首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
CD40 is an important costimulatory molecule for B cells as well as dendritic cells, monocytes, and other APCs. The ligand for CD40, CD154, is expressed on activated T cells, NK cells, mast cells, basophils, and even activated B cells. Although both CD40(-/-) and CD154(-/-) mice have impaired ability to isotype switch, form germinal centers, make memory B cells, and produce Ab, it is not entirely clear whether these defects are intrinsic to B cells, to other APCs, or to T cells. Using bone marrow chimeric mice, we investigated whether CD40 or CD154 must be expressed on B cells for optimal B cell responses in vivo. We demonstrate that CD40 expression on B cells is required for the generation of germinal centers, isotype switching, and sustained Ab production, even when other APCs express CD40. In contrast, the expression of CD154 on B cells is not required for the generation of germinal centers, isotype switching, or sustained Ab production. In fact, B cell responses are completely normal when CD154 expression is limited exclusively to Ag-specific T cells. These results suggest that the interaction of CD154 expressed by activated CD4 T cells with CD40 expressed by B cells is the primary pathway necessary to achieve B cell activation and differentiation and that CD154 expression on B cells does not noticeably facilitate B cell activation and differentiation.  相似文献   

2.
《Cytotherapy》2014,16(11):1537-1544
Background aimsCD40-activated B cells have long been studied as potent antigen-presenting cells that can potentially be used for cancer immunotherapy. Nevertheless, their use in human clinical trials has been limited by the lack of a Good Manufacturing Practice–grade soluble human CD40 ligand that is able to induce activation and proliferation of primary B cells. We describe an in vitro method to effectively generate and expand B cells through the use of a multimerized form of human recombinant CD40 ligand (rCD40L).MethodsHuman B cells were isolated from healthy donors and cultivated with either rCD40L or on a monolayer of murine NIH3T3 cells stably expressing human CD40L (NIH3T3/tCD40L) as a widely used standard method. Morphology, expansion rate, immune phenotype and antigen presentation function were assessed.ResultsB cells efficiently proliferated in response to rCD40L over 14 days of culture in comparable amounts to NIH3T3/tCD40L. B-cell division in response to CD40L was also confirmed by carboxyfluorescein succinimidyl ester dilution. Moreover, rCD40L induced on B cells upregulation of co-stimulatory molecules essential for antigen presentation. Additionally, proliferation of T cells from allogeneic healthy volunteers confirmed the immunostimulatory capacities of CD40-activated B cells.ConclusionsWe demonstrated that B cells with potent antigen presentation capacity can be generated and expanded by use of a non-xenogeneic form of CD40L that could be implemented in future human clinical settings.  相似文献   

3.
Stimulation of CD40 on APCs through CD40L expressed on helper CD4+ T cells activates and "licenses" the APCs to prime CD8+ T cell responses. Although other stimuli, such as TLR agonists, can also activate APCs, it is unclear to what extent they can replace the signals provided by CD40-CD40L interactions. In this study, we used an adoptive transfer system to re-examine the role of CD40 in the priming of naive CD8+ T cells. We find an approximately 50% reduction in expansion and cytokine production in TCR-transgenic T cells in the absence of CD40 on all APCs, and on dendritic cells in particular. Moreover, CD40-deficient and CD40L-deficient mice fail to develop endogenous CTL responses after immunization. Surprisingly, the role for CD40 and CD40L are observed even in the absence of CD4+ T cells; in this situation, the CD8+ T cell itself provides CD40L. Furthermore, we show that although TLR stimulation improves T cell responses, it cannot fully substitute for CD40. Altogether, these results reveal a direct and unique role for CD40L on CD8+ T cells interacting with CD40 on APCs that affects the magnitude and quality of CD8+ T cell responses.  相似文献   

4.
CD40 is thought to play a central role in T cell-dependent humoral responses through two distinct mechanisms. CD4+ T helper cells are activated via CD40-dependent Ag presentation in which CD80/CD86 provides costimulation through CD28. In addition, engagement of CD40 on B cells provides a direct pathway for activation of humoral responses. We used a model of adenovirus-mediated gene transfer of beta-galactosidase (lacZ) into murine lung to evaluate the specific CD40-dependent pathways required for humoral immunity at mucosal surfaces of the lung. Animals deficient in CD40L failed to develop T and B cell responses to vector. Activation of Th2 cells, which normally requires CD40-dependent stimulation of APCs, was selectively reconstituted in CD40 ligand-deficient mice by systemic administration of an Ab that is agonistic to CD28. Surprisingly, this resulted in the development of a functional humoral response to vector as evidenced by formation of germinal centers and production of antiadenovirus IgG1 and IgA that neutralized and prevented effective readministration of vector. The CD28-dependent B cell response required CD4+ T cells and was mediated via IL-4. These studies indicate that CD40 signals to the B cells are not necessary for CD4+ Th2 cell-dependent humoral responses to be generated.  相似文献   

5.
Functional activation of T cells requires ligation of Ag receptors with specific peptides presented by MHC molecules on APCs concurrent with appropriate contacts of cell surface accessory molecules. Among these accessory molecules, interactions between CD28/CTLA-4 with B7 family members (CD80 and CD86) and CD40 with CD40 ligand (CD40L) play a decisive role in regulating the progression of balanced immune responses. However, most information regarding the role of accessory molecules in immune responses has been derived in the context of signals from the TCRs. Little understanding has been achieved regarding the consequence of ligation of costimulation molecules in absence of signals from the TCR. By employing an in vivo murine system, we show, herein, that ligation of CD28 alone with anti-CD28 Abs leads to a dramatic enlargement of the peripheral lymphoid organs characterized primarily by the expansion of B cells. B cells from anti-CD28-treated mice are resistant to spontaneous and anti-IgM-induced apoptosis. These cells are also unsusceptible to FasL-mediated apoptosis. Interestingly, this in vivo effect of CD28 on B cells is largely mediated by inducing the expression of CD40L, since coadministration of a blocking Ab against CD40L inhibited CD28-mediated B cell survival and expansion. Therefore, CD28-mediated expression of CD40L may play an important role in the regulation of lymphocyte homeostasis.  相似文献   

6.
Activation of T cells usually requires two signals. Signal 1 is mediated via a peptide-MHC on the APC; signal 2 is mediated via a costimulatory molecule on the APC surface. We demonstrate here that naive CD4(+) T cells actually acquire the costimulatory molecule CD80 (B7-1) from syngeneic APCs after activation. This phenomenon was demonstrated showing acquisition of CD80 by T cells from CD80/CD86 (B7-2) knockout mice, and by treating T cells with cyclohexamide to further rule out endogenous expression of CD80 by T cells. Moreover, no CD80 mRNA could be detected in T cells that had acquired CD80. The amount of acquisition of CD80 by T cells was shown to be directly related to both the strength of signal 1 and the amount of CD80 on the APC. Specificity of this acquisition was also shown by the lack of acquisition by T cells from CD28 knockout mice (implicating CD28 in this process), the lack of acquisition of CD40 (another molecule on the APC surface) by T cells, and confocal microscopy studies. We demonstrate for the first time that 1) naive T cells, following acquisition of CD80 from APCs, were themselves shown to be capable of acting as APCs; and 2) memory T cells that have acquired CD80 from APCs undergo apoptosis in the presence of increased levels of signal 1. Thus we demonstrate both immunostimulatory and immunoregulatory functions as a result of CD80 acquisition by different T cell populations.  相似文献   

7.
Recently activated, but not resting, CD4(+) T cells express CD154, providing costimulatory signals to B cells and antigen-presenting cells (APCs). Therefore, de novo CD154 expression after stimulation identifies antigen-specific CD4(+) T cells. Previous assays were limited by the transient nature of surface CD154 expression; we overcame this by including fluorescently conjugated CD154-specific antibody during stimulation. Our assay is fully compatible with intracellular cytokine staining, and can be used for stimulations as long as 24 h. Notably, it is nonlethal, providing a means to purify viable antigen-specific CD4(+) T cells for further analysis. Using this assay, we found that stimulated cells expressing tumor necrosis factor (TNF)-alpha, interleukin (IL)-2 or interferon (IFN)-gamma were predominantly CD154(+). Furthermore, some cells expressing none of these cytokines also expressed CD154, suggesting that CD154 marks cells with other effector functions. For vaccine- or pathogen-specific responses, we found substantial heterogeneity in expression of CD154 and cytokines, suggesting previously unrecognized diversity in abilities of responding cells to stimulate APCs through CD40.  相似文献   

8.
Members of the imidazoquinoline molecule family, including imiquimod and resiquimod (R-848), have potent antiviral and antitumor activities. Imiquimod cream (5%) (Aldara) is currently indicated for treatment of external genital and perianal warts. Previous characterization of these compounds has focused upon their ability to activate monocytes and dendritic cells, but recent studies have shown that resiquimod also stimulates B lymphocytes to proliferate and express an activated phenotype. This suggests that resiquimod could potentially serve as an effective vaccine adjuvant in stimulating a humoral immune response. This study shows that resiquimod mimics effects of the T-dependent CD40 signal in both mouse and human B cell lines. Resiquimod, like CD40, stimulates antibody secretion, cytokine production, protection from apoptosis, and CD80 upregulation. In addition, it shows synergy with signals delivered by the B cell antigen receptor and heightens CD40-mediated B cell activation, demonstrating that resiquimod can enhance antigen-specific responses in B lymphocytes.  相似文献   

9.
CD40 is a receptor with numerous functions in the activation of antigen presenting cells (APCs), particularly dendritic cells (DC). Using phage display technology, we identified linear peptides containing a novel FPGN/S consensus sequence that enhances the binding of phage to a purified murine CD40-immunoglobulin (Ig) fusion protein (CD40-Ig), but not to Ig alone. To examine the ability the FPGN/S peptides to enhance adenoviral infection of CD40-positive cells, we used bifunctional peptides consisting of an FPGN-containing peptide covalently linked to an adenoviral knob-binding peptide (KBP). One of these, FPGN2-KBP, was able to enhance adenoviral infection of both murine and human DCs in a dose-dependent manner. FPGN2-KBP also improved infection of murine B cell blasts, a murine B lymphoma cell line (L10A), and immortalized human B cells. To demonstrate that enhancement of adenoviral infection depended on the presence of CD40, we analyzed infection of the breast cancer line, SKBR3, that does not express CD40 or the adenovirus cellular receptor, CAR. Infection of SKBR3 cells was enhanced by FPGN2-KBP following transient transfection with a plasmid vector that expresses murine CD40, but not when the cells were mock-transfected. In conclusion, we have isolated a peptide that binds to murine CD40, and promotes the uptake of adenoviruses into CD40-expressing cells of both murine and human origin, suggesting that it may have potential applications for antigen delivery to CD40-positive antigen-presenting cells.  相似文献   

10.
Polyomavirus (PyV) infection elicits protective T cell-independent (TI) IgG responses in T cell-deficient mice. The question addressed in this report is whether CD40 signaling plays a role in this TI antiviral IgG response. Because CD40 ligand (CD40L) can be expressed on numerous cell types in addition to activated T cells, it is possible that cells other than T cells provide CD40L to signal through CD40 on B cells and hence positively influence the antiviral TI IgG responses. In this study we show, by blocking CD40-CD40L interactions in vivo with anti-CD40L Ab treatment in TCR betaxdelta-/- mice and by using SCID mice reconstituted with CD40-/- B cells, that the lack of CD40 signaling in B cells results in a 50% decrease in TI IgG secreted in response to PyV. SCID mice reconstituted with CD40L-/- B cells also responded to PyV infection with diminished IgG secretion compared with that of SCID mice reconstituted with wild-type B cells. This finding suggests that B cells may provide the CD40L for CD40 signaling in the absence of T cell help during acute virus infection. Our studies demonstrate that, although about half of the TI IgG responses to PyV are independent of CD40-CD40L interactions, these interactions occur in T cell-deficient mice and enhance antiviral TI Ab responses.  相似文献   

11.
The roles of CD28 and CD40 ligand in T cell activation and tolerance   总被引:16,自引:0,他引:16  
Costimulation of T cell activation involves both the B7:CD28 as well as the CD40 ligand (CD40L):CD40 pathway. To determine the importance of these pathways to in vitro and in vivo T cell activation, a direct comparison was made of the responses of TCR transgenic T cells lacking either CD28 or CD40L. In vitro, CD28-/- T cells showed a greater reduction in proliferative responses to Ag than did CD40L-/- T cells. The absence of CD28 resulted in defective Th2 responses, whereas CD40L-/- T cells were defective in Th1 development. In vivo, CD28-/- T cells failed to expand upon immunization, whereas CD40L-/- T cells could not sustain a response. These results suggest that CD28 is critical for initiating T cell responses, whereas CD40L is required for sustained Th1 responses. The different functional roles of these costimulatory pathways may explain why blocking B7:CD28 and CD40L:CD40 interactions has an additive effect in inhibiting T cell responses.  相似文献   

12.
13.
OX40 and its ligand (OX40L) have been implicated in T cell-dependent humoral immune responses. To further characterize the role of OX40/OX40L in T-B cell interaction, we newly generated an anti-mouse OX40L mAb (RM134L) that can inhibit the costimulatory activity of OX40L transfectants for anti-CD3-stimulated T cell proliferation. Flow cytometric analyses using RM134L and an anti-mouse OX40 mAb indicated that OX40 was inducible on splenic T cells by stimulation with immobilized anti-CD3 mAb in a CD28-independent manner, while OX40L was not expressed on resting or activated T cells. OX40L was inducible on splenic B cells by stimulation with anti-IgM Ab plus anti-CD40 mAb, but not by either alone. These activated B cells exhibited a potent costimulatory activity for anti-CD3-stimulated T cell proliferation and IL-2 production. Anti-CD80 and anti-CD86 mAbs partially inhibited the costimulatory activity, and further inhibition was obtained by their combination with RM134L and/or anti-CD70 mAb. We also found the anti-IgM Ab- plus anti-CD40 mAb-stimulated B cells exhibited a potent costimulatory activity for proliferation of and IL-2 production by anti-CD3-stimulated CD28- T cells from CD28-deficient mice, which was substantially inhibited by RM134L and/or anti-CD70 mAb. These results indicated that OX40L and CD70 expressed on surface Ig- and CD40-stimulated B cells can provide CD28-independent costimulatory signals to T cells.  相似文献   

14.
15.
CD40, a member of the TNF receptor superfamily, is expressed on B cells, dendritic cells, and some tumor cells, including melanoma and bladder carcinoma. In this study, we report that both mouse and human renal carcinoma cells (RCC) also constitutively express functional CD40. Treatment of mouse RCC with CD40L induced strong expression of genes and proteins for ICAM-1 and Fas, and this expression was further enhanced by combining CD40L with IFN-gamma. Similar effects were demonstrated using an agonist anti-CD40 antibody. The increased levels of Fas expression on RCC after treatment with CD40L plus IFN-gamma resulted in potent killing by either FasL-positive effector cells or agonistic anti-Fas antibody. The combination of CD40L plus IFN-gamma also significantly enhanced killing of RCC by tumor-specific CTL lines. Our results demonstrate that constitutively expressed CD40 is functionally active and may provide a molecular target for the development of new approaches to the treatment of RCC.  相似文献   

16.
Naive B lymphocytes are generally thought to be poor APCs, and there is limited knowledge of their role in activation of CD8(+) T cells. In this article, we demonstrate that class I MHC Ag presentation by human naive B cells is enhanced by TLR9 agonists. Purified naive B cells were cultured with or without a TLR9 agonist (CpG oligodeoxynucleotide [ODN] 2006) for 2 d and then assessed for phenotype, endocytic activity, and their ability to induce CD8(+) T cell responses to soluble Ags. CpG ODN enhanced expression of class I MHC and the costimulatory molecule CD86 and increased endocytic activity as determined by uptake of dextran beads. Pretreatment of naive B cells with CpG ODN also enabled presentation of tetanus toxoid to CD8(+) T cells, resulting in CD8(+) T cell cytokine production and granzyme B secretion and proliferation. Likewise, CpG-activated naive B cells showed enhanced ability to cross-present CMV Ag to autologous CD8(+) T cells, resulting in proliferation of CMV-specific CD8(+) T cells. Although resting naive B cells are poor APCs, they can be activated by TLR9 agonists to serve as potent APCs for class I MHC-restricted T cell responses. This novel activity of naive B cells could be exploited for vaccine design.  相似文献   

17.
Mutations in the CD40 ligand (CD40L) gene lead to X-linked immunodeficiency with hyper-IgM, which is often associated with autoimmune diseases. To determine the contribution of defective CD40-CD40L interactions to T cell autoreactivity, we reconstituted CD40-CD40L interactions by transferring T cells from CD40-deficient mice to syngenic athymic nude mice and assessed autoimmunity. T cells from CD40-deficient mice triggered autoimmune diseases accompanied with elevations of various autoantibodies, while those from wild-type mice did not. In CD40-deficient mice, the CD25(+) CD45RB(low) CD4(+) subpopulation which regulates T cell autoreactivity was markedly reduced. CD40-deficient APCs failed to induce T regulatory cells 1 producing high levels of an inhibitory cytokine, IL-10 in vitro. Furthermore, autoimmune development was inhibited when T cells from CD40-deficient mice were cotransferred with CD45RB(low) CD4(+) T cells from wild-type mice or with T regulatory cells 1 induced on CD40-expressing APCs. Collectively, our results indicate that CD40-CD40L interactions contribute to negative regulation of T cell autoreactivity and that defective interactions can lead to autoimmunity.  相似文献   

18.
Sepsis causes a marked apoptosis-induced depletion of lymphocytes. The degree of lymphocyte apoptosis during sepsis strongly correlates with survival. CD40, a member of the TNFR family, is expressed on APCs and has potent antiapoptotic activity. In this study we determined whether an agonistic Ab against CD40 could protect lymphocytes from sepsis-induced apoptosis. Secondly, we examined potential antiapoptotic mechanisms of the putative protection. Lastly, we aimed to determine whether anti-CD40 treatment could improve survival in sepsis. CD1 mice were made septic by the cecal ligation and puncture method and treated postoperatively with anti-CD40 Ab. Treatment with anti-CD40 completely abrogated sepsis-induced splenic B cell death and, surprisingly, decreased splenic and thymic T cell death as well (p < 0.001). To investigate the mechanism of protection of anti-CD40 therapy on T cells, CD40 receptor expression was examined. As anticipated, the CD40 receptor was constitutively expressed on B cells, but, unexpectedly, splenic and thymic T cells were found to express CD40 receptor during sepsis. Furthermore, CD4+CD8- T cells were the predominant subtype of T cells expressing CD40 receptor during sepsis. Additionally, the antiapoptotic protein Bcl-x(L) was found to be markedly increased in splenic B and T cells as well as in thymic T cells after treatment with anti-CD40 Ab (p < 0.0025). Lastly, mice that were made septic in a double injury model of sepsis had improved survival after treatment with anti-CD40 as compared with controls (p = 0.05). In conclusion, anti-CD40 treatment increases Bcl-x(L), provides nearly complete protection against sepsis-induced lymphocyte apoptosis, and improves survival in sepsis.  相似文献   

19.
Dendritic cells (DC) are professional antigen-presenting cells which stimulate strong proliferative and cytolytic T cell responses. Stimulation of CD40 on dendritic cells by its ligands and anti-CD40 antibodies induces maturation and enhances DC stimulatory ability. In order to understand the mechanism by which ligand:CD40 interactions augment DC function, we assessed the role of T cell stimulatory cytokines IL-12 and IL-15 in the function of DC stimulated with soluble trimeric CD40L, a recombinant fusion protein incorporating three covalently linked extracellular CD40L domains (huCD40LT). Peripheral blood derived DC treated with huCD40LT and/or IFN-gamma were used to stimulate T cell responses in vitro to specific antigens. DC treated with huCD40LT or IFN-gamma/huCD40LT stimulated enhanced T cell proliferation to CASTA, a soluble protein from C. albicans, induced T cells with augmented antigen-specific lysis, and increased the yield of antigen-specific IFN-gamma-producing T cells. IL-15 production by DC was enhanced in cultures treated with huCD40LT and correlated with expansion of antigen-specific cytolytic T cells. Addition of a neutralizing anti-IL-15 monoclonal antibody inhibited the expansion of viral and tumor antigen-specific T cells stimulated by IFN-gamma and huCD40LT-treated DC. In contrast, this enhanced stimulatory ability of DC did not appear to depend on synthesis of IL-12 since huCD40LT treatment stimulated the generation of antigen-specific cytokine producing and cytolytic T cells without increased IL-12 production. Addition of anti-IL-12 monoclonal antibody did not inhibit expansion of these cells. These data suggest that production of IL-15 but not IL-12 is an important factor in the enhanced immunostimulatory ability of huCD40LT-treated DC.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号