首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aims . To study the efficiency of an angiotensin converting enzyme inhibitor on the blood pressure (BP) and the myocardium remodeling when spontaneously hypertensive rats (SHRs) are submitted to nitric oxide synthesis (NOs) blockade (with L-NAME) and simultaneously treated.
Methods . Young adult male SHRs were separated in four groups (n = 5) and treated for 20 days: Control, L-NAME, L-NAME+Enalapril, and Enalapril. The alterations of the BP, heart mass/body mass ratio and stereological parameters for myocytes, connective tissue and intramyocardial vessels were studied among the groups.
Results . The SHRs with NOs blockade showed a great modification of the myocardium with extensive areas of reparative and interstitial fibrosis and accentuated hypertrophy of the cardiac myocytes (cross sectional area 60% higher in animals taking L-NAME than in Control SHRs). Comparing the SHRs with NO deficiency (L-NAME group), the Control SHRs and the Enalapril treated SHRs significant differences were found in the BP and in all stereological parameters. The NO deficiency caused an important BP increment in SHRs that was partially attenuated by Enalapril. This Enalapril effect was more pronounced in Control SHRs. A significant increment of the intramyocardial vessels was observed in NO deficient SHRs and Control SHRs treated with Enalapril demonstrated by the stereology (greater microvascular densities in treated SHRs).
Conclusion . Enalapril administration showed a beneficial effect on vascular remodeling and myocardial hypertrophy in SHRs. In SHRs with NO blockade, however, the beneficial effect of Enalapril occurred only in vascular remodeling.  相似文献   

2.
The possible role of nitric oxide on the exercise-induced changes in bleomycin-detectable iron (BDI) in the liver, spleen, bone marrow cells and heart was investigated. Female Sprague-Dawley rats were randomly assigned to four groups: S1 (Sedentary), S2 (Sedentary + L-NAME [N-nitro-L-arginine methyl ester]), E1 (Exercise) and E2 (Exercise + L-NAME). Animals in the E1 and E2 swam for 2 h/day for 3 months. L-NAME in the drinking water (1 mg/ml) was administrated to rats in the S2 and E2 groups for the same period. At the end of the 3rd month, nitrite and nitrate (NOx), BDI and non-heme iron (NHI) contents in the liver, spleen, bone marrow cells and heart were measured. The ratio of BDI/NHI was calculated. The exercise induced a significant increase in NOx and BDI contents and/or BDI/NHI ratio in the spleen, bone morrow cells and heart. Treatment with L-NAME, an inhibitor of NOS, led to a significant decrease in NOx and an increase in BDI levels and BDI/NHI ratios in these tissues. The correlative analysis showed that there is significantly positive correlation between NOx levels and BDI contents and/or BDI/NHI ratios in the spleen, bone marrow cells and heart. These results suggest that the increased nitric oxide might be one of the reasons leading to the increased BDI levels in these tissues in the exercised rats. In contrast to the above tissues, in the liver, exercise led to a significant decrease rather than increase in BDI levels and BDI/NHI ratios with a significant increase in NOx contents. Treatment with L-NAME led to a significant increase in BDI levels and BDI/NHI ratios and a decrease in NOx contents in the tissue. These findings plus the results reported by others imply that nitric oxide might have an inhibitory effect on BDI in the liver.  相似文献   

3.
The possible role of nitric oxide on the exercise-induced changes in bleomycin-detectable iron (BDI) in the liver, spleen, bone marrow cells and heart was investigated. Female Sprague—Dawley rats were randomly assigned to four groups: S1 (Sedentary), S2 (Sedentary + L-NAME [N-nitro-L-arginine methyl ester]), E1 (Exercise) and E2 (Exercise + L-NAME). Animals in the E1 and E2 swam for 2 h/day for 3 months. L-NAME in the drinking water (1 mg/ml) was administrated to rats in the S2 and E2 groups for the same period. At the end of the 3rd month, nitrite and nitrate (NOx), BDI and non-heme iron (NHI) contents in the liver, spleen, bone marrow cells and heart were measured. The ratio of BDI/NHI was calculated. The exercise induced a significant increase in NOx and BDI contents and/or BDI/NHI ratio in the spleen, bone morrow cells and heart. Treatment with L-NAME, an inhibitor of NOS, led to a significant decrease in NOx and an increase in BDI levels and BDI/NHI ratios in these tissues. The correlative analysis showed that there is significantly positive correlation between NOx levels and BDI contents and/or BDI/NHI ratios in the spleen, bone marrow cells and heart. These results suggest that the increased nitric oxide might be one of the reasons leading to the increased BDI levels in these tissues in the exercised rats. In contrast to the above tissues, in the liver, exercise led to a significant decrease rather than increase in BDI levels and BDI/NHI ratios with a significant increase in NOx contents. Treatment with L-NAME led to a significant increase in BDI levels and BDI/NHI ratios and a decrease in NOx contents in the tissue. These findings plus the results reported by others imply that nitric oxide might have an inhibitory effect on BDI in the liver.  相似文献   

