首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aluminium nitrate was tested for its effects on reproduction, gestation, and lactation in Sprague-Dawley rats, at dosages of 0, 180, 360 and 720 mg/kg/day. Mature male rats were treated orally for 60 days prior to mating with mature virgin female rats treated for 14 days prior to mating with treatment continuing throughout mating, gestation, parturition, and weaning of the litters. One-half of the dams in each group were killed on day 13 of gestation and the remaining dams were allowed to deliver and wean their offspring. Postnatal development was monitored. No adverse effects on fertility or general reproductive parameters were evident at doses employed in these studies. However, the survival ratios were higher for the control group. Moreover, a dose-dependent delay in the growth of the living young could be observed in aluminium treated groups. Therefore, it would seem that high amounts of aluminium should not be ingested during the periods of gestation.  相似文献   

2.
Pregnant Sprague-Dawley rats were given orally a daily dose of 0, 5, 10 or 20 mg NaVO3/kg from the sixth through the fourteenth day of pregnancy. Fetal examinations were performed on day 20 of gestation. Sodium metavanadate was neither embryolethal nor teratogenic in rats when administered orally at 20 mg/kg/day or lower. Nevertheless, this dose was embryotoxic.  相似文献   

3.
This study was conducted to evaluate the potential adverse effects of styrene on reproductive capability from whole-body inhalation exposure of F0 and F1 parental animals. Assessments included gonadal function, estrous cyclicity, mating behavior, conception rate, gestation, parturition, lactation, and weaning in the F0 and F1 generations, and F1 generation offspring growth and development. Four groups of male and female Crl:CD(SD)IGS BR rats (25/sex/group) were exposed to 0, 50, 150, and 500 ppm styrene for 6 hr daily for at least 70 consecutive days prior to mating for the F0 and F1 generations. Inhalation exposure for the F0 and F1 females continued throughout mating and gestation through gestation day 20. Inhalation exposure of the F0 and F1 females was suspended from gestation day 21 through lactation day 4. On lactation days 1 through 4, the F0 and F1 females received styrene in virgin olive oil via oral gavage at dose levels of 66, 117, and 300 mg/kg/day (divided into three equal doses, approximately 2 hr apart). These oral dosages were calculated to provide similar maternal blood peak concentrations as provided by the inhalation exposures. Inhalation exposure of the F0 and F1 females was re-initiated on lactation day 5. Styrene exposure did not affect survival or clinical observations. Rats in the 150- and 500-ppm groups in both parental generations gained weight more slowly than the controls. There were no indications of adverse effects on reproductive performance in either the F0 or F1 generation. Male and female mating and fertility indices, pre-coital intervals, spermatogenic endpoints, reproductive organ weights, lengths of estrous cycle and gestation, live litter size and postnatal survival were similar in all exposure groups. Additionally, ovarian follicle counts and corpora lutea counts for the F1 females in the high-exposure group were similar to the control values. No adverse exposure-related macroscopic pathology was noted at any exposure level in the F0 and F1 generations. A previously characterized pattern of degeneration of the olfactory epithelium that lines the dorsal septum and dorsal and medial aspects of the nasal turbinates occurred in the F0 and F1 generation animals from the 500-ppm group. In the 500-ppm group, F2 birthweights were reduced compared to the control and F2 offspring from both the 150- and 500-ppm exposure groups gained weight more slowly than the controls. Based on the results of this study, an exposure level of 50 ppm was considered to be the NOAEL for F0 and F1 parental systemic toxicity; the NOAEL for F0 and F1 reproductive toxicity was 500 ppm or greater.  相似文献   

