首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mitochondrial proteins with N-terminal targeting signals are transported across the inner membrane via the presequence translocase, which consists of membrane-integrated channel proteins and the matrix Hsp70 import motor. It has not been known how preproteins are directed to the import channel. We have identified the essential protein Tim50, which exposes its major domain to the intermembrane space. Tim50 interacts with preproteins in transit and directs them to the channel protein Tim23. Inactivation of Tim50 strongly inhibits the import of preproteins with a classical matrix-targeting signal, while preproteins carrying an additional inner membrane-sorting signal do not strictly depend on Tim50. Thus, Tim50 is crucial for guiding the precursors of matrix proteins to their insertion site in the inner membrane.  相似文献   

2.
The mitochondrial heat shock protein Hsp70 (mtHsp70) is essential for driving translocation of preproteins into the matrix. Two models, trapping and pulling by mtHsp70, are discussed, but positive evidence for either model has not been found so far. We have analyzed a mutant mtHsp70, Ssc1-2, that shows a reduced interaction with the membrane anchor Tim44, but an enhanced trapping of preproteins. Unexpectedly, at a low inner membrane potential, ssc1-2 mitochondria imported loosely folded preproteins more efficiently than wild-type mitochondria. The import of a tightly folded preprotein, however, was not increased in ssc1-2 mitochondria. Thus, enhanced trapping by mtHsp70 stimulates the import of loosely folded preproteins and reduces the dependence on the import-driving activity of the membrane potential, directly demonstrating that trapping is one of the molecular mechanisms of mtHsp70 action.  相似文献   

3.
Tim14 and Tim16 are essential components of the import motor of the mitochondrial TIM23 preprotein translocase. Tim14 contains a J domain in the matrix space that is anchored in the inner membrane by a transmembrane segment. Tim16 is a J-related protein with a moderately hydrophobic segment at its N terminus. The J and J-like domains function in the regulation of the ATPase activity of the Hsp70 chaperone of the import motor. We report here on the role of the hydrophobic segments of Tim16 and Tim14 in the TIM23 translocase. Yeast cells lacking the hydrophobic N-terminal segment in either Tim16 or Tim14 are viable but show growth defects and decreased import rates of matrix-targeted preproteins into mitochondria. The interaction of the Tim14.Tim16 complex with the core complex of the TIM23 translocase is destabilized in these cells. In particular, the N-terminal domain of Tim16 is crucial for the interaction of the Tim14.Tim16 complex with the TIM23 preprotein translocase. Deletion of hydrophobic segments in both, Tim16 and Tim14, is lethal. We conclude that import into the matrix space of mitochondria requires association of the co-chaperones Tim16 and Tim14 with the TIM23 preprotein translocase.  相似文献   

4.
The preprotein translocase of the inner mitochondrial membrane (TIM23 complex) is the main entry gate for proteins of the matrix and the inner membrane. Tim23 forms a pore for preprotein transportation in TIM23 complex, which spans the inner membrane with transmembrane segments and exposes a hydrophilic domain in the intermembrane space. In this study, we expressed and purified the intermembrane space (IMS) domain of human Tim23 (Tim23(IMS)). The far-UV CD spectra of Tim23(IMS) in native and denatured states revealed that the protein has a limited secondary structure and a not well-defined tertiary packing. Its Stokes radius was larger than both its expected size as a folded globular protein and the size determined by size exclusion chromatography. A large increase in 8-anilino-1-naphthalene-sulfonate (ANS) fluorescence (>50-fold) was observed, indicating that hydrophobic clusters are exposed at its surface. And GlobPlot/DisEMBL program predicted that the protein is in a loose folding state. We therefore conclude that, the non-bound hydrophilic domain of the human Tim23 is in a molten globule configuration with marginal stability. Furthermore, size exclusion chromatography and sedimentation equilibrium analysis showed that Tim23(IMS) exists as a dimer. And the results, showed by ANS binding and fluorescence quenching, indicated that a pH-dependent conformational change of Tim23(IMS) occurs, and at pH 4 and 3, it forms a compact structure.  相似文献   