4.
This study was carried out to investigate the possible role of increased nitric oxide (NO) production in the development of the low iron status in strenuously exercised rats. Female Sprague-Dawley rats were randomly assigned to four groups: sedentary (S1), sedentary + nitro-L-arginine methyl ester (L-NAME; S2), exercise (E1), and exercise + L-NAME (E2). Animals in the E1 and E2 groups swam for 2 h/day for 3 mo. L-NAME in the drinking water (1 mg/ml) was administrated to rats in the S2 and E2 groups for the same period. At the end of third month, hematological indexes and nitrite and nitrate (NOx) contents in the plasma and non-heme iron and NOx levels in the liver, spleen, and bone marrow cells were measured. Three months of exercise induced a significant increase in NOx content and a decrease in iron level both in plasma and tissues. Treatment with L-NAME, an inhibitor of NO synthase (NOS), led to a significant decrease in NOx and an increase in iron level both in plasma and tissues in the exercised rats. The E2 group had a significantly lower NOx content as well as a higher iron level both in plasma and tissues than the E1 group. However, the iron contents in the plasma and tissues of the E2 group were still significantly lower than those found in S1. No difference was found in NOx levels between E2 and S1. These findings showed that exercise was associated with elevation in NOx and reduction in iron in plasma and the tissues. Treatment with L-NAME was able to completely inhibit the effect of exercise on NOx as well as partly recover the decreased iron contents in plasma and tissues resulting from exercise. This suggests that the increased production of NO might be one of the causes of the lower iron status in exercised rats.  相似文献   

5.
The rapid non-genomic stimulatory action of progesterone (Pg) and estradiol (E2) on nitric oxide synthase (NOS) activity of endothelium intact aortic rings and its effect on platelet aggregation was investigated. First we measured the effect of the hormones on platelet aggregation when added to rat aortic strips (RAS) incubated in a PRP. RAS induced an antiaggregatory activity, which was enhanced by the presence of the hormones. The inhibitory action induced by the hormones was evoked in a dose dependent manner (10 pM-100 nM). These effects are specific for progesterone and 17-beta-estradiol, since either testosterone and 17-alpha-estradiol were devoid of activity. The hormones induced rapid responses, producing significant inhibition within 1 to 5 minutes of hormonal exposure. The addition of 10(-5) M L-NAME suppressed the antiaggregatory effect of 1 nM E2 or 10 nM Pg. Furthermore, we specifically quantified the NO generation by the 3H-citrulline technique. 10(-8) M E2 induced 2-fold increase of RAS citrulline production, while the increment induced by 10(-7) M Pg was 55% over control. Preincubation with 10(-5) M L-NAME completely suppressed the stimulatory action of 10(-9) M E2 or 10(-8) M Pg, confirming that the antiaggregatory factor released from the aortic tissue was NO. Preincubation with cycloheximide did not block the increment in NO induced by the hormones. In conclusion the present study provides for the first time evidence of acute, non-genomic effects of Pg on rat aorta NOS activity and platelet aggregation in coincidence with the results obtained with estradiol treatment.  相似文献   