4.
BACKGROUND : The present work was performed to determine the effect of thalidomide exposure on reproductive function and early embryonic development. METHODS : Twenty‐five female New Zealand White rabbits were orally gavaged with 0, 10, 50, or 100 mg/kg/day thalidomide 14 days prior to mating through to gestation day 7 for a total of 22 days. Treated females were Caesarean‐sectioned approximately 29 days after the date of attempted mating. Following mating with treated females, male rabbits (25/dose) were gavaged with 0, 30, 150, or 500 mg/kg/day beginning 14 days prior to mating with a group of untreated females (25/dose). Doses were administered through mating until the day before sacrifice for a minimum of 56 days. Untreated females were Caesarean‐sectioned 29 days after the last attempted mating. Comprehensive necropsy and histopathology of the reproductive system were performed. RESULTS : Treated females had reduction in body weight gain during gestation. Mating and pregnancy parameters were unaffected by thalidomide. At 100 m/kg, litter averages for corpora lutea, implantations, litter sizes, does with viable fetuses and live fetuses decreased and the number of early resorptions, does with any resorptions, does with all conceptuses resorbed, and the percent resorbed conceptuses per litter increased. The number of early resorptions, the average number of early resorptions per litter, and the percent resorbed conceptuses per litter increased at 10 and 50 mg/kg. There were no thalidomide‐related external fetal malformations. Mating and fertility in male rabbits were unaffected by thalidomide. There was an increased incidence of flaccid testes at 150 and 500 mg/kg and of bilateral small testes in all treated groups. At 500 mg/kg, there was degeneration of the germinal epithelium of the testicles with an increase in multinucleated giant cells in seminiferous tubule and a loss of round and elongating spermatids. CONCLUSIONS : Thalidomide had no adverse effects on mating and fertility in male and female rabbits dosed up to 500 and 100 mg/kg/day, respectively, for 14 days prior to mating. After 56 day of dosing, histopathologic changes with no associated sperm abnormalities were observed in the testicles. Embryonic development NOAEL for treated females mated to untreated males was <10 mg/kg. Corresponding fertility NOAEL for treated males mated to untreated females was 500 mg/kg. Birth Defects Res B 71:1–16, 2004. © 2004 Wiley‐Liss, Inc.  相似文献   

5.
The objective of this study was to evaluate the effects of a novel oxygen-coordinated niacin-bound chromium(III) complex (NBC) on the reproductive systems of male and female rats, the postnatal maturation and reproductive capacity of their offspring, and possible cumulative effects through multiple generations. Sprague-Dawley rats were maintained on feed containing NBC at dose levels of 0, 4, 15, or 60 ppm for 10 weeks prior to mating, during mating, and, for females through gestation and lactation, across two generations. For the parents (F0 and F1) and the offspring (F1 and F2a), reproductive parameters such as fertility and mating, gestation, parturition, litters, lactation, sexual maturity and development of offspring were assessed. Results from the current study indicated that dietary exposure of NBC to parental male and female rats of both (F0 and F1) the generations during the premating and mating periods, for both sexes, and during gestation and lactation in case of female rats, did not cause any significant incidence of mortality or abnormal clinical signs. Compared to respective controls, NBC exposure did not affect reproductive performance as evaluated by sexual maturity, fertility and mating, gestation, parturition, litter properties, lactation and development of the offspring. Based on the findings of this study, the parental as well as the offspring no-observed-adverse-effect level for NBC was determined to be greater than 60 ppm in diet or equivalent to 7.80 and 8.31 mg/kg body weight/day in male and female rats, respectively.  相似文献   

6.
Atrazine (ATZ) was administered daily by gavage to pregnant female Sprague Dawley rats at doses of 0, 6.25, 25 or 50 mg/kg/day, either during gestation, lactation and post‐weaning (G/L/PW cohort) to F1 generation female offspring or only from postnatal day (PND 21) until five days after sexual maturation (vaginal opening) when the estrogen‐primed, luteinizing hormone (LH) surge was evaluated (PW cohort). Additional subgroups of F1 females received the vehicle or ATZ from PND 21–133 or from PND 120–133. Slight reductions in fertility and the percentage of F1 generation pups surviving to PND 21 in the gestationally exposed 50 mg/kg dose group were accompanied by decreased food intake and body weight of dams and F1 generation offspring. The onset of puberty was delayed in of the F1 generation G/L/PW females at doses of 25 and 50 mg/kg/day. F1 generation females in the PW high‐dose ATZ group also experienced a delay in the onset of puberty. ATZ had no effect on peak LH or LH AUC in ovariectomized rats 5 days after sexual maturation, irrespective of whether the F1 generation females were treated from gestation onward or only peripubertally. There was no effect of ATZ treatment on the estrous cycle, peak LH or LH AUC of F1 generation females exposed from gestation through to PND 133 or only for two weeks from PND 120–133. These results indicate that developing females exposed to ATZ are not more sensitive compared to animals exposed to ATZ as young adults  相似文献   