5.
Tim44 is an essential component of the translocase of the inner mitochondrial membrane (TIM) complex that mediates transport of nuclear encoded mitochondrial precursors across the inner membrane. Here, we have investigated the topology of Tim44 by probing mitochondria with membrane impermeable 3-(N-maleimidopropionyl)biocytin (MPB) followed by the specific immunoprecipitation of modified proteins. Our data indicate that a single cysteine residue, Cys-369, located in the C-terminal domain of the yeast Tim44 is exposed to the mitochondrial intermembrane space.  相似文献   

6.
Translocation of nuclear-encoded mitochondrial preproteins is mediated by translocases in the outer and inner membranes. In the yeast Saccharomyces cerevisiae, translocation of preproteins into the matrix requires the membrane proteins Tim23, Tim17 and Tim44, which drive translocation in cooperation with mtHsp70 and its co-chaperone Mge1p. We have cloned and functionally analyzed the human homologues of Tim17, Tim23 and Tim44. In contrast to yeast, two TIM17 genes were found to be expressed in humans. TIM44, TIM23 and TIM17a genes were mapped to chromosomes 19p13.2-p13.3, 10q11. 21-q11.23 and 1q32. The TIM17b gene mapped to Xp11.23, near the fusion point where an autosomal region was proposed to have been added to the "ancient" part of the X chromosome about 80-130 MY ago. The primary sequences of the two proteins, hTim17a and hTim17b, are essentially identical, significant differences being restricted to their C termini. They are ubiquitously expressed in fetal and adult tissues, and both show expression levels comparable to that of hTim23. Biochemical characterization of the human Tim components revealed that hTim44 is localized in the matrix and, in contrast to yeast, only loosely associated with the inner membrane. hTim23 is organized into two distinct complexes in the inner membrane, one containing hTim17a and one containing hTim17b. Both TIM complexes display a native molecular mass of 110 kDa. We suggest that the structural organization of TIM23.17 preprotein translocases is conserved from low to high eukaryotes.  相似文献   

7.
The mitochondrial intermembrane space assembly (MIA) pathway is generally considered to be dedicated to the redox-dependent import and biogenesis of proteins localized to the intermembrane space of mitochondria. The oxidoreductase Mia40 is a central component of the pathway responsible for the transfer of disulfide bonds to intermembrane space precursor proteins, causing their oxidative folding. Here we present the first evidence that the function of Mia40 is not restricted to the transport and oxidative folding of intermembrane space proteins. We identify Tim22, a multispanning membrane protein and core component of the TIM22 translocase of inner membrane, as a protein with cysteine residues undergoing oxidation during Tim22 biogenesis. We show that Mia40 is involved in the biogenesis and complex assembly of Tim22. Tim22 forms a disulfide-bonded intermediate with Mia40 upon import into mitochondria. Of interest, Mia40 binds the Tim22 precursor also via noncovalent interactions. We propose that Mia40 not only is responsible for disulfide bond formation, but also assists the Tim22 protein in its integration into the inner membrane of mitochondria.  相似文献   

8.
Murcha MW  Lister R  Ho AY  Whelan J 《Plant physiology》2003,131(4):1737-1747
Characterization of components 17 and 23 of the inner mitochondrial membrane translocase (TIM17:23) from Arabidopsis indicated that there were three genes present for TIM17 and TIM23 and two for TIM44. AtTIM17 differed from the yeast (Saccharomyces cerevisiae) and mammalian homologs in that two genes encoded proteins that were longer and one gene encoded a shorter protein. All Arabidopsis TIM23 predicted proteins appeared to lack the first 34 amino acids compared with yeast TIM23. All AtTIM17 and AtTIM23 genes were expressed but displayed different tissue and developmental profiles. Complementation of deletion mutants in yeast indicated that for AtTIM17, the extension at the C terminus not present in yeast had to be removed to achieve complementation, whereas for TIM23, a preprotein and amino acid transporter domain had to be present for complementation. Import assays with AtTIM17 and AtTIM23 indicated that they both contained internal signals for integration into the inner mitochondrial membrane in a membrane potential-dependent manner. The C terminus of imported AtTIM17-2 was susceptible to degradation by externally added protease with intact mitochondria. Removal of the 85 C-terminal amino acids resulted in import and full protection of the truncated protein. This suggests that the novel extension at the C terminus of AtTIM17-2 links the outer and inner membrane in a manner analogous to yeast TIM23.  相似文献   

