首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The membrane protein Imp1227 (Ignicoccus outer membrane protein; Imp1227) is the main protein constituent of the unique outer sheath of the hyperthermophilic, chemolithoautotrophic Archaeum Ignicoccus hospitalis. This outer sheath is the so far only known example for an asymmetric bilayer among the Archaea and is named 'outer membrane'. With its molecular mass of only 6.23 kDa, Imp1227 is found to be incorporated into the outer membrane in form of large, stable complexes. When separated by SDS-PAGE, they exhibit apparent masses of about 150, 50, 45 and 35 kDa. Dissociation into the monomeric form is achieved by treatment with SDS-containing solutions at temperatures at or above 113 degrees C. Electron micrographs of negatively stained samples confirm that isolated membranes are tightly packed with round complexes, about 7 nm in diameter, with a central, stain-filled 2 nm pore; a local two-dimensional crystalline arrangement in form of small patches can be detected by tomographic reconstruction. The comparison of the nucleotide and amino acid sequence of Imp1227 with public databases showed no reliable similarities with known proteins. Using secondary structure prediction and molecular modelling, an alpha-helical transmembrane domain is proposed; for the oligomer, a ring-shaped nonamer with a central 2 nm pore is a likely arrangement.  相似文献   

2.
Two types of virus-like particles were observed in the cytoplasm of hemocytes of the bean leaf beetle, Cerotoma trifurcata. The polyhedral particles were 37–40 nm in diameter and were usually in a crystalline array. They were often associated with granular and laminated structures. The enveloped, spherical particles were 70–75 nm in diameter and were composed of three parts: an outer envelope, a central electron-dense core, and an electron-lucent space between the envelope and the central core. The envelope was similar in structure to the membranes of the cell organelles. These particles were also associated with granular and filamentous structures which were distinct from those associated with the nonenveloped, smaller, polyhedral particles. The nonenveloped particles were recovered in large amounts from partially purified preparations from beetles that contained the particles in thin sections and from soybean loopers, Pseudoplusia includens, which were injected with partially purified preparations from beetles.  相似文献   

3.
Freeze-etch electron microscope studies of the morphogenesis and morphology of Sindbis virus confirmed results obtained by other workers employing thin-sectioning techniques. The 68-nm virion was found to have a nucleocapsid 36 nm in diameter surrounded by a double-layered, unit membrane. The membranous envelope is acquired as the capsid buds through the plasma membrane of the infected cell. The freeze-etch technique also provided the following new information. (i) At any one time, budding occurs in patches rather than evenly over the cell surface. (ii) The nucleocapsid is composed of capsomers 7 nm in diameter. (iii) The capsid interacts strongly with the membrane, both prior to budding and after maturation. (iv) The 7- to 10-nm particles characteristic of the internal faces of plasma membranes, which presumably represent host membrane proteins, are present in early stages of budding but disappear as morphogenesis progresses. (v) Fusion of the cell membrane at the base of the budding virion is a two-step process; the inner leaflet fuses into a sphere before the outer one. (vi) The outer surface of the viral envelope is covered with 4-nm subunits with a center-to-center spacing of 6 nm.  相似文献   

4.
The surface structure and cell envelope layers of various virulent Bacteroides nodosus strains were examined by light microscopy and by electron microscopy by using negative staining, thin-section, and freeze-fracture-etch techniques. Three surface structures were described: pili and a diffuse material, both of which emerged from one or both poles of the bacteria (depending on the stage of growth and division), and large rodlike structures (usually 30 to 40 nm in diameter) associated with a small proportion of the bacterial population. No capsule was detected. The cell envelope consisted of four layers: a plasma membrane, a peptidoglycan layer, an outer membrane, and an outermost additional layer. The additional layer was composed of subunits, generally hexagonally packed with center-to-center spacing of 6 to 7 nm. The outer membrane and plasma membrane freeze-fractured through their hydrophobic regions revealing four fracture faces with features similar to those of other gram-negative bacteria. However, some unusual features were seen on the fracture faces of the outer membrane: large raised ring structure (11 to 12 nm in diameter) on cw 3 at the poles of the bacteria; complementary pits or ring-shaped depressions on cw 2; and small raised ring structures (7 to 8 nm in diameter) all over cw 2.  相似文献   