6.
Kang DG  Hur TY  Lee GM  Oh H  Kwon TO  Sohn EJ  Lee HS 《Life sciences》2002,70(22):2599-2609
A pharmacological inhibition of nitric oxide synthase (NOS) in rats for 4-6 weeks produces renal vasoconstriction, renal dysfunction, and severe hypertension. The present study was aimed at investigating whether Cudrania tricuspidata (C. tricuspidata) water extract ameliorates N(G)-Nitro-L-arginine methylester (L-NAME)-induced hypertension. Treatment of L-NAME (60 mg/L drinking water, 4 weeks) causes a sustained increase in systolic blood pressure (SBP). The concentration of plasma NO metabolites and NO/cGMP productions in the vascular tissues of the L-NAME-treated group were significantly reduced as compared with those in the control. C. tricuspidata water extract blocked increase of SBP in the L-NAME-treated group and restored SBP to normal level. Futhermore, C. tricuspidata water extract was able to preserve the vascular NO/cGMP production and plasma NO metabolites concentration. However, there are no changes in the expression of ecNOS and iNOS of thoracic aorta among the rats of control, L-NAME-treated group, and L-NAME and C. tricuspidata water extract co-treated group. The urinary sodium level, urine volume, and creatinine clearance were significantly higher in rats co-treated with C. tricuspidata water extract and L-NAME than in L-NAME-treated group. Taken together, these results suggest that C tricuspidata water extract prevents the increase of SBP in the L-NAME-induced hypertension that may have been caused by enhanced generation of vascular NO/cGMP.  相似文献   

7.
Low-affinity state beta1-adrenoceptor (beta1-AR) was functionally expressed in some blood vessels and was different from beta1, beta2 and beta3-AR. In rat aorta, low-affinity state beta1-AR activation produced an endothelium-independent relaxation which was impaired in spontaneously hypertensive rats (SHRs). In the present work, we investigated whether renin-angiotensin system was involved in this alteration by evaluating the effects of enalapril, an angiotensin converting enzyme (ACE) inhibitor or losartan, an AT1 angiotensin receptor antagonist. Cumulative concentration-response curves to low-affinity state beta1-AR agonists (CGP 12177, cyanopindolol or alprenolol) and to NS 1619, a large conductance Ca2+-activated K+ channels (BK) agonist were performed in denuded aortic rings isolated from control or treated Wistar Kyoto (WKY) rats or SHRs in different experimental conditions. The low-affinity state beta1-AR-mediated aortic vasodilation was impaired in 5 and 12 weeks old SHRs when compared to age-matched WKY. Twelve days enalapril (5 mg/kg/day) or losartan (15 mg/kg/day) treatments reduced systolic blood pressure (SBP) only in 12 weeks old SHRs whereas no significant change was observed in other groups. These treatments improved low-affinity state beta1-AR effect only in SHRs groups. In 12 weeks old WKY rats, CGP 12177-induced relaxation was insensitive to glibenclamide, a K(ATP)+ channel blocker, but was reduced by TEA or iberiotoxin, two large conductance Ca2+-activated K+ channel (BK) blockers. The impairment of NS 1619-induced vasodilation in both 5 and 12 weeks old SHRs was restored by enalapril or losartan. These results suggested that improvement of the low-affinity state beta1-AR-mediated vasodilation in 5 and 12 weeks old SHRs could be attributed to enhanced BK channels-induced hyperpolarization in SHRs independently of lowering of SBP.  相似文献   

8.
NG-nitro-L-arginine methyl ester (L-NAME) has been used extensively as a paradigmatic inhibitor of NO synthase and has been shown to cause antinociception in several experimental models. We describe here how L-NAME produced a dose-dependent antinociceptive effect when injected intraperitoneally in the mouse after acetic acid induced writhings, or intraplantarly in the rat paw pressure hyperalgesia induced by carrageenin or prostaglandin E2. In contrast another NO synthase inhibitor, NG-monomethyl-L-arginine (L-NMMA), had no significant effect per se but inhibited L-NAME systemic induced antinociception in mice and local induced antinociception in the rat paw hyperalgesia test. D-NAME had no antinociceptive effect upon carrageenin-induced hyperalgesia. Pretreatment of the paws with two inhibitors of guanylate cyclase, methylene blue (MB) and 1H-:[1,2,4]-oxadiazolo-:[4,3-a] quinoxalin-1-one (ODQ) abolished the antinociceptive effect of L-NAME. L-Arginine and the cGMP phosphodiesterase inhibitor, MY 5445 significantly enhanced the L-NAME antinociceptive effect. The central antinociceptive effect of L-NAME was blocked by co-administration of L-NMMA, ODQ and MB. The present series of experiments shows that L-NAME, but not L-NMMA, has an antinociceptive effect. It can be suggested that L-NAME causes the antinociceptive effect by stimulation of the arginine/ NO/ cGMP pathway, since the antinociceptive effect of L-NAME can be antagonized by L-NMMA and abolished by the guanylate cyclase inhibitors (MB and ODQ). In addition, the NO synthase substrate, L-arginine and the cGMP phosphodiesterase inhibitor, MY5445 were seen to potentiate the effects of L-NAME. Thus, L-NAME used alone, has limitations as a specific inhibitor of the arginine-NO-cGMP pathway and may therefore be a poor pharmacological tool for use in characterising participation in pathophysiological processes.  相似文献   