9.
Tim44 is a protein of the mitochondrial inner membrane and serves as an adaptor protein for mtHsp70 that drives the import of preproteins in an ATP-dependent manner. In this study we have modified the interaction of Tim44 with mtHsp70 and characterized the consequences for protein translocation. By deletion of an 18-residue segment of Tim44 with limited similarity to J-proteins, the binding of Tim44 to mtHsp70 was weakened. We found that in the yeast Saccharomyces cerevisiae the deletion of this segment is lethal. To investigate the role of the 18-residue segment, we expressed Tim44Delta18 in addition to the endogenous wild-type Tim44. Tim44Delta18 is correctly targeted to mitochondria and assembles in the inner membrane import site. The coexpression of Tim44Delta18 together with wild-type Tim44, however, does not stimulate protein import, but reduces its efficiency. In particular, the promotion of unfolding of preproteins during translocation is inhibited. mtHsp70 is still able to bind to Tim44Delta18 in an ATP-regulated manner, but the efficiency of interaction is reduced. These results suggest that the J-related segment of Tim44 is needed for productive interaction with mtHsp70. The efficient cooperation of mtHsp70 with Tim44 facilitates the translocation of loosely folded preproteins and plays a crucial role in the import of preproteins which contain a tightly folded domain.  相似文献   

10.
Preprotein import into mitochondria is mediated by translocases located in the outer and inner membranes (Tom and Tim) and a matrix Hsp70-Tim44 driving system. By blue native electrophoresis, we identify an approximately 90K complex with assembled Tim23 and Tim17 as the core of the inner membrane import site for presequence-containing preproteins. Preproteins spanning the two membranes link virtually all Tim core complexes with one in four Tom complexes in a stable 600K supercomplex. Neither mtHsp70 nor Tim44 are present in stoichiometric amounts in the 600K complex. Preproteins in transit stabilize the Tim core complex, preventing an exchange of subunits. Our studies define a central role for the Tim core complexes in mitochondrial protein import; they are not passive diffusion channels, but can stably interact with preproteins and determine the number of translocation contact sites. We propose the hypothesis that mtHsp70 functions in protein import not only by direct interaction with preproteins, but also by exerting a regulatory effect on the Tim channel.  相似文献   

11.
Preproteins synthesized on cytosolic ribosomes, but destined for the mitochondrial matrix, pass through the presequence translocase of the inner membrane. Translocation is driven by the import motor, having at its core the essential chaperone mtHsp70 (Ssc1 in yeast). MtHsp70 is tethered to the translocon channel at the matrix side of the inner membrane by the peripheral membrane protein Tim44. A key question in mitochondrial import is how the mtHsp70-Tim44 interaction is regulated. Here we report that Tim44 interacts with both the ATPase and peptide-binding domains of mtHsp70. Disruption of these interactions upon binding of polypeptide substrates requires concerted conformational changes involving both domains of mtHsp70. Our results fit a model in which regulated interactions between Tim44 and mtHsp70, controlled by polypeptide binding, are required for efficient translocation across the mitochondrial inner membrane in vivo.  相似文献   

12.
Mitochondrial preproteins synthesized in the cytosol are imported through the mitochondrial outer membrane by the translocase of the outer mitochondrial membrane (TOM) complex. Tom40 is the major component of the complex and is essential for cell viability. We generated 21 different mutations in conserved regions of the Neurospora crassa Tom40 protein. The mutant genes were transformed into a tom40 null nucleus maintained in a sheltered heterokaryon, and 17 of the mutant genes gave rise to viable strains. All mutations reduced the efficiency of the altered Tom40 molecules to assemble into the TOM complex. Mitochondria isolated from seven of the mutant strains had defects for importing mitochondrial preproteins. Only one strain had a general import defect for all preproteins examined. Another mutation resulted in defects in the import of a matrix-destined preprotein and an outer membrane beta-barrel protein, but import of the ADP/ATP carrier to the inner membrane was unaffected. Five strains showed deficiencies in the import of beta-barrel proteins. The latter results suggest that the TOM complex distinguishes beta-barrel proteins from other classes of preprotein during import. This supports the idea that the TOM complex plays an active role in the transfer of preproteins to subsequent translocases for insertion into the correct mitochondrial subcompartment.  相似文献   