5.
The cell envelope of Escherichia coli B was investigated with the freeze-etching technique. A considerable gain in visible structural detail over more conventional electron microscopic techniques was obtained. The inner surface of the plasma membrane revealed a smooth surface sparsely studded with particles measuring from 5 to 10 nm in diameter, whereas the outer surface of the plasma membrane showed many more particles of corresponding diameter. The freeze-etched cell wall appeared to be a multilayered structure. The innermost layer could be observed as a profile studded with closely packed elements of about 10 nm in diameter. External to this layer was a smooth surface bordering the outermost cell wall layer. When frozen in the absence of glycerol the outermost surface observed in the cell wall was smooth, but when grown in the presence of glycerol it had a "wavy" appearance with small particles attached to it. The observations support current concepts on the ultrastructure of the enterobacterial cell envelope.  相似文献   

6.
The ultrastructure of three strains of water Leptospira was studied by negative staining, thin sectioning, and freeze-etching. The cells possessed a triple-layered sheath which covered two independent axial filaments, one inserted subterminally in each end of the cell. The protoplasmic cylinder was surrounded by a triple-layered cell wall and possessed ribosomes, lamellar structures, and a typical procaryotic nuclear region. The axial filament was comprised of several component structures. An axial fibril, with a diameter of 20 to 25 nm, consisted of a solid inner core (13 to 16 nm in diameter) surrounded by a coat. A terminal knob (40 to 70 nm in length) was connected to a series of disc insertion structures at the terminal end of the axial fibril. The axial fibril was surrounded by a helical outer coat (35 to 60 nm in diameter) which was composed of a continuously coiled fiber, 3 to 4 nm in diameter, embedded in an electron-dense material. A procedure for the purification of the axial fibrils was presented and their ultrastructural, physical, and chemical properties were determined. Similarities in ultrastructural, physical, and chemical properties were noted between the axial fibrils and bacterial flagella. A schematic model of the leptospiral axial filament is presented, and a mechanism is proposed for its function as a locomotor organelle.  相似文献   

7.
Gloeocapsa strain NS4, a cyanophyte (cyanobacterium) which grows in low light levels inside cave entrances, was studied in the electron microscope by thin sectioning and freeze-etching. The cells are surrounded by a microfibrillar sheath divided by dense lamellae, which are probably an acidic mucopolysaccharide. Inside this is a typical Gramnegative cell wall. Double-replica freeze-fracture showed that the outer envelope of the wall fractures to give two faces each consisting of densely-packed particles; the particles of the outer leaflet seem to consist of subunits arranged in a hollow cylinder. A structural model of the outer envelope is proposed. The plasma membrane fractures to give a PF face with 3000 9 nm particles m-1 and an EF face with 150–700 11–12 nm particles m-1. The thylakoids are arranged in a pattern not previously found in a unicellular cyanophyte, parallel arrays which intersect, and may fuse with, the plasma membrane. The thylakoid membranes have 2,850 particles m-1, mean size 10.9 nm, on the PF face and 560 particles m-1, mean size 12.3 nm, on the EF face. Phycobilisomes are difficult to see, but may be unusually large. These ultrastructural features may be adaptations to a very low light habitat.  相似文献   

8.
An enigmatical association of two Archaea The obligate anaerobic hyperthermophilic Nanoarchaeum equitans and Ignicoccus hospitalis represent a unique, purely archaeal biocoenosis which is mandatory for N. equitans. Its strong dependence on I. hospitalis is affirmed by the fact that its lipids and amino acids are obtained exclusively from the host. The Crenarchaeon I. hospitalis is characterized by energy production via reduction of elemental sulfur with molecular hydrogen and a novel CO2‐fixation pathway. It possesses a unique cell envelope for Archaea with an inner and an outer membrane, forming two cell compartments, the cytoplasm and a huge intermembrane compartment. By immuno‐analyses we demonstrated that the ATP synthase and H2:sulfur oxidoreductase complexes of I. hospitalis are located in the outer membrane. Thus I. hospitalis is the first Prokaryote with an energized outer membrane, ATP synthesis outside the cytoplasm, and spatial separation of energy conservation from information processing and protein biosynthesis. This raises many questions on the function and characterization of the two membranes, the two cell compartments, and a possible ATP transfer to N. equitans.  相似文献   