9.
Zhang J  Ren CX  Qi YF  Lou LX  Chen L  Zhang LK  Wang X  Tang C 《Life sciences》2006,79(12):1153-1159
Because apelin may play an important regulatory role in human cardiac dysfunction, we investigated alterations in cardiovascular content of apelin and its receptor, APJ, during hypertension and the effect of exercise training on the cardiovascular apelin/APJ system in hypertensive animals. Spontaneously hypertensive rats (SHRs) underwent swimming training consisting of 54 swimming sessions of 60 min each (6 days/week for 9 weeks). Systolic blood pressure (SBP) was verified weekly by tail-cuff plethysmography. Apelin levels in plasma and cardiovascular tissues were determined by radioimmunoassay. The level of apelin/APJ mRNA was determined by RT-PCR. SHRs showed severe hypertension and pathological cardiomegaly. The level of apelin immunoreactivity (apelin-ir) in plasma and ventricular and aortic tissues was lower, by 40%, 40% and 42% (all P<0.01), respectively, in SHRs than in control Wistar-Kyoto rats, and the mRNA level of apelin and APJ in myocardium and aorta was markedly decreased. Compared with sedentary SHRs, swimming-trained SHRs showed decreased SBP and elevated mRNA expression of apelin and APJ in cardiovascular tissues and elevated apelin-ir level in plasma, myocardium and aorta (all P<0.01). SBP and level of apelin-ir in plasma and cardiovascular tissues were negatively correlated. Long-term swimming training relieved the pathogenesis of hypertension and reversed the downregulation of the cardiovascular apelin/APJ system induced by hypertension, which suggests that the improving effect of exercise training on hypertension could be mediated by upregulating the cardiovascular apelin/APJ system.  相似文献   

10.
罗格列酮对胰岛素抵抗高血压大鼠主动脉功能的影响   总被引:4,自引:1,他引:3  
Ling HY  Feng SD  Zhou SH  Wang BX  Liu XQ  Hu B 《生理学报》2005,57(2):125-131
为探讨罗格列酮(rosiglitazone,ROSI)对胰岛素抵抗高血压大鼠(insulin resistant-hypertensive rats,IRHR)主动脉功能的影响及其可能机制,用高果糖饲养Sprague-Dawley大鼠8周,制备IRHR模型,并通过相关指标的检测判断造模是否成功。随后采用血管环灌流方法,观察各实验组动物离体胸主动脉环对新福林(L-phenylephrine,PE)、氯化钾(KCl)的收缩反应和对乙酰胆碱(acetylcholine,ACh)、硝普钠(sodium nitroprusside,SNP)的舒张反应:以及用一氧化氮合酶(nitric oxide synthase,NOS)的抑制剂N-硝基-L-精氨酸甲酯(N^ω-nitro-L-arginine methyl ester,L-NAME)预孵育血管30min后,主动脉环对ACh的舒张反应:同时对各实验组血清一氧化氮(nitric oxide,NO)的含量进行测定。结果显示:(1)罗格列酮能降低IRHR的收缩压、血清胰岛素水平,改善胰岛素抵抗。(2)高果糖组动物主动脉对PE、KCl的收缩反应明显增强,对ACh的舒张反应明显减弱,ROSI可逆转上述作用。(3)用L-NAME预处理后,高果糖组动物主动脉对ACh的舒张反应进一步减弱,ROSI可部分对抗上述作用。(4)各组大鼠离体主动脉对SNP的舒张反应无显著性差异。(5)ROSI对对照组大鼠主动脉功能的影响不明显。(6)与对照组相比,高果糖组动物血清NO含量显著降低,用ROSI处理后,血清NO含量显著增加。上述结果表明,ROSI能改善IRHR主动脉的舒张功能,其作用的机制可能是部分通过NOS途径促进内皮NO释放,或是通过降低血压、血清胰岛素水平,以及改善胰岛素抵抗等作用,导致血管舒张。  相似文献   