13.
The mitochondrial inner membrane contains two separate translocons: one required for the translocation of matrix-targeted proteins (the Tim23p-Tim17p complex) and one for the insertion of polytopic proteins into the mitochondrial inner membrane (the Tim54p-Tim22p complex). To identify new members of the Tim54p-Tim22p complex, we screened for high-copy suppressors of the temperature-sensitive tim54-1 mutant. We identified a new gene, TIM18, that encodes an integral protein of the inner membrane. The following genetic and biochemical observations suggest that the Tim18 protein is part of the Tim54p-Tim22p complex in the inner membrane: multiple copies of TIM18 suppress the tim54-1 growth defect; the tim18::HIS3 disruption is synthetically lethal with tim54-1; Tim54p and Tim22p can be coimmune precipitated with the Tim18 protein; and Tim18p, along with Tim54p and Tim22p, is detected in an approximately 300-kDa complex after blue native electrophoresis. We propose that Tim18p is a new component of the Tim54p-Tim22p machinery that facilitates insertion of polytopic proteins into the mitochondrial inner membrane.  相似文献   

14.
The carrier proteins of the mitochondrial inner membrane consist of three structurally related tandem repeats (modules). Several different, and in some cases contradictory, views exist on the role individual modules play in carrier transport across the mitochondrial membranes and how they promote protein insertion into the inner membrane. Thus, by use of specific translocation intermediates, we performed a detailed analysis of carrier biogenesis and assessed the physical association of carrier modules with the inner membrane translocation machinery. Here we have reported that each module of the dicarboxylate carrier contains sufficient targeting information for its transport across the outer mitochondrial membrane. The carboxyl-terminal module possesses major targeting information to facilitate the direct binding of the carrier protein to the inner membrane twin-pore translocase and subsequent insertion into the inner membrane in a membrane potential-dependent manner. We concluded that, in this case, a single structural repeat can drive inner membrane insertion, whereas all three related units contribute targeting information for outer membrane translocation.  相似文献   

15.
Translocation of proteins from the cytosol across the mitochondrial inner membrane is driven by the action of the import motor, which is associated with the translocon on the matrix side of the membrane. It is well established that an essential peripheral membrane protein, Tim44, tethers mitochondrial Hsp70 (mtHsp70), the core of the import motor, to the translocon. This Tim44-mtHsp70 interaction, which can be recapitulated in vitro, is destabilized by binding of mtHsp70 to a substrate polypeptide. Here we report that the N-terminal 167-amino-acid segment of mature Tim44 is sufficient for both interaction with mtHsp70 and destabilization of a Tim44-mtHsp70 complex caused by client protein binding. Amino acid alterations within a 30-amino-acid segment affected both the release of mtHsp70 upon peptide binding and the interaction of Tim44 with the translocon. Our results support the idea that Tim44 plays multiple roles in mitochondrial protein import by recruiting Ssc1 and its J protein cochaperone to the translocon and coordinating their interactions to promote efficient protein translocation in vivo.  相似文献   

16.
The mitochondrial outer membrane contains a multi-subunit machinery responsible for the specific recognition and translocation of precursor proteins. This translocase of the outer membrane (TOM) consists of three receptor proteins, Tom20, Tom22 and Tom70, the channel protein Tom40, and several small Tom proteins. Single-particle electron microscopy analysis of the Neurospora TOM complex has led to different views with two or three stain-filled centers resembling channels. Based on biochemical and electron microscopy studies of the TOM complex isolated from yeast mitochondria, we have discovered the molecular reason for the different number of channel-like structures. The TOM complex from wild-type yeast contains up to three stain-filled centers, while from a mutant yeast selectively lacking Tom20, the TOM complex particles contain only two channel-like structures. From mutant mitochondria lacking Tom22, native electrophoresis separates an approximately 80 kDa subcomplex that consists of Tom40 only and is functional for accumulation of a precursor protein. We conclude that while Tom40 forms the import channels, the two receptors Tom22 and Tom20 are required for the organization of Tom40 dimers into larger TOM structures.  相似文献   