7.
BACKGROUND: Lasofoxifene is a nonsteroidal selective estrogen receptor modulator (SERM). With high affinity to the alpha and beta human estrogen receptors and greater potency than other SERMs, lasofoxifene is potentially a superior treatment for postmenopausal osteoporosis. In light of the known effects of estrogen-modulating compounds on female reproductive indices, two studies were conducted to evaluate the effects of lasofoxifene on female rat cyclicity, reproduction, and parturition. METHODS: One study evaluated effects of lasofoxifene on estrous cyclicity, and the second study assessed effects on implantation and parturition. In the cyclicity study, lasofoxifene was administered to female rats at doses of 0.1, 0.3, and 1.0 mg/kg/day for 14 consecutive days. After treatment, there was a 3-week reversibility phase followed by a mating phase. In the implantation study, lasofoxifene was administered to pregnant female rats at doses of 0.01, 0.03, and 0.1 mg/kg/day for 7 consecutive days (gestation day [GD] 0-6). Some animals were euthanized on GD 21, and the remainder of the group was allowed to deliver the F1 generation. Several developmental indices were evaluated in the F1 pups through post-natal day (PND) 21. RESULTS: In the cyclicity study, all lasofoxifene-treated females were anestrous by Study Day 7 (1.0 mg/kg) or 9 (0.3 and 0.1 mg/kg). The reversibility phase resulted in restoration of normal estrous cycles by the end of 1 (0.1 mg/kg) or 2 weeks (0.3 and 1.0 mg/kg). During the mating phase, no adverse effects occurred in pregnancy success or reproductive parameters. In the implantation study, all doses of lasofoxifene increased pre- and post-implantation losses, increased gestation length, and reduced litter size. None of the developmental parameters measured on the F1 generation was adversely affected. CONCLUSION: Lasofoxifene reversibly altered the estrous cycle and inhibited implantation, consistent with what would be expected from a member of the SERM class.  相似文献   

8.
BACKGROUND: This study was conducted to evaluate the potential adverse effects of whole-body inhalation exposure of F0 and F1 parental animals from a 2-generation reproduction study of ethylbenzene on nervous system functional and/or morphologic end points in the F2 offspring from four groups of male and female Crl:CD (SD)IGS BR rats. METHODS: Thirty rats/sex/group for F0 and 25/sex/group for F1 were exposed to 0, 25, 100, and 500 ppm ethylbenzene for six hours daily for at least 70 consecutive days prior to mating for the F0 and F1 generations. Inhalation exposure for the F0 and F1 females continued throughout mating and gestation through Gestation Day (GD) 20. On lactation days (LD) 1-4, the F0 and F1 females received no inhalation exposure, but instead were administered ethylbenzene in corn oil via oral gavage at dosages estimated to result in similar internal maternal exposure based upon PBPK modeling estimates (0, 26, 90, and 342 mg/kg/day, respectively, divided into three equal doses, approximately two hours apart). Inhalation exposure of the F0 and F1 females was reinitiated on LD 5 and continued through weaning on postnatal day (PND) 21. Survival, body weights, and physical landmarks were assessed in selected F2 offspring. Neurobehavioral development of one F2-generation treatment derived offspring/sex/litter was assessed in a functional observational battery (FOB; PND 4, 11, 22, 45, and 60), motor activity sessions (PND 13, 17, 21, and 61), acoustic startle testing (PND 20 and 60), a Biel water maze learning and memory task (initiated on PND 26 or 62), and in evaluations of whole-brain measurements and brain morphometric and histologic assessments (PND 21 and 72). RESULTS: There were no adverse effects on reproductive performance in either the F0 or F1 parental generations exposed to up to 500 ppm ethylbenzene [Faber et al. Birth Defects Res Part B 77:10-21, 2006]. In the current developmental neurotoxicity component, parental ethylbenzene exposure did not adversely affect offspring survival, clinical condition, body weight parameters, or acquisition of developmental landmarks of the F2-generation treatment derived offspring. There were no alterations in FOB parameters, motor activity counts, acoustic startle endpoints, or Biel water maze performance in offspring attributed to parental ethylbenzene exposure. A few isolated instances of statistically significant differences obtained in the treatment-derived groups occurred sporadically, and were attributed to unusual patterns of development and/or behavior in the concurrent control group. There were no exposure-related differences in any neuropathology parameters in the F2-generation treatment derived offspring. CONCLUSIONS: The no observed adverse effect level (NOAEL) for maternal reproductive toxicity, developmental toxicity, and developmental neurotoxicity in this study was considered to be 500 ppm/342 mg/kg/day ethylbenzene, the highest exposure level tested in the study.  相似文献   

9.
This study was conducted to assess potential adverse functional and/or morphological effects of styrene on the neurological system in the F2 offspring following F0 and F1 generation whole-body inhalation exposures. Four groups of male and female Crl:CD (SD)IGS BR rats (25/sex/group) were exposed to 0, 50, 150, and 500 ppm styrene for 6 hr daily for at least 70 consecutive days prior to mating for the F0 and F1 generations. Inhalation exposure continued for the F0 and F1 females throughout mating and through gestation day 20. On lactation days 1 through 4, the F0 and F1 females received styrene in virgin olive oil via oral gavage at dose levels of 66, 117, and 300 mg/kg/day (divided into three equal doses, approximately 2 hr apart). Inhalation exposure of the F0 and F1 females was re-initiated on lactation day 5 and continued through weaning of the F1 or F2 pups on postnatal day (PND) 21. Developmental landmarks were assessed in F1 and F2 offspring. The neurological development of randomly selected pups from the F2 generation was assessed by functional observational battery, locomotor activity, acoustic startle response, learning and memory evaluations, brain weights and dimension measurements, and brain morphometric and histologic evaluation. Styrene exposure did not affect survival or the clinical condition of the animals. As expected from previous studies, slight body weight and histopathologic effects on the nasal olfactory epithelium were found in F0 and F1 rats exposed to 500 ppm and, to a lesser extent, 150 ppm. There were no indications of adverse effects on reproductive performance in either the F0 or F1 generation. There were exposure-related reductions in mean body weights of the F1 and F2 offspring from the mid and high-exposure groups and an overall pattern of slightly delayed development evident in the F2 offspring only from the 500-ppm group. This developmental delay included reduced body weight (which continued through day 70) and slightly delayed acquisition of some physical landmarks of development. Styrene exposure of the F0 and F1 animals had no effect on survival, the clinical condition or necropsy findings of the F2 animals. Functional observational battery evaluations conducted for all F1 dams during the gestation and lactation periods and for the F2 offspring were unaffected by styrene exposure. Swimming ability as determined by straight channel escape times measured on PND 24 were increased, and reduced grip strength values were evident for both sexes on PND 45 and 60 in the 500-ppm group compared to controls. There were no other parental exposure-related findings in the F2 pre-weaning and post-weaning functional observational battery assessments, the PND 20 and PND 60 auditory startle habituation parameters, in endpoints of learning and memory performance (escape times and errors) in the Biel water maze task at either testing age, or in activity levels measured on PND 61 in the 500-ppm group. Taken together, the exposure-related developmental and neuromotor changes identified in F2 pups from dams exposed to 500 ppm occurred in endpoints known to be both age- and weight-sensitive parameters, and were observed in the absence of any other remarkable indicators of neurobehavioral toxicity. Based on the results of this study, an exposure level of 50 ppm was considered to be the NOAEL for growth of F2 offspring; an exposure level of 500 ppm was considered to be the NOAEL for F2 developmental neurotoxicity.  相似文献   

10.
BACKGROUND: Aperi‐ and postnatal reproduction toxicity study was conducted in rats treated with Hematide, a synthetic PEGylated peptidic erythropoiesis stimulating agent (ESA). METHODS: Hematide, at IV doses of 0, 0.5, 3, and 15 mg/kg, was administered from implantation through lactation on gestation days (GDs) 5 and 18 and lactation day (LD) 13. RESULTS: Hematide induced pronounced polycythemia in all Hematide‐treated dams. On LDs 2 and 21, hemoglobin (Hgb) increases above control levels were 3.1, 5.2, and 5.0 g/dL and 4.1, 5.1, and 5.5 g/dL at the 0.5, 3, and 15 mg/kg/dose, respectively. There were no effects on parturition, lactation, or maternal behavior in the F0 generation female rats. A slight decrease in pup viability on postpartum days 2–4 and lower body weights and/or body weight gain for the F1 generation were associated with pronounced polycythemia and decreases in maternal body weight gain and/or food consumption at ≥3 mg/kg/dose. Hematide fetal exposure was negligible. No Hematide effect, other than on growth and survival, was noted on developmental, functional, mating, and fertility end points in the F1 generation rats, and no effect on litter or fetal parameters was observed in the F2 generation. The maternal no‐observed‐adverse‐effect level (NOAEL) for Hematide was 0.5 mg/kg, and the NOAEL for parturition and maternal behavior was 15 mg/kg. The NOAEL for F1 pup viability and growth was 0.5 mg/kg/dose. CONCLUSIONS: In conclusion, the Hematide‐associated adverse findings were attributed to exaggerated erythropoiesis (pronounced and prolonged polycythemia) resulting from administration of an ESA to pregnant animals. Birth Defects Res (Part B) 89:155–163, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

11.
The time of onset of the constrictive effect of indomethacin on the ductus arteriosus (DA) in fetal rats was assessed by measurement of the caliber of the DA after maternal treatment with indomethacin on days 19-21 of gestation. The day following overnight mating was regarded as day 0 of gestation. Observation was performed by direct exposure of the DA by hand shaving of intact frozen fetuses. On days 20 and 21, the DA was significantly constricted 3 h after maternal treatment with 1 mg/kg of indomethacin. When the DA was examined at 19 1/2 and 19 2/3 days of gestation (3 h after indomethacin exposure), it was significantly constricted at 19 2/3 days but not at 19 1/2 days. Higher doses of indomethacin (10 and 100 mg/kg) induced a significant constriction of the DA at day 19 1/2, but not at the beginning of the same day (1.00 a.m.). These results suggest that the onset of the susceptibility of the DA to the constrictive effect of indomethacin occurs in the first half of day 19 of gestation.  相似文献   

12.
BACKGROUND: Endogenous opioids seem to regulate hypothalamic gonadotropin release in both males and females, as evidenced by the effects of opioid agonists and antagonists on LHRH release and reproductive hormone levels. The effects of long‐term oral administration of opioid analgesics on reproductive function have not been well characterized. METHODS: The reproductive effects of oxymorphone, a potent opioid agonist, were investigated in male and female Crl:CD(SD) IGS BR rats at oral doses of 0, 5, 10, and 25 mg/kg/day (25 animals/sex/group). Males were treated for approximately 9 weeks (mated after 4 weeks of dosing). Females were treated for 14 days before mating, and through Gestation Day (GD) 7. Estrous cycling was evaluated during the premating period. On GD15, pregnancy status and the numbers of corpora lutea, implantation sites, live and dead embryos were determined. Epididymal and testicular sperm counts and epididymal sperm motility and morphology were evaluated in males. RESULTS: Two males given 25 mg/kg/day died. Behavioral changes and deficits in body weight gain occurred at all doses. There were no effects of oxymorphone on reproductive function or sperm parameters in males. The estrous cycle was prolonged in females given 25 mg/kg/day (mean of 5.3 vs. 4.3 days in controls). A small, but consistent decrease in the numbers of corpora lutea (with associated decreases in implantation sites and embryos) occurred in females given ≥10 mg/kg/day. There were no effects on mating or fertility in females. CONCLUSIONS: Oxymorphone seems to partially inhibit ovulation in female rats, with no significant effects on male reproductive outcome. Birth Defects Res (Part B) © 2007 Wiley‐Liss, Inc.  相似文献   

13.
BACKGROUND: CNTO 530is a biopharmaceutical consisting of a novel peptide that mimics the actions of erythropoietin, fused to the Fc fragment of human IgG4. Pharmacokinetic and pharmacodynamic studies showed that CNTO 530 produced sustained increases in red blood cell parameters in rats and rabbits and that the serum half life of CNTO 530 was 2 days in rabbits and 3 days in rats. METHODS: For the evaluation of embryofetal development, CNTO 530 was injected at loading doses of 0, 0.9/1, 6, or 60 mg/kg subcutaneously (SC) on gestation day (GD)7 followed by maintenance doses of 0, 0.3, 2, or 20 mg/kg SC every 3 days through GD16 in rats and every 2 days through GD19 in rabbits (GD0 was the day of mating). Rats were Caesarean sectioned on GD21, rabbits on GD29. RESULTS: Administration of CNTO 530 was associated with an increase in hematocrit at all dose levels and a decrease in maternal body weight gains. Fetuses exhibited reduced body weight and delayed ossification. Soft tissue changes were limited to cardiovascular alterations in the high‐dose rabbits only. Rat and rabbit fetuses were exposed to CNTO 530 in all dose groups. CONCLUSIONS: These studies show that the embryo/fetal development effects observed following CNTO 530 treatment during organogenesis are qualitatively similar to those seen with other erythropoietin agonists and are likely a secondary consequence of increased hematocrit in the dams. Unlike other erythropoietin receptor agonists, CNTO 530 was able to cross the placental barrier, which was considered likely the result of FcRn‐mediated transcytosis. Birth Defects Res (Part B) 89:87–96, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

14.
The presence of the mycotoxin ochratoxin A (OTA) in cereal grains is due to the growth of toxigenic Penicillium mold on stored crops. Human exposure to OTA is higher in infants, toddlers, and children than in adolescents and adults, based on exposure assessments of ng OTA consumed/kg body weight/day. Ochratoxin A is nephrotoxic and teratogenic in animals, but its effects on juveniles exposed during the reproduction and development period have not been studied. To address this, Fischer rats were exposed to 0, 0.16, 0.4, 1.0, or 2.5 mg OTA/kg diet throughout breeding, gestation, and lactation and its adverse effects were assessed in adult rats and their offspring on postnatal day (PND) 21. There were no effects on implantation but post-implantation fetotoxicity was observed in the 2.5 mg/kg dose group, corresponding to a calculated dose of 167.0 μg/kg bw/day in dams. Adverse effects on body and kidney weights and on clinical parameters indicative of renal toxicity were significant in adult rats exposed to 1.0 mg OTA/kg diet (55.2 and 73.3 μg/kg bw/day in adult males and females, respectively) and in PND21 rats at the 0.4 mg/kg dose (33.9 μg/kg bw/day in dams), suggesting that weanling rats were more sensitive to OTA than adults. Overall, nephrotoxicity was the primary effect of OTA in weanling rats exposed throughout gestation and lactation at sub-fetotoxic concentrations in diet.  相似文献   

15.
BACKGROUND: N‐methyl‐2‐pyrrolidone (NMP) is a solvent used in the petrochemical, and electronic industries, in pesticides production, veterinary drugs, and paint removers. The aim of study was to evaluate the relationship between the dose of NMP given orally and its effect on fertility in female rats and early development of their progeny. METHODS: Females were exposed by gavage 5 days/week to NMP at 150, 450, or 1000 mg/kg/day 2 weeks before mating, during mating, gestation, and lactation. On the first postnatal day (PND 1), the live and dead pups were counted, weighed, and gender was determined. On PND 4, the litters were culled to eight animals each and balanced for gender. Young animals were observed during 3 weeks after birth. RESULTS AND CONCLUSION: Fertility index did not significantly differ in the control and the group exposed at 150 mg/kg/day but it was significantly lower in the groups exposed at 450 or 1000 mg/kg/day. The number of live pups in the group exposed to the highest dose was significantly lower and the number of stillbirths in litters was significantly greater. Survival of the pups from all exposed groups during the 3 weeks after birth was significantly lower than the control animals. The results of our study indicate that intragastric exposure of female rats to NMP before pregnancy during gestation causes significant impairment in female fertility and intrauterine mortality rates. At lower doses, toxic or slightly toxic to the mothers, this substance causes decrease in viability and physical development of progeny.  相似文献   

16.
BACKGROUND : Natalizumab is a humanized monoclonal immunoglobulin G4 antibody directed against the human α4 integrin subunit disrupting interaction with its ligands. As α4 integrins and/or their ligands appear to be involved in reproductive function, the effects of natalizumab on fertility in male and female guinea pigs were investigated. METHODS : Natalizumab was administered by bolus intravenous injection every other day at doses of 0, 3, 10, and 30 mg/kg. Males began treatment at least 28 days prior to mating until necropsy (approximately 3 to 5 days after mating). Dosing in females was done from gestational day (GD) of an existing pregnancy to GD 30 of a second pregnancy. RESULTS : In male guinea pigs, natalizumab treatment had no effect on sperm parameters, reproductive organ weights, organ-weight ratios, or histology of the testis or epididymis. Natalizumab did not affect the ability of treated males to produce pregnancies in untreated females. In female guinea pigs, no treatment-related changes were seen in uterine weights or ovary weights. Pregnancy rates were reduced in females treated with 30 mg/kg natalizumab, but not those treated with 3 or 10 mg/kg. Pregnancy rates were 63.3, 66.7, 66.7, and 29.6% for groups treated with 0, 3, 10, and 30 mg/kg, respectively. Effects observed at 30 mg/kg were at exposures 36-fold those observed in humans. CONCLUSIONS : Natalizumab had no effects on male fertility, but did result in a reduction in pregnancy rates in females treated with the high dose of 30 mg/kg. Birth Defects Res (Part B)86: 108-116, 2009. © 2009 Wiley-Liss, Inc.  相似文献   

17.
The potential contribution of maternal age to tetrahydrocannabinol's (THC) in utero effects in rats was studied. Pregnant animals were intubated with 25, 10 or 0 mg/kg of THC from gestation day six to parturition. Animals in the 10 and 0 mg/kg groups were pair fed to those given the 25 mg/kg dose. Each series of doses was administered to females three, four or six months of age. THC lowered maternal weight gain and weights of offspring at birth and at 21 days of age, but did not affect litter size, spontaneous alternation or passive avoidance learning in offspring. Increased maternal age was associated with smaller litter size and lower birth weight and weight at 21 days, but did not interact significantly with THC.  相似文献   

18.
Yu WJ  Kim JC  Chung MK 《Mutation research》2008,652(1):81-87
1-Bromopropane (1-BP) is widely used in spray adhesives, precision cleaner, and degreaser. This study was conducted to investigate the potential of 1-BP to induce dominant lethality in mice. 1-BP was orally administered to males at doses of 300 and 600 mg/kg for 10 days before mating. Cyclophosphamide was used as a positive control (PC), which was administered intraperitoneally to males at 40 mg/kg for 5 days. The vehicle control (VC) group received corn oil only. Thereafter, males were mated with untreated females during six sequential mating periods of a week each. Males were sacrificed at the end of mating and so were the pregnant females on days 15-17 of gestation. Clinical signs, gross findings, mating index, gestation index, the numbers of corpora lutea, implantations, live fetuses, resorptions and dead fetuses, pre- and post-implantation losses, and dominant lethal mutation rate were examined. There were no treatment-related changes in clinical signs, gross findings, mating index, gestation index, number of corpora lutea and implantations, pre-implantation loss, live fetuses, resorptions, dead fetuses, post-implantation loss at any 1-BP doses tested. In the PC group, there were no treatment-related changes in mating index, gestation index, number of corpora lutea, and dead fetuses. However, a decrease in the number of implantations and an increase in pre-implantation loss were observed during the first 2 weeks as compared to those of the VC group. No treatment-related changes were observed in the third to sixth weeks. Increases in resorptions, fetal deaths and post-implantation loss, and a decrease in the number of live fetuses were observed in the first 3 weeks of the PC group compared to those of the VC group. However, no treatment-related changes were observed during the forth to sixth weeks. An increase in dominant lethal mutation rate was observed in 1-3 weeks of mating of the PC group, but there was no significant difference in 1-6 weeks of mating of the 1-BP treatment groups. In conclusion, 1-BP did not induce dominant lethality in mice. These results are in agreement with the report of Saito-Suzuki et al., demonstrating that no dominant lethality of 1-BP was observed in Sprague-Dawley rats.  相似文献   

19.
D-fenfluramine, an anorectic agent in rats and man, was administered daily at doses 1.25, 2.5, 5 or 10 mg/kg/day for 10 days, and sacrificed 6 days later. Hypothalamic serotonin (5-HT) levels were unchanged in rats receiving 1.25-5 mg/kg/day of d-fenfluramine but reduced by 22% (p less than 0.01) at the highest drug dose (10 mg/kg/day); hypothalamic 5-hydroxyindole acetic acid (5-HIAA) levels were reduced by 15% (p less than 0.05) or 28% (p less than 0.01) in rats receiving 5 or 10 mg/kg/day of the drug, respectively. Hypothalamic slices prepared from rats which were previously treated with any of the drug doses spontaneously released endogenous 5-HT at rates that did not differ from those of vehicle-treated rats. 5-HT released with electrical field-stimulation was unaffected by prior d-fenfluramine treatment at doses of 1.25-5 mg/kg/day, and was reduced by 20% (p less than 0.05) from slices prepared from rats which received 10 mg/kg/day. 5-HIAA efflux was also attenuated by the highest drug dose. These data indicate that chronic administration to rats of customary anorectic doses of d-fenfluramine (i.e. 0.06-1.25 mg/kg) fail to cause long-lasting reductions in brain 5-HT release.  相似文献   

20.
The teratogenic effects of methylmercuric chloride (MMC) given orally as a single dose to pregnant ICR mice on day 10 of gestation were examined. The doses tested were 25, 20, 15 and 10 mg/kg. Controls received distilled water orally. Each group consisted of 20 females. Fetuses were taken on day 18 of gestation for teratological study. The number of resorbed or dead embryos was moderately increased in the 25 mg/kg group. Fetuses from dams given 25, 20 and 15 mg/kg MMC weighed significantly less than those in the control group. Many fetuses with malformations were observed in the treated groups; cleft palate occurred in 100, 58.6 and 28.0% of fetuses from dams given 25, 20 and 15 mg/kg MMC, respectively (statistically significant). Hydronephrosis appeared in 23.8 and 18.5% of fetuses from dams given 25 and 20 mg/kg MMC, respectively (statistically significant). Skeletal variations, incomplete ossification of sternebrae, for example, were also observed in the treated groups. These results indicate that MMC is teratogenic so far as cleft palate is concerned and embryotoxic in ICR mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号