11.

Background

Vascular oxidative stress may be increased with age and aggravate endothelial dysfunction and vascular injury in hypertension. This study aimed to investigate the effects of dextromethorphan (DM), a NADPH oxidase inhibitor, either alone or in combination treatment, on blood pressure (BP) and vascular protection in aged spontaneous hypertensive rats (SHRs).

Methodology/Principal Findings

Eighteen-week-old WKY rats and SHRs were housed for 2 weeks. SHRs were randomly assigned to one of the 12 groups: untreated; DM monotherapy with 1, 5 or 25 mg/kg/day; amlodipine (AM, a calcium channel blocker) monotherapy with 1 or 5 mg/kg/day; and combination therapy of DM 1, 5 or 25 mg/kg/day with AM 1 or 5 mg/kg/day individually for 4 weeks. The in vitro effects of DM were also examined. In SHRs, AM monotherapy dose-dependently reduced arterial systolic BP. DM in various doses significantly and similarly reduced arterial systolic BP. Combination of DM with AM gave additive effects on BP reduction. DM, either alone or in combination with AM, improved aortic endothelial function indicated by ex vivo acetylcholine-induced relaxation. The combination of low-dose DM with AM gave most significant inhibition on aortic wall thickness in SHRs. Plasma total antioxidant status was significantly increased by all the therapies except for the combination of high-dose DM with high-dose AM. Serum nitrite and nitrate level was significantly reduced by AM but not by DM or the combination of DM with AM. Furthermore, in vitro treatment with DM reduced angiotensin II-induced reactive oxygen species and NADPH oxidase activation in human aortic endothelial cells.

Conclusions/Significance

Treatment of DM reduced BP and enhanced vascular protection probably by inhibiting vascular NADPH oxidase in aged hypertensive animals with or without AM treatment. It provides the potential rationale to a novel combination treatment with low-dose DM and AM in clinical hypertension.  相似文献   

12.
The L-arginine/nitric oxide (NO)/cyclic guanosine monophosphate (cGMP) pathway is known to be involved in central and peripheral nociceptive processes. This study evaluated the rhythmic pattern of the L-arginine/NO/cGMP pathway using the mouse visceral pain model. Experiments were performed at six different times (1, 5, 9, 13, 17, and 21 h after light on) per day in male mice synchronized to a 12 h:12 h light-dark cycle. Animals were injected s.c. with saline, 2 mg/kg L-arginine (a NO precursor), 75 mg/kg L-N(G)-nitroarginine methyl ester (L-NAME, a NOS inhibitor), 40 mg/kg methylene blue (a soluble guanylyl cyclase and/or NOS inhibitor), or 0.1 mg/kg sodium nitroprusside (a nonenzymatic NO donor) 15 min before counting 2.5 mg/kg (i.p.) p-benzoquinone (PBQ)-induced abdominal constrictions for 15 min. Blood samples were collected after the test, and the nitrite concentration was determined in serum samples. L-arginine or L-NAME caused both antinociception and nociception, depending on the circadian time of their injection. The analgesic effect of methylene blue or sodium nitroprusside exhibited significant biological time-dependent differences in PBQ-induced abdominal constrictions. Serum nitrite levels also displayed a significant 24 h variation in mice injected with PBQ, L-NAME, methylene blue, or sodium nitroprusside, but not saline or L-arginine. These results suggest that components of L-arginine/NO/cGMP pathway exhibit biological time-dependent effects on visceral nociceptive process.  相似文献   

13.
The aim of the present study was to determine the effect of angiotensin-converting enzyme inhibitor captopril on cGMP and cAMP concentration in the left ventricle and aorta after NO synthase inhibition by 4-week-lasting N(G)-nitro-L-arginine-methyl ester (L-NAME) treatment. Five groups of rats were investigated: controls, L-NAME in the dose 20 mg/kg/day (L-NAME 20), L-NAME in the dose 40 mg/kg/day (L-NAME 40), captopril in the dose 100 mg/kg/day, L-NAME 40 mg/kg/day together with captopril 100 mg/kg/day. Captopril completely prevented L-NAME-induced hypertension and LV hypertrophy development. Compared to the controls, cGMP concentration in the L-NAME 20 and L-NAME 40 groups was decreased by 13% and 22%, respectively, in the left ventricle and by 27% and 56% in the aorta, respectively. Captopril did not influence this decrease of cGMP concentration. Cyclic AMP concentration in the aorta of L-NAME 20 group increased by 17%. In the L-NAME 40 group, cAMP concentration increased by 17% in the left ventricle and by 34% in the aorta compared to controls. This increase was enhanced in rats given L-NAME together with captopril. Captopril alone had no effect on cAMP concentration. We conclude that captopril does not affect the concentration of cGMP, however, it has more than the additive effect on the cAMP concentration increase in the cardiovascular system during long-term NO synthase inhibition.  相似文献   

14.
We investigated the antihypertensive and antioxidant potential of vanillic acid (VA) in N(ω)-Nitro-L-arginine methyl ester hydrochloride (L-NAME) - treated adult male albino Wistar rats. Treatment of rats with L-NAME (40 mg/kg Bw for 30 days) caused a sustained increase in systolic- (SBP) and diastolic blood pressure (DBP) and significantly decreased the concentration of nitrite/nitrate (NO(x)) in plasma as compared with that in the control. Rats treated with VA restored SBP and DBP to normal level and preserve the plasma NO metabolites concentration. Moreover, VA reduced lipid peroxidation products (thiobarbituric acid reactive substances, lipid hydroperoxides, conjugated dienes) and significantly restored enzymatic antioxidants (superoxide dismutase, catalase, and glutathione peroxidase), non-enzymatic antioxidants (vitamin C, vitamin E, and reduced glutathione) in the plasma. To assess the toxicity if any of VA treatment, hepatic and renal function markers were measured. Our results showed that the effect at a dose of 50 mg/kg Bw of VA was more pronounced than that of the other two doses, 25 and 100 mg/kg Bw. These results were supported by histopathology studies. We conclude that VA possesses an antihypertensive and antioxidant activity in L-NAME-induced hypertensive rats.  相似文献   

15.
We have determined that the methanolic extract of L. caulescens (MELc) produced a significant vasodilator effect in a concentration-dependent and endothelium-dependent manner. This relaxation was blocked by N(omega)-nitro-L-arginine methylester (L-NAME), indicating that MELc vasodilator properties are endothelium mediated due to liberation of nitric oxide (NO). In this paper we aimed to corroborate its mode of action. MELc effects on noradrenaline (NA)-induced contraction in isolated rat aortic thoracic rings with endothelium (+E), in the presence of atropine (0.1 microM) and 1-H-[1,2,4]-oxadiazolo-[4,3a]-quinoxalin-1-one (ODQ, 1 microM) were conducted. MELc relaxation curve was significantly shifted to the right in the presence of ODQ and atropine, thus confirming that its mode of action is related with activation of nitric oxide synthase (NOS) and the consequent increment in NO formation. Bio-guided study of MELc allowed the isolation of ursolic acid (UA, 50 mg) and ursolic-oleanolic acids mixture [UA/OA (7:3), 450 mg]. The relaxant effect of UA (0.038-110 microM) was evaluated in functional experiments. UA induced a significant relaxation in a concentration- and endothelium-dependent manner (IC(50)=44.15 microM) and did not produce a vasorelaxant effect on contraction evoked by KCl (80 mM). In addition, NA-induced contraction was significantly displaced to the right by UA (30 microM). In order to determine its mode of action, UA-induced relaxant effect was evaluated in the presence of atropine (0.1 microM), indomethacin (10 microM), L-NAME (100 microM) and ODQ (1 microM). Relaxation was blocked by L-NAME and ODQ. On the other hand, UA (3 microM) provoked a significant displacement to the left in the relaxation curve induced by sodium nitroprusside (SNP, 0.32 nM to 0.1 microM), but it was not significant in the presence of Carbamoyl choline (carbachol, 1 nM to 10 microM). These results indicate that UA-mediated relaxation is endothelium dependent, probably due to NO release, and the consequent activation of vascular smooth muscle soluble guanylate cyclase (sGC), a signal transduction enzyme that forms the second messenger cGMP.  相似文献   

16.
The aim of the current study was to comparatively investigate the effect of inhibition of nitric oxide (NO) production by N-nitro-L-arginine methyl ester (L-NAME), an isoform non-specific inhibitor of nitric oxide synthase (NOS), after oral mucosal incision on wound tissue NO levels. A standard incision was applied to the oral mucosa of rabbits. After oral mucosal incision, rabbits were divided into five groups as follows: (1) Untreated incisional group (control); (2) Titanium (Ti) implanted group; (3) Ti + Polyethylene glycol (PEG) 4000 implanted group; (4) Ti + PEG 4000 + L-NAME (2 × 10−4 M) implanted group and (5) i.p. L-NAME administrated group (10 mg/kg). At 5 days after oral incision operations, wound tissue strips and plasma were obtained from rabbits. Oral wound tissue and plasma nitric oxide, plasma thiobarbituric acid reactive substances (TBARS) and total sulfhydryl group (RSH) levels were investigated. Plasma TBARS and NOx levels decreased after i.p. L-NAME administration. Total RSH group levels were not changed in all groups (p>0.05). This means that L-NAME inhibits the deteriorating effects of free radicals without affecting healing. L-NAME in PEG and titanium also has no effect on tissue and plasma NOx levels. These findings indicate that NO generation will not be affected both Ti and local nitric oxide synthase (NOS) inhibitor. (Mol Cell Biochem 278: 65–69, 2005)  相似文献   

17.
We quantitatively investigated the change in nitric oxide (NO) in the hypothalamic paraventricular nucleus (PVN) and its effect on cardiovascular regulation during shaker stress (SS) using brain microdialysis in awake rats. Male Wistar rats were fed either N(G)-nitro-L-arginine methyl ester (L-NAME, 0.7 g/L) or tap water for 2 weeks. Two days after implantation of an arterial catheter and guide shaft, a microdialysis probe was placed to perfuse the PVN with degassed Ringer solution at 2 microl/min in awake normotensive Wistar (CONTROL) and chronic L-NAME-treated hypertensive rats. After the rat was placed in a plastic cage set on a shaker, the blood pressure and heart rate was monitored and 10-min SS was loaded at a frequency of 200 cycles/min. Dialysate samples were analyzed by NO analyzer (based on the Griess reaction) every 10 min, and NOx (NO(2)(-) + NO(3)(-)) was measured. Plasma NOx was also measured before and after SS. Pressor responses elicited by SS were significantly greater in L-NAME-treated rats than in the CONTROL. Although NOx in the PVN dialysate were increased by SS in the CONTROL, these responses were attenuated in chronic L-NAME-treated rats. Resting plasma NOx were higher in the CONTROL than in L-NAME-treated rats. SS elicited no difference between two groups in plasma NOx. These results indicated that NO within the PVN, but not in systemic circulation, may play a role on the attenuation of the pressor responses elicited by SS. The dysfunction of NO release within the PVN may, in part, play a role in the exaggerated pressor responses in acute environmental stress.  相似文献   

18.
The effect of short term confinement stress on sex steroid binding protein (SBP) binding characteristics was examined in female black bream (Acanthopagrus butcheri), and rainbow trout (Oncorhynchus mykiss). Black bream were sampled immediately after capture from the wild and again after 1, 6 or 24 h confinement. Rainbow trout were sampled before and after 5 h confinement. Confinement of black bream for 6 h after capture significantly reduced the binding capacity of SBP. Binding affinity also tended to be lower after confinement. There were no differences in binding affinity or capacity of black bream SBP after 1 or 24 h confinement, or rainbow trout SBP after 5 h confinement. Plasma from rainbow trout at 3 and 6 h after treatment with cortisol was compared to plasma from saline-injected controls. No significant differences in binding characteristics were detected, but there was a trend of decreased binding capacity in cortisol-injected fish compared to controls at 6 h post-injection. Relative binding studies indicated that plasma cortisol at concentrations 100x or more greater than plasma estradiol (E(2)) may displace E(2) from SBP in black bream, and act to reduce circulating levels of E(2) through increased clearance of free steroid. Physiological levels of cortisol did not displace E(2) from SBP in trout. The observed changes in SBP and the competition of physiological concentrations of cortisol for SBP binding sites may generate a component of the stress-induced falls in plasma levels of E(2) reported across a range of species.  相似文献   

19.
Roles of cyclooxygenases (COX-1 and COX-2) and nitric oxide (NO) synthases (nNOS and iNOS) in adaptive cytoprotection induced by 20 mM taurocholate dissolved in 50 mM HCl (TC) were investigated in rat stomachs. Intragastric administration of 0.6 N HCl caused haemorrhagic damage in the stomach. These lesions were prevented by pretreatment of the animals with TC p.o. 0.5 h before 0.6 N HCl, and a significant protection persisted for more than 5 h. The protection afforded by TC given 0.5 h before HCl was almost totally reversed by indomethacin and slightly mitigated by N(G)-nitro-L-arginine methyl ester (L-NAME) but not affected by NS-398 or aminoguanidine. By contrast, the mucosal protective action of TC given 5 h before HCl was significantly reversed by NS-398, L-NAME and aminoguanidine as well as indomethacin. Mucosal prostaglandin E2 (PGE2) contents were significantly increased for over 5 h after TC, while luminal NOx output tended to elevate at 0.5 h and be significantly increased at 5 h after TC. The increased PGE2 generation observed 0.5 h after TC was attenuated only by indomethacin, while that observed 5 h after TC was inhibited by NS-398 as well as indomethacin. On the other hand, the NOx output determined at 5 h after TC was significantly reduced by both L-NAME and aminoguanidine. The expression of mRNA for both COX-2 and iNOS was apparently detected in the stomach from 3 h after TC treatment. These results suggest that TC induced adaptive cytoprotection in the rat stomach against 0.6 N HCl, the effect lasting for over 5 h, and the underlying mechanism differs depending on the period after the irritation. The early phase is mediated mainly by COX-1/PGs, while the later phase is mediated by iNOS/NO, in addition to prostaglandins (PGs) produced by both COX-1 and COX-2.  相似文献   

20.
We investigated the renal structural and functional consequences of nitric oxide (NO) deficiency co-treated with angiotensin-converting enzyme inhibitor (ACEi) in 20 adult male Wistar rats and 20 spontaneously hypertensive rats (SHR). The animals were separated into eight groups (n = 5) and treated for 30 days: Control, L-NAME (NO deficient group), Enalapril, L-NAME + Enalapril. The elevated blood pressure in NO deficient rats was partially reduced by enalapril. Serum creatinine was elevated in L-NAME-SHRs and effectively treated with enalapril. The proteinuria was significantly higher only in L-NAME-SHRs, and this was reduced by treatment with ACEi. The glomerular volume density (Vv(gl)) in L-NAME rats, both Wistar and SHR, was greater than in matched control rats, and enalapril treatment effectively prevented this Vv(gl) increase. No significant differences were observed in tubular volume density, Vv(tub), or tubular surface density, Sv(tub), in all Wistar groups. The Vv(tub) was smaller in L-NAME-SHRs than in control SHRs, and this tubular alteration was not prevented by enalapril. The Sv(tub) was not different among the SHR groups. In Wistar rats no changes were seen in vascular surface density, but a greatly increased cortical vascular volume density was seen in the enalapril treated rats. The vascular length density was greatly diminished in NO deficient rats that was effectively prevented with enalapril treatment. The vascular cortical renal stereological indices are normally reduced in SHRs. Administration of enalapril, but not L-NAME, changed this tendency. However, enalapril was not totally effective in preventing vascular damage in SHR NO deficient animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号