17.
Tim23p is imported via the TIM (translocase of inner membrane)22 pathway for mitochondrial inner membrane proteins. In contrast to precursors with an NH2-terminal targeting presequence that are imported in a linear NH2-terminal manner, we show that Tim23p crosses the outer membrane as a loop before inserting into the inner membrane. The Tim8p-Tim13p complex facilitates translocation across the intermembrane space by binding to the membrane spanning domains as shown by Tim23p peptide scans with the purified Tim8p-Tim13p complex and crosslinking studies with Tim23p fusion constructs. The interaction between Tim23p and the Tim8p-Tim13p complex is not dependent on zinc, and the purified Tim8p-Tim13p complex does not coordinate zinc in the conserved twin CX3C motif. Instead, the cysteine residues seemingly form intramolecular disulfide linkages. Given that proteins of the mitochondrial carrier family also pass through the TOM (translocase of outer membrane) complex as a loop, our study suggests that this translocation mechanism may be conserved. Thus, polytopic inner membrane proteins, which lack an NH2-terminal targeting sequence, pass through the TOM complex as a loop followed by binding of the small Tim proteins to the hydrophobic membrane spanning domains.  相似文献   

18.
The Tom70 import receptor on the mitochondrial outer membrane specifically recognizes Hsp90 and Hsc70, a critical step for the import of mitochondrial preproteins, the targeting of which depends on these cytosolic chaperones. To analyze the role of Hsp90 in mitochondrial import, the effects of the Hsp90 inhibitors geldanamycin and novobiocin were compared. Geldanamycin occludes the N-terminal ATP-binding site of Hsp90, whereas novobiocin targets the C-terminal region of the chaperone. Here, novobiocin was found to inhibit preprotein import and, in particular, targeting to the purified cytosolic fragment of Tom70. Hsp90 cross-linking to preprotein and coprecipitation of Hsp90 with Tom70 were both impaired by novobiocin. Overall, novobiocin treatment increased preprotein aggregation, contributing to reduced import competence. In contrast, geldanamycin had no apparent effect on preprotein interactions with Hsp90, formation of preprotein-chaperone complexes, Hsp90 docking onto Tom70, or preprotein association with the outer membrane. Instead, geldanamycin impaired formation of preprotein import intermediates at the outer membrane. This suggests a novel active role for Hsp90 in import steps subsequent to Tom70 targeting. Our results outline the mechanisms of Hsp90 function in preprotein targeting and transport.  相似文献   

19.
The import motor of the mitochondrial (mt)TIM23 complex drives translocation of presequence-containing preproteins across the mitochondrial inner membrane in an ATP-dependent manner. Tim44 is the central component of the motor. It recruits mtHsp70, which binds the incoming preproteins. The J protein Tim14 stimulates the ATPase activity of mtHsp70 and thereby enables efficient binding of mtHsp70 to preproteins. Tim16 is a J-like protein that forms a stable subcomplex with Tim14 and recruits it to the translocase. All subunits of the TIM23 translocase but one are essential for yeast cell viability. Yeast cells contain a close homologue of Tim14, Mdj2. In contrast to Tim14, its deletion leads to no obvious growth defect. In the present study we analyzed Mdj2 and compared it with Tim14. Mdj2 forms a complex with Tim16 and is recruited to the TIM23 translocase. It stimulates the ATPase activity of mtHsp70 to the same extent that Tim14 does. Mdj2 is expressed at a lower level compared with Tim14, and its complex with Tim16 is less stable. However, overexpressed Mdj2 fully restores the growth of cells lacking Tim14. We conclude that Mdj2 is a functional J protein and a component of the mitochondrial import motor.  相似文献   

20.
Yamamoto H  Esaki M  Kanamori T  Tamura Y  Nishikawa Si  Endo T 《Cell》2002,111(4):519-528
Based on the results of site-specific photocrosslinking of translocation intermediates, we have identified Tim50, a component of the yeast TIM23 import machinery, which mediates translocation of presequence-containing proteins across the mitochondrial inner membrane. Tim50 is anchored to the inner mitochondrial membrane, exposing the C-terminal domain to the intermembrane space. Tim50 interacts with the N-terminal intermembrane space domain of Tim23. Functional defects of Tim50 either by depletion of the protein or addition of anti-Tim50 antibodies block the protein translocation across the inner membrane. A translocation intermediate accumulated at the TOM complex is crosslinked to Tim50. We suggest that Tim50, in cooperation with Tim23, facilitates transfer of the translocating protein from the TOM complex to the TIM23 complex  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号