9.
Flagella of some pathogens or marine microbes are sheathed by an apparent extension of the outer cell membrane. Although flagellar sheath has been reported for almost 60 years, little is known about its function and the mechanism of its assembly. Recently, we have observed a novel type of sheath that encloses a flagellar bundle, instead of a single flagellum, in a marine magnetotactic bacterium MO-1. Here, we reported isolation and characterization of the sheath which can be described as a six-start, right-handed helical tubular structure with a diameter of about 100 nm, and a pitch of helix of about 260 nm. By proteomic, microscopic and immunolabelling analyses, we showed that the sheath of MO-1 consists of glycoprotein with an apparent molecular mass > 350 kDa. This protein, named sheath-associated protein (Sap), shows homology with bacterial adhesins and eukaryotic calcium-dependent adherent proteins (cadherin). Most importantly, we showed that calcium ions mediate the assembly of the tubular-shaped sheath and disintegration of the sheath was deleterious for smooth swimming of MO-1 cells. The disintegrated sheath was efficiently reconstituted in vitro by adding calcium ions. Altogether, these results demonstrate a novel bacterial Ca(2+) -dependent surface architecture, which is essential for bacterial swimming.  相似文献   

10.
The ultrastructure of natural complex biofilm communities of the Elbe river grown in situ on microscopic glass coverslips was studied by using transmission electron microscopy and energy-dispersive x-ray (EDX) analysis. Characteristic microcolonies which measured between 3.3 and 9.3 microm in diameter were frequently observed. They had an outer envelope and harbored 6 to 30 cells. The cells formed short rods measuring 1.09 +/- 0.28 microm (n = 10) in length and 0.55 + 0.07 microm (n = 21) in width. They were surrounded by a thick layer of electron-transparent, nonosmicated matter, 120 to 300 nm thick. Individual cells exhibited a unique ultrastructural trait, namely, a concentric membrane stack which completely surrounded the cytoplasm. It consisted of three membrane doublets, which showed an overall thickness of 57 to 66 nm. The center-to-center spacing between two membrane doublets was 22.2 +/- 1.0 nm (n = 12). The bacterial cell wall seemed to be of the gram-negative type. The fact that upon shrinkage hexagonal clefts appeared proved the cells to be tightly packed, and septum formation by binary fissions was observed. All of these morphological details indicate that the cells within these microcolonies were actively growing and did not represent spore-like states. EDX analysis showed that only the electron-dense surface deposit of the microcolonies contained Mn and Fe in significant amounts, while these two elements were absent from the intercellular space and the cytoplasm of the microorganisms. In contrast, aluminum ions were able to penetrate the outer envelope of the microcolonies and were detected in the intercellular space. They were, however, completely absent from the microbial cytoplasm, indicating a filter cascade with respect to aluminum. From the ultrastructural data together with the deposition of iron and manganese on the microcolony surface, it appears that these organisms may belong to the genus Siderocapsa or Nitrosomonas. They do not precisely match any of the described species and may therefore represent a new species.  相似文献   

11.
An ultrastructural study was made of the spore envelope during development in the microsporidan, Thelohania bracteata. The frozen-etched outer (convex) face of the relatively thin spore coat in the earliest immature stage of development has a granular structure in regular array. The inner (concave) face bears particles as well as depressions arranged in a net-like pattern. The mature spore coat has a substructure of numerous microfibers, ~8 nm in diameter, arranged in a matrix and forming thin layers which run parallel to the spore surface. The mature spore coat possesses both outer and inner limiting layers. The outer (convex) face of the outer limiting layer is granular. The convex face of inner limiting layer bears many particles as well as many long, narrow depressions. The concave face of the inner limiting layer carries many stud-like projections, ~40 nm long and 30 nm high, which are complementary to the depressions observed on the convex face. In addition, the concave face has subunits ~15 nm in diameter, apparently arranged in a hexagonal pattern with a center to center distance of ~18 nm. The change in size of these projections, depressions, and subunits presumably is related to spore maturation.  相似文献   

12.
The thylakoid and the cell envelope of the blue-green alga Anacystisnidulans were separated by mechanical disruption of lysozyme-treatedcells followed by differential and density gradient centrifugation.The prepared envelope was composed of an outer membrane, a peptidoglycanlayer and possibly a part of the cytoplasmic membrane. The preparedthylakoid retained the size and intricate structure typicalof the thylakoid membrane of this alga. Light absorption andfluorescence spectra revealed that the envelope contained carotenoids,a pigment with an absorption maximum at 748 nm (P750), and asmall amount of pheophytin-like pigment with an absorption maximumat 673 nm. The thylakoid contained chlorophyll a and carotenoidsbut no P750. The thylakoid contained five kinds of carotenoids,the major ones being rß-carotene and zeaxanthin, whereasthe cell envelope contained two kinds of carotenoids, zeaxanthinand nostoxanthin. Four kinds of lipids, abundant in the blue-greenalgae, were present in both the thylakoid and the cell envelope.However, the content of sulfolipid was very low in the cellenvelope. The polypeptide compositions differed between thethylakoid and the cell envelope. Similarities between blue-greenalgal cells and eukaryotic chloroplasts are discussed with respectto the spectrophotometric and biochemical characteristics ofthe thylakoid and the envelope. (Received March 7, 1981; Accepted May 22, 1981)  相似文献   

13.
The cell envelope of mycobacteria, which include the causative agents of tuberculosis and leprosy, is crucial for their success as pathogens. Despite a continued strong emphasis on identifying the multiple chemical components of this envelope, it has proven difficult to combine its components into a comprehensive structural model, primarily because the available ultrastructural data rely on conventional electron microscopy embedding and sectioning, which are known to induce artifacts. The existence of an outer membrane bilayer has long been postulated but has never been directly observed by electron microscopy of ultrathin sections. Here we have used cryo-electron microscopy of vitreous sections (CEMOVIS) to perform a detailed ultrastructural analysis of three species belonging to the Corynebacterineae suborder, namely, Mycobacterium bovis BCG, Mycobacterium smegmatis, and Corynebacterium glutamicum, in their native state. We provide new information that accurately describes the different layers of the mycobacterial cell envelope and challenges current models of the organization of its components. We show a direct visualization of an outer membrane, analogous to that found in gram-negative bacteria, in the three bacterial species examined. Furthermore, we demonstrate that mycolic acids, the hallmark of mycobacteria and related genera, are essential for the formation of this outer membrane. In addition, a granular layer and a low-density zone typifying the periplasmic space of gram-positive bacteria are apparent in CEMOVIS images of mycobacteria and corynebacteria. Based on our observations, a model of the organization of the lipids in the outer membrane is proposed. The architecture we describe should serve as a reference for future studies to relate the structure of the mycobacterial cell envelope to its function.  相似文献   

14.
Unique particles of barley yellow streak mosaic virus (BYSMV) were detected in diseased barley, wheat, and several species of grass. They appeared to be about 64 nm in width and from 127 nm to an astonishing 4000 nm in length. Individual particles were circular in transverse section. The outermost layer of each particle seemed to be a membrane-like envelope. The internal structure of many particles was bead-like. Some particles had centers that were translucent. The BYSMV particles were distributed throughout the leaf, sheath, root, and own organs of barley. Virus particles were present in all cell types of the epidermis, mesophyll, phloem, and xylem. However, mesophyll cells contained the greatest number of particles. Most BYSMV particles occurred in large clusters of quasi-parallel arrays. Both individual and groups of particles were located within the cavities of ER elements. Ribosomes were attached to some outer surfaces of the ER bounding membrane. BYSMV particles are unique because they do not resemble any in presently classified groups or families of plant viruses: they are, however, similar to those of some unclassified viruses that infect insects.  相似文献   

15.
The morphology of Eikenella corrodens 333/54-55 (ATCC 23834) and two human periodontal lesion isolates, strains 470 and 373, was examined by transmission and scanning electron microscopy. All strains exhibited a cell envelope characteristic of gram-negative bacteria. Staining with ruthenium red and alcian blue revealed a loosely organized fibrous slime layer associated with the outer surface of the outer membrane. Slime "stabilization" was achieved by incubation of cells with antisera prepared against whole cells of the Eikenella strains. The stabilized slime appeared as a thick, electron-opaque layer juxtaposed to the outer membrane. Negative staining and heavy metal shadow-casting revealed an interwoven network of fibrils approximately 4 nm in diameter. These fibrils appeared to represent subunits of a larger fibril. Scanning electron microscopy after antibody slime stabilization confirmed the presence and location of the slime layer.  相似文献   

16.
During an ultrastructural examination, viruslike particles were observed in the turbellarian Gyratrix hermaphroditus. This is the first time viruslike particles have been found in a noncultivated platyhelminth species. The particles are 70 nm in diameter and have a capsidlike outer layer and an inner core measuring 40–50 nm in diameter. They occur in a crystalline arrangement in the nucleus as well as in the cytoplasm. Numerous cytoplasmic abnormalities were seen in connection with the particles. The occurrence of the particles in different tissues and their significance for the host are discussed.  相似文献   

17.
The fine structure of the spirochete Treponema zuelzerae, and particularly of its axial filaments, was investigated by using the electron microscope. The cell consists of a protoplasmic core surrounded by two concentric envelopes, each approximately 12 nm in width. Between these envelopes are two axial filaments, one originating at each pole of the cell, which overlap and lie side by side in the central region of the cell. The diameter of the axial filaments is 18.0 to 18.5 nm. The terminal region of each filament at its proximal end consists of a hook-like structure, very similar in appearance to the proximal end of a bacterial flagellum. The outer envelope of the cell is readily disrupted with distilled water, and this treatment often results in the release of the filaments from their axial position. A sheath is seen surrounding the filaments when cells are treated with distilled water for no more than 1 min and fixed immediately with osmium tetroxide or glutaraldehyde. This sheath has a striated fine structure and a diameter of 46 nm.  相似文献   

18.
The ultrastructure of the cyanobionts of the greenhouse-grown cycads Cycas circinalis, Ceratozamia mexicana, and Encephalartos villosus was studied. In addition to heterocysts with the typical ultrastructure, the cyanobiont microcolonies also contained altered heterocysts with reduced cell walls, which might dominate in all regions of the coralloid roots. The altered heterocysts represented a protoplast enclosed in a heterocyst-specific envelope with additional layers. Some heterocysts contained an additional reticular protoplast-enclosing sheath below the heterocyst-specific envelope, whereas the other heterocysts contained an additional electron-opaque outer layer. The substance of the inner sheath of the former heterocysts resembled the polysaccharides of mucilage, which fills the intercellular space, whereas the electron-opaque outer layer of the latter heterocysts probably had a protein nature. The substances that constitute the sheath and the outer layer are likely to be synthesized intracellularly and then released with the aid of membrane-bounded vesicles or by ruptures in the cytoplasmic membrane.  相似文献   

19.
At the position of insertion of the flagellum into the Gram-negative bacterial cell envelope, a specialized membrane differentiation has been observed by electron microscopy. This structure, termed concentric membrane rings, is harboured on the under-side of the outer membrane of Spirillum serpens, and forms a plate-like array of up to seven rings (diameter 90 nm) and an interior supporting collar. The concentric membrane rings are sensitive to proteolytic digestion, but are lysozyme and phospholipase resistant. The structures are disrupted by ionic detergents, yet resistant to the action of non-ionic detergents. A model integrating the basal organelle of the bacterial flagellum and the outer membrane of the cell wall is presented.  相似文献   

20.
Outer membrane materials prepared from an Escherichia coli ompA (tolG) strain do not contain one of the major outer membrane proteins found in ompA+ strains. This protein has been purified in high yield from detergent-solubilized cell envelope material prepared from an ompA+ strain by preparative electrophoresis in polyacrylamide gels containing sodium dodecyl sulfate. The purified protein is homogeneous in three electrophoretic systems, contains 2 mol of reducing sugar/mol of peptide and has alanine as the N-terminal amino acid. The amino acid composition is nearly identical to outer membrane protein II or B purified by others from incompletely solubilized cell envelope material. Thus, the fraction of outer membrane protein II or B that is difficult to solubilize is identical with the more readily solubilized fraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号