the hypothesis that donepezil attenuates an acute inflammatory tissue injury following MI.

Methods and Results

In isolated and activated macrophages, donepezil significantly reduced intra- and extracellular matrix metalloproteinase-9 (MMP-9). In mice with MI, despite the comparable values of heart rate and blood pressure, the donepezil-treated group showed a significantly lower incidence of cardiac rupture than the untreated group during the acute phase of MI. Immunohistochemistry revealed that MMP-9 was localized at the infarct area where a large number of inflammatory cells including macrophages infiltrated, and the expression and the enzymatic activity of MMP-9 at the left ventricular infarct area was significantly reduced in the donepezil-treated group.

Conclusion

The present study suggests that donepezil inhibits the MMP-9-related acute inflammatory tissue injury in the infarcted myocardium, thereby reduces the risk of left ventricular free wall rupture during the acute phase of MI.  相似文献   

14.
Myocardial infarction (MI) is associated with an angiogenic response, critical for healing and cardiac repair. Using a canine model of myocardial ischemia and reperfusion, we examined the structural characteristics of the evolving microvasculature in healing MI. After 7 days of reperfusion, the infarcted territory was rich in capillaries and contained enlarged, pericyte-poor "mother vessels" and endothelial bridges. During scar maturation arteriolar density in the infarct increased, and a higher percentage of microvessels acquired a pericyte coat (60.4 +/- 6.94% after 28 days of reperfusion vs 30.17 +/- 3.65% after 7 days of reperfusion; p<0.05). The microvascular endothelium in the early stages of healing showed intense CD31/PECAM-1 and CD146/Mel-CAM immunoreactivity but weak staining with the Griffonia simplicifolia lectin I (GS-I). In contrast, after 28 days of reperfusion, most infarct microvessels demonstrated significant lectin binding. Our findings suggest that the infarct microvasculature undergoes a transition from an early phase of intense angiogenic activity to a maturation stage associated with pericyte recruitment and formation of a muscular coat. In addition, in the endothelium of infarct microvessels CD31 and CD146 expression appears to precede that of the specific sugar groups that bind the GS-I lectin. Understanding of the mechanisms underlying the formation and remodeling of the microvasculature after MI may be important in designing therapeutic interventions to optimize cardiac repair.  相似文献   

15.
To determine the temporal changes in oxidative stress, mitogen-activated protein (MAP) kinases and mitochondrial apoptotic proteins, and their relationship to myocyte apoptosis in the remote noninfarcted myocardium after myocardial infarction (MI), rabbits were randomly assigned to either coronary artery ligation to produce MI or sham operation. The animals were sacrificed at 1, 4, 8, or 12 weeks after coronary artery occlusion. Sham rabbits were sacrificed at 12 weeks after surgery. MI rabbits exhibited progressive increases of left ventricular (LV) end-diastolic pressure and end-diastolic dimension, and progressive decreases of LV fractional shortening and dP/dt over 12 weeks. The LV remodeling with LV chamber dilation and LV systolic dysfunction was temporally associated with progressive increases of cardiac oxidative stress as evidenced by decreased myocardial reduced-to-oxidized-glutathione ratio and increased myocardial 8-hydroxydeoxyguanosine and myocyte apoptosis. The ERK and JNK activities were decreased while p38 MAP kinase activity was increased with age of MI. The extent of p38 MAP kinase activation correlated with Bcl-2 phosphorylation. Bcl-2 protein was decreased in both mitochondrial and cytosolic fractions with age of MI. Bax protein was increased in both mitochondrial and cytosolic fractions. Cytochrome c was reduced in mitochondrial fraction and increased in cytosolic fraction in a time-dependent manner after MI. Cleaved caspase 9 and caspase 3 proteins were time-dependently increased after MI. These data suggest that p38 MAP kinase activation is not only time-dependent after MI, but also correlates with oxidative stress, Bcl-2 phosphorylation, and myocyte apoptosis. These changes in the remote noninfarcted myocardium may contribute to LV remodeling and dysfunction after MI.  相似文献   

16.
In the normal myocardium matrix metalloproteinases (MMP) are present in the latent form. To examine whether MMP are activated following infarction or idiopathic dilated cardiomyopathy (DCM), we extracted and measured MMP activity in tissue derived from 7 explanted, failing human hearts due to either previous myocardial infarction (MI) or DCM. MMP activity in infarcted left ventricle (LV), noninfarcted IV and right ventricle (RV) from MI patients, as well as tissue from either ventricle of DCM patients, were compared to the activity of donor heart tissue. SDS-PAGE and dye-binding assays were used to determine total protein concentration, while collagenase activity was measured by SDS-PAGE type substrate gels embedded with type I gelatin (zymography). Accuracy of the zymographic technique was shown for tissue samples as small as 0.05 mg and was comparable to results obtained by a spectrophotometric method.. After normalization for total protein concentration, we found 3 ± 1 % collagenase activity in normal atrial tissue which could be activated to 80–90% by trypsin or plasmin, indicating that collagenase is normally inactive or in a latent form in human heart. In endo- and epimyocardium of infarcted LV on the other hand, collagenase activity was 85–95% and 10–20%, respectively, while 5–10% and 3–5%, respectively, in noninfarcted LV In DCM, collagenolytic activity in the endo and epimyocardium was 75 ± 5 and 35 ± 5% in the LV and 35 ± 7 and 20 ± 5% in the RV, respectively. Thus, in dilated failing human hearts secondary to previous MI or DCM, MMP activity is increased. This is particularly the case within the endomyocardium of the infarcted and noninfarcted portions of either ventricle with MI and in both ventricles in DCM. This suggests that an activation of collagenase throughout the myocardium may contribute to its remodeling that includes ventricular dilatation and wall thinning.This work was supported in part by NIH grant GM-48595 and by a Grant-In-Aid from the American Heart Association, Missouri Affiliate (92-10517).  相似文献   

17.
为探讨AT1、AT2 受体在心肌重构演变过程中的作用 ,本实验应用免疫组化、电镜技术和图像分析方法 ,观察了大鼠心梗后心肌重构过程中非梗塞区AT1、AT2 受体表达的动态变化。结果显示 ,心梗术后 3d ,电镜显示非梗塞区心肌细胞肌原纤维横纹消失 ,线粒体肿胀 ,成纤维细胞增多 ,免疫组化显示AT1A受体在非梗塞区心肌组织表达明显升高 (P <0 0 0 1) ,AT2 受体表达无明显变化 (P >0 0 5 ) ;心梗术后 14d ,可见心肌细胞肌原纤维横纹 ,心肌细胞间胶原纤维明显增多 ,同时AT1A受体在心肌的表达比心梗术后 3d时减弱 ,但仍高于对照组 (P <0 0 5 ) ,AT2 受体表达明显增加 (P <0 0 0 1)。结果提示 :心梗后非梗塞区心肌AT1A、AT2 受体表达先后上调 ,可能参与介导心肌重构过程  相似文献   

18.
Cardiac rupture is more prevalent in elderly patients with first onset of acute myocardial infarct (MI), but the mechanism remains unexplored. We investigated the differences in the incidence of cardiac rupture and early left ventricular (LV) remodeling following coronary artery ligation between old (12-mo) and young (3-mo) C57Bl/6 male mice and explored responsible mechanisms. The incidence of rupture within 1 wk after MI was significantly higher in old than in young mice (40.7 vs. 18.3%, P = 0.013) despite a similar infarct size in both age groups. Old mice dying of rupture had more severe infarct expansion than young counterparts. Echocardiography and catheterization at day 7 revealed more profound LV chamber dilatation and dysfunction as well as higher blood pressures in aged mice. At day 3 after MI immediately before the peak of rupture occurrence, we observed significantly higher content of type I and III collagen, a greater density of macrophage and neutrophil, and markedly enhanced mRNA expression of inflammatory cytokines in the infarcted myocardium in old than in young mice. Furthermore, a more dramatic increment of matrix metalloproteinase (MMP)-9 activity was found in old than in young infarcted hearts, in keeping with enhanced inflammatory response. Collectively, these results revealed that old mice had a higher risk of post-MI cardiac rupture despite a higher level of collagen content and cross-linking. Enhanced inflammatory response and subsequent increase in MMP-9 activity together with higher blood pressure are important factors responsible for the higher risk of cardiac rupture and more severe LV remodeling in the aged heart following acute MI.  相似文献   

19.
心梗后心肌重构过程中AT1A,AT2受体表达的变化   总被引:3,自引:0,他引:3  
Lu N  Tian DZ  Zhou L  Yao T  Zhu YC 《生理学报》2001,53(2):128-132
为探讨AT1,AT2受体在心肌重构演变过程中的作用,本实验应用免疫组化,电镜技术和图像分析方法,观察了大鼠心梗后心肌重构过程中非醒,AT1,AT2受体表达的动态变化,结果显示,心梗术后3d,电镜显示非梗塞区心肌细胞肌原纤维横纹消失,线粒体肿胀,成纤维细胞增多,免疫组化显示AT1A受体在非梗塞区心肌组织表达明显升高(P<0.001),AT2受体表达无明显变化(P>0.05),心梗术后14天,可见心肌细胞肌原纤维模纹,心肌细胞间胶原纤维明显增多。同时AT1A受本在心肌的表达比心梗术后3天时减弱,但仍高于对照组(P<0.05),AT2受体表达明显增加(P<0.001),结果提示:心梗后非梗塞区心肌AT1A,AT2受体表达先后上调,可能参与介导心肌重构过程。  相似文献   

20.
The proinflammatory cytokines interleukin (IL)-1 and IL-6 are increased after acute myocardial infarction (MI). Moreover, serum IL-6 level is elevated after MI, but has also been associated with heart failure. In the present study, heart function was monitored in a rat model of chronic MI. Cytokine expression in the infarcted and non-infarcted myocardium as well as in hearts of sham-operated controls was measured by the ribonuclease-protection assay. To identify the cells contributing to the increased cytokine expression, we further analyzed myocytes and non-myocytes isolated in the acute phase as well as during congestive heart failure (CHF) after MI. There was a strong induction in cytokine expression in the myocytes of the infarct area 6 h after MI. In the non-infarcted myocardium, cytokine expression increased only slightly in the non-myocytes after 6 h. This was not different from sham-operated controls and may, therefore, be induced by stress and catecholamines. In CHF, however, cytokine expression level in myocytes was normal. It increased slightly but significantly in the non-myocytes 4 and 8 weeks after MI. In conclusion, we suggest that pro-inflammatory cytokines, produced by the ischemic myocytes may be involved in the initiation of wound healing of the necrotic area, whereas the effect of pro-inflammatory cytokines in CHF, if any, seems not to be crucial